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Abstract

The first half of this tutorial will make deep
nets more accessible to a broader audience, fol-
lowing “Deep Nets for Poets” and “A Gentle
Introduction to Fine-Tuning.” We will also in-
troduce, gft (general fine tuning), a little lan-
guage for fine tuning deep nets with short (one
line) programs that are as easy to code as regres-
sion in statistics packages such as R using glm
(general linear models). Based on the success
of these methods on a number of benchmarks,
one might come away with the impression that
deep nets are all we need. However, we believe
the glass is half-full: while there is much that
can be done with deep nets, there is always
more to do. The second half of this tutorial will
discuss some of these opportunities.

1 Introduction

This tutorial is split into two parts:

A Glass is half-full: deep nets can do much
B Glass is half-empty: there is always more to do

Part A will make deep nets more accessible to
a broader audience (Church et al., 2021b,a) by in-
troducing gft (General Fine-Tuning), a new “little
language”1 for deep nets that is similar to glm (gen-
eral linear models) in the statistics package R.2 gft
code will be posted on the tutorial website.3

2 Part A: Glass is Half-Full

2.1 The Standard Recipe

Following (Devlin et al., 2019; Howard and Ruder,
2018), it has become standard practice to use the
3-step recipe in Table 1, with an emphasis on

1Little languages were advocated by Bentley (1986) and
the Unix group. Little languages such as AWK (Aho et al.,
1987) make it easy to solve remarkably powerful tasks with
short (often one-line) programs.

2https://www.r-project.org/
3https://github.com/kwchurch/ACL2022_

deepnets_tutorial

Step gft Standard Terminology
1 Pre-Training
2 fit Fine-Tuning
3 predict Inference

Table 1: 3-Step recipe has become standard practice

pre-trained (foundation/base) models (Bommasani
et al., 2021). gft prefers the terms, fit and predict,
which have a long tradition in statistics, and pre-
date relatively recent work on deep nets.

gft makes it easy to use models and datasets on
hubs: HuggingFace4 and PaddleHub/PaddleNLP.5

The hubs are large (30k models and 3k datasets),
and growing quickly (3x/year). The challenge is
to make these amazing resources more accessible
to a diverse user-base. One does not need to know
python and machine learning to use an off-the-shelf
regression package. So too, deep nets should not
require much (if any) programming skills.

2.2 Examples of Fit (aka Fine-Tuning)

Fit takes a pre-trained model, fpre (BERT), and
uses a dataset (emotion) to output a post-trained
model, fpost (to $outdir):

gft_fit --data "H:emotion" \
--model "H:bert-base-cased" \
--eqn "classify:label~text" \
--output_dir "$outdir"

Listing 1: Example of gft_fit

The next example is similar but uses a model and a
dataset from PaddleNLP. gft supports mixing and
matching models and datasets from different hubs.

gft_fit --data "P:chnsenticorp" \
--model "P:ernie-tiny" \
--eqn "classify:label~text" \
--output_dir "$outdir"

Listing 2: H and P refer to HuggingFace and PaddleNLP

4https://huggingface.co/
5https://github.com/PaddlePaddle
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–data arg –eqn arg
H:glue,cola classify: label ∼ sentence

H:glue,sst2 classify: label ∼ sentence

H:glue,wnli classify: label ∼sentence

H:glue,mrpc classify: label ∼ sentence1 + sentence2

H:glue,rte classify: label ∼sentence1 + sentence2

H:glue,qnli classify: label ∼ question + sentence

H:glue,qqp classify: label ∼question1 + question2

H:glue,sstb regress: label ∼sentence1 + sentence2

H:glue,mnli classify: label ∼ premise + hypothesis

Table 2: gft solutions for GLUE (Wang et al., 2018)

–data arg –eqn arg
squad classify_spans: answers ∼ question + context

tweet_eval,hate classify: label ∼ text

conll2003 classify_tokens: pos_tags ∼ tokens

conll2003 classify_tokens: ner_tags ∼ tokens

conll2003 classify_tokens: chunk_tags ∼ tokens

timit_asr ctc: text ∼ audio

Table 3: gft solutions for more benchmarks

Short (1-line) gft programs can fit (fine-tune)
many benchmarks, as illustrated in Tables 2-3.

2.3 gft Cheatsheet

gft supports the following functions:

1. fit (aka fine-tuning): fpre + data → fpost
2. predict (aka inference): f(x) = ŷ, where x is

an input from a dataset or from stdin
3. eval: f + data → score
4. summary: search hubs for popular datasets,

models and tasks, and provide snippets.
5. cat_data: output dataset on stdout

There are four major arguments:

1. –data: a dataset on a hub, or a local file
2. –model: a model on a hub, or a local file
3. –task: e.g., classify, regress6

4. –eqn (e.g., classify:y ∼ x1+x2), where a task
appears before the colon, and variables refer
to columns in the dataset.

The gft interpreter is based on examples from

6Currently supported tasks are: classify (aka text-
classification), classify_tokens (aka token-classification), clas-
sify_spans (aka QA, question-answering), classify_images
(aka image-classification), classify_audio (aka audio-
classification), regress, text-generation, MT (aka translation),
ASR (aka ctc, automatic-speech-recognition), fill-mask. Tasks
in parentheses are aliases.

hubs.7 8 Hubs encourage users to modify 500+
lines of pytorch as necessary if they want to change
models, datasets and/or tasks. gft generalizes the
examples so users can do much of that in a single
line of gft code (with comparable performance).9

2.4 Some Simple Examples
2.4.1 Search
As mentioned above, users are overwhelmed with
an embarrassment of riches. How do we find the
good stuff on the hubs? The following outputs
snippets for datasets, models and tasks:
m=bhadresh-savani/roberta-base-emotion
gft_summary --data "H:emotion"
gft_summary --model "H:$m"
gft_summary --task "H:classify"

Listing 3: Models/datasets/tasks → snippets

Search for datasets and models that contain the
substring: emotion, sorted by downloads:
query=H:__contains__emotion
gft_summary --data "$query" --topn 5
gft_summary --model "$query" --topn 5

Listing 4: Searching for best emotion models/datasets

To find the most downloaded datasets and models,
set the query to the empty string:
query=H:__contains__
gft_summary --data "$query" --topn 5
gft_summary --model "$query" --topn 5

Listing 5: Searching for best of everything

2.4.2 Predict (aka Inference)
After having found the good stuff, how do we use
it? gft_predict takes input, x, from stdin and out-
puts predictions, ŷ.
c=H:classify
tc=H:token-classification
# sentiment classification
echo "I love you"|gft_predict --task $c
# emotion classification
echo "I love you"|

gft_predict --task $c --model $m
# NER (Named Entity Recognition)
echo "I love New York"|

gft_predict --task $tc

7https://github.com/huggingface/
transformers/blob/master/examples/
pytorch/

8https://github.com/PaddlePaddle/
PaddleNLP/tree/develop/examples

9gft supports most of the arguments in the examples on the
hubs, so it is possible to tune hyperparameters such as batch
size, learning rate and stopping rules. Tuning is important for
SOTA-chasing (Church and Kordoni, 2022), though default
settings are recommended for most users who prefer results
that are easy to replicate, and reasonably competitive.
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# cloze task (fill in the <mask>)
echo "I <mask> you"|

gft_predict --task H:fill-mask

Listing 6: Examples of gft_predict

gft_predict can also input from a dataset split, and
outputs a prediction, ŷ, for each x in the split:

eqn="classify:label~text"
gft_predict --eqn "$eqn" --model $m \

--data H:emotion --split test

Listing 7: Input from a dataset (instead of stdin)

2.4.3 Evaluation
If we replace gft_predict (above) with gft_eval (be-
low), then we obtain a single score (instead of a ŷ
for each x):

gft_eval --eqn "$eqn" --model $m \
--data H:emotion --split test

Listing 8: Evaluating a model on a dataset

2.4.4 Ease of Use, Popularity & SOTA
Given an embarrassment of riches, how do we
choose the best model? The literature emphasizes
SOTA (state-of-the-art), hubs reward downloads,
and gft advocates ease-of-use.

Table 4 reports accuracy for a few models con-
taining “MRPC,”10 as well as two custom models.
gft makes it easy to achieve competitive results,
close to distilbert (compressed) models. One can
outperform models on the hubs, by tuning hyper-
parameters as Yuchen Bian did. Tuning is possible
in gft (but not recommended), as discussed in foot-
note 9. The validation accuracy in Table 4 are well
below test accuracy in Table 5,11 12 suggesting that
popular/easy-to-use/compressed models are well
below SOTA (though we should not compare vali-
dation accuracy with test accuracy).

2.5 Conclusions to Part A

Higher level (little) languages like gft have many
advantages over examples found on hubs: short
(1-line) programs are easier to read and write, more
transparent and more portable (across hubs). gft
code and hundreds of examples can be found on
the tutorial website (see footnote 3).

10 We tested 22 models from HuggingFace and 135 models
from Yuchen Bian (personal communication). To save space,
results are reported for the best of Bian’s models, the top 3
HuggingFace models, and models with 100+ downloads.

11https://paperswithcode.com/sota/
semantic-textual-similarity-on-mrpc

12https://gluebenchmark.com/leaderboard

Model VAcc D
C:RoBERTa large, tuned by Yuchen Bian 0.924
H:textattack/roberta-base-MRPC 0.912 1623
H:textattack/albert-base-v2-MRPC 0.897 175
H:mrm8488/deberta-v3-small- 0.892 30

finetuned-mrpc

H:textattack/bert-base-uncased-MRPC 0.877 10,133

H:textattack/distilbert-base-uncased-MRPC 0.858 108
H:ajrae/bert-base-uncased-finetuned-mrpc 0.858 115
C:gft_fit example (BERT with no tuning) 0.853
H:textattack/distilbert-base-cased-MRPC 0.784 122

Table 4: gft achieves VAcc (accuracy on validation split)
close to distilbert (compressed) models. HuggingFace
models were selected using gft_summary to find popular
models by downloads (D).

Source Test Accuracy
GLUE Leaderboard (L) 0.945
Papers with code (PWC) 0.937
Human Baseline (HB) 0.863

Table 5: SOTA (state-of-the-art) for MRPC (GLUE).
See footnote 11 for PWC, and 12 for L & HB.

The point of Part A is to demystify deep nets.
No one would suggest that regression-like methods
are magical, or even artificially intelligent.

The point of Part B is to set appropriate ex-
pectations. There are many classic problems in
knowledge representation, cognitive science and
linguistics that go beyond regression-like methods
discussed in Part A.

3 Part B: Opportunities for Improvement

Language models (LMs) are based on (Firth, 1957):
“You shall know a word by the company it keeps”
and Zellig Harris’s (1954) “distributional hypoth-
esis.” By construction, this approach learns many
aspects of language, some more desirable (fluency,
collocations, word patterns) and some less desir-
able (biases (Bender et al., 2021)). However, there
are many aspects that are not learned: truth (logical
form, temporal/spatial logic and possible worlds),
meaning, purpose (planning (Kautz et al., 1986;
Litman and Allen, 1987), discourse structure) and
commonsense knowledge (time and space). These
topics have been studied for decades in AI and
knowledge representation and for centuries in lin-
guistics and philosophy.
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3.1 Truth
To the extent that a use case places impor-
tance on the truth of the outputs provided,
it is not a good fit for GPT-3 (Dale, 2021)

LMs have a tendency to “hallucinate” when sum-
marizing documents. The output sounds plausible,
but may add embellishments to the input. More
generally, LMs tend to make up “alternative facts”
faster than they can be fact-checked. This may
well be their most dangerous failing; people might
believe some of these conspiracy theories.

3.2 Meaning
A vivid example of challenges with meaning is
Ettinger’s (2020) study of negation. If you ask
BERT to fill in the blank in:

• A robin is a .
• A robin is not a .

the top answer is: “bird,” in both cases. There are
few wrong answers in the second case, but “bird”
is one of them.

3.3 Purpose, Planning & Document Structure
LMs generate text word-by-word without looking
ahead and thinking about the larger picture. Short
outputs are remarkably fluent, but longer outputs
tend to meander aimlessly. Dialogue systems op-
timize for smoothness from the most recent turn.
Such short-term thinking may not be helpful to the
user (Grice, 1975). In one notorious case, a GPT-3
chatbot in the medical domain advised a patient to
commit suicide (Rousseau and Baudelaire, 2020).
More generally, LMs produce non-sequiturs, con-
tradictions, tautologies, echolalia (Metz, 2020).

3.4 Commonsense knowledge
Commonsense knowledge is basic knowledge of
how the world works (Davis and Marcus, 2015).
We tested GPT-3’s command of spatial and tempo-
ral knowledge with questions such as:

Time: Who came first, Thomas Jefferson or John
F. Kennedy?

Space: Which is further from Liverpool, England:
Brussels, Belgium or Portland, Oregon?

GPT-3 performed at chance on space, and only
slightly better on time. LMs can output dates for
historical figures and coordinates of cities, if asked
directly, but LMs struggle to use this knowledge
for questions such as the ones above.

The questions in our experiment involve particu-
larly simple forms of temporal and spatial reason-
ing. Many texts make use of complex temporal
relations such as possible worlds13 and hypotheti-
cal events (such as planning, hoping, fearing, and
preventing) (Gordon and Hobbs, 2017). Text often
make use of complex features involving shapes and
spatial relations (Davis, 2013).

Time14 and space (Bloom, 1999) have been ex-
tensively studied in linguistics and philosophy. It
is natural to model time based on tense. One ap-
proach,15 starts with speech time, S, reference time,
R, and event time, E.16

past perfect (had slept) E < R < S
simple past (slept) E ≈ R,E < S,R < S

There are also natural connections between linguis-
tic constructions such as subjunctive (would, could,
should) and possible worlds. More generally, much
of the work in linguistics assumes a rich set of con-
nections between surface representations (syntax)
and deeper structures (semantics/pragmatics).

4 Conclusions: Some Paths Forward

Some of these opportunities can be addressed by
relatively easy patches to Firth-based methods. For
example, biases can be mitigated in the short term
by vetting the training corpus (Hovy and Prabhu-
moye, 2021). Similarly, penalty terms can be added
to the objective function to discourage hallucina-
tions (Durmus et al., 2020). Fine-tuning on a cor-
pus of commonsense knowledge can help with vio-
lations of commonsense (Zhang et al., 2021).

In the long term, it may be helpful to consider
more radical alternatives (Marcus and Davis, 2019).
Part A described some recent advances that have
been remarkably successful, though to make long
term advances beyond that, it may be necessary to
take advantage of more diverse interdisciplinary
approaches that include Firth-based methods, as
well as decades of work on Knowledge Representa-
tion in AI, and centuries of work in linguistics and
philosophy.

13https://plato.stanford.edu/entries/
possible-worlds/

14https://plato.stanford.edu/entries/
logic-temporal/

15https://plato.stanford.edu/entries/
reichenbach/#AxiTheRel192

16In the past perfect, event time precedes reference time,
which precedes speech time. In contrast, in the simple past,
event time coincides with reference time, while both precede
speech time.
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