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Abstract

Restricted machine translation incorporates hu-
man prior knowledge into translation. It re-
stricts the flexibility of the translation to sat-
isfy the demands of translation in specific sce-
narios. Existing work typically imposes con-
straints on beam search decoding. Although
this can satisfy the requirements overall, it
usually requires a larger beam size and far
longer decoding time than unrestricted trans-
lation, which limits the concurrent processing
ability of the translation model in deployment,
and thus its practicality. In this paper, we pro-
pose a general training framework that allows
a model to simultaneously support both unre-
stricted and restricted translation by adopting
an additional auxiliary training process with-
out constraining the decoding process. This
maintains the benefits of restricted translation
but greatly reduces the extra time overhead of
constrained decoding, thus improving its practi-
cality. The effectiveness of our proposed train-
ing framework is demonstrated by experiments
on both original (WAT21 En↔Ja) and simu-
lated (WMT14 En→De and En→Fr) restricted
translation benchmarks.

1 Introduction

Neural machine translation (NMT) has recently
entered use because of rapid improvements in its
performance (Bahdanau et al., 2015; Gehring et al.,
2017; Vaswani et al., 2017). The translation mech-
anism of an NMT model is a black box because
it is a special deep neural network model, which
means that translation generation is uncontrollable
(Moryossef et al., 2019; Mehta et al., 2020; Miy-
ata and Fujita, 2021). Although uncontrollable (or
unguaranteed) translation can satisfy basic require-
ments, it is unacceptable in some formal scenar-
ios, particularly for key numbers, time, and proper
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nouns. To address this concern, the restricted trans-
lation task has been proposed (Hokamp and Liu,
2017; Post and Vilar, 2018; Song et al., 2019; Chen
et al., 2020; Chousa and Morishita, 2021; Li et al.,
2021). This restricts translation by forcing the in-
clusion of prespecified words and phrases in the
generation output, which enables explicit control
over the system output.

Lexically constrained (or guided) decoding (CD)
(Post and Vilar, 2018; Hu et al., 2019b,a), a modi-
fication of beam search, has commonly been used
in recent restricted translation studies. Although
CD is a reasonable option for restricted transla-
tion, its slow decoding limits the practicality of
restricted translation. Therefore, we propose a
novel training framework for restricted translation
that requires only minor changes to the ordinary
translation model, to address the inconvenience of
the decoding time overhead caused by additional
constraints. In this framework, restricted machine
translation is achieved by the model structure in-
stead of the CD.

Specifically, we perform translation in two
modes in the training framework: end-to-end trans-
lation and restricted translation, and reuse the self-
attention and cross-attention in the decoder of the
translation model. To make the restricted transla-
tion training mode adapt to the training data sit-
uation with only parallel sentences available, we
propose the Sampled Constraints as Concentration
(SCC) training approach. In this approach, we sam-
ple the target sequence to simulate the constraint
words and impose additional penalties on the loss
of these sampled words.

Because the restricted translation is embedded
with the model structure and training objective
in the translation model trained with our frame-
work, restricted translation is performed without
CD. Consequently, the inference speed is substan-
tially increased, which greatly improves the prac-
ticality of restricted translation. Experimental re-
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sults show that our end-to-end translation model
can achieve approximately the same performance
as the end-to-end translation baseline; moreover,
although it only requires unconstrained decoding,
it can achieve performance competitive or even
superior with that of the baseline with CD.

2 Our Training Framework

Our training framework comprises two training
subprocesses: end-to-end translation and restricted
translation. Recent restricted translation studies
have focused mainly on the decoding phase, but
we set out to integrate restricted translation into
the training phase, which makes the motivation of
our work completely different from that of previ-
ous studies. Our implementation is based on the
existing mainstream Transformer NMT baseline;
however, because the training method is indepen-
dent of the baseline, our training framework can
easily be generalized to other NMT models and lan-
guage generation tasks. Due to space limitations,
please refer to Appendix A.2 for training details.

2.1 End-to-end Translation Training

The most widely adopted form of machine trans-
lation is end-to-end translation, which usually em-
ploys an encoder–decoder architecture. In the train-
ing of end-to-end machine translation, given a
source language input X = {x1, x2, ..., xn} and
target language translation Y = {y1, y2, ..., ym},
the model with parameter θ is trained to gener-
ate the target output sequence Y according to the
source input sequence X.

Taking the Transformer model as an example,
the encoder is composed of the multi-head self-
attention module, whose purpose is to vectorize
and contextualize the source input sequence. This
module can be formalized as:

HX = SelfAttnenc(X+ Pos(X)),

where Pos(·) represents the position encoding of
a sequence, SelfAttnenc denotes the stacked multi-
head self-attention encoder, and HX is the contex-
tualized source representation. A typical decoder
comprises two main components: self-attention
and cross-attention. In the self-attention compo-
nent, the target representation is encoded with sim-
ilar multi-head attention structures,

ĤY = SelfAttndec(IncMask(Ŷ + Pos(Ŷ))),

where Ŷ = {BOS, y1, y2, ..., ym−1} is the shifted
version of the target sequence Y, SelfAttndec de-
notes the stacked multi-head self-attention layers
(similar to the encoder), and IncMask is the extra
incremental mask adopted because the sequence on
the decoder side is generated incrementally. The
target representation is fed to the cross-attention
component, as a query, and the source represen-
tation is used as the key and value to obtain the
final representation, which is then mapped to the
target vocabulary space through a linear and soft-
max layer. The final predicted probabilities can be
written as follows:

P (Y) = Softmax(CrossAttn(ĤY ,HX)).

The model parameter θ is optimized by minimiz-
ing the negative log-likelihood of the gold tokens,
according to their predicted probabilities:

LE2E = −
m∑

i=1

logP (yi)

= −
m∑

i=1

logP (yi|X; Ŷ<i; θ),

(1)

where Ŷ<i indicates the sequence before token yi.
In the inference stage, greedy (or beam) search
is employed to generate the translation sequence
according to predicted probabilities P (yi) =
P (yi|X; Ỹ<i; θ), where Ỹ is the generated token
sequence.

2.2 Restricted Translation Training
In recent work on restricted translation, CD, a modi-
fication of beam search, has generally been adopted.
In CD, P (yi) remains unchanged and external
search processes are employed, which increases the
decoding time overhead. In this paper, we focus on
improving the efficiency of restricted translation by
modifying P (yi) to eliminate the additional search
processes. Given the constrained word sequence
C = {c1, c2, ..., ck}, CD adds additional terms to
the predicted probability of the model, and C is
treated as an additional input prompt. The output
probability P (yi) then becomes:

P (yi) = P (yi|X;C; Ŷ<i; θ).

According to this change in the form of proba-
bility, we made a simple modification to the work-
flow of the model, keeping the model structure un-
changed. First, we encoded the constrained word
sequence with the self-attention component of the
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decoder. Because the input order of the constrained
word sequence is usually inconsistent with the word
order of the target sequence, we removed the posi-
tional encoding, taking advantage of the position
invariance of the self-attention layer. In addition,
these constrained words are visible during the en-
tire translation generation process, so there is no
need to use the incremental mask strategy. Finally,
the constrained words representation is as follows:

HC = SelfAttndec(C).

Regarding such a representation as an additional
context, outside of the source representation, the
predicted probability of the model can be written
as:

P (Y) = Softmax(CrossAttn(ĤY ,HX)+

CrossAttn(ĤY ,HC)).
(2)

2.3 Sampled Constraints as Concentration
The training of end-to-end NMT models generally
uses parallel sentences between source and target
languages, whereas restricted machine translation
requires an additional constraint sequence. To hide
the difference between restricted translation train-
ing and testing, we propose the SCC training strat-
egy.

Because restricted machine translation training
requires additional given constraint sequences, we
randomly sample the target sequence to obtain con-
strained words in this training strategy. However,
this is insufficient. Because these additional target
words are already exposed to the decoder, the gener-
ation of these tokens would become quite easy, and
the goal of fully training the model would not be
accomplished (i.e., there are shortcuts). This would
have an undesirable impact on end-to-end transla-
tion (as when no constrained words are prespec-
ified) and reduce the model’s robustness, which
is incompatible with our general training frame-
work. Therefore, we propose additional concentra-
tion penalties for the losses of these exposed con-
strained tokens. Denoting the sampled sequence as
SY
α , where α is the sampling ratio, and the penalty

factor as γ, the final loss is:

LRT = −
m∑

i=1

(
(1 + γ1(yi ∈ SY

α ))

logP (yi|X;SY
α ; Ŷ<i; θ)

)
,

(3)

where 1(·) is the indicator function. Please refer
to Appendix A.1 for an illustrated figure and more
details.

3 Empirical Evaluation and Analysis

Our method was evaluated on the ASPEC
(Nakazawa et al., 2016) En↔Ja benchmark and the
WMT14 En→De and En→Fr benchmarks. The
constrained words for the ASPEC En↔Ja test set
were provided by the WAT21 restricted translation
shared task and, for WMT14 En→De and En→Fr,
we followed previous work by adopting random
sampling to extract the constraints. We chose two
typical Transformer model settings as our base-
line: Transformer-base and Transformer-big, both
of which are consistent with (Vaswani et al., 2017).
During training, we set α = 0.15 and γ = 1.0. For
a fair comparison, the beam size was set to 10 and
the batch size was fixed at 64.

We reported MultiBLEU scores in our experi-
ments and calculated them using the Moses script.
For En, De, and Fr, we use the default tokenizer pro-
vided by Moses (Hoang and Koehn, 2008), and for
Ja, we adopted Mecab1 for word segmentation. In
the evaluation of WAT21 EN↔JA, we also reported
a consistency metric – the Exact Match (EM) score
- according to the WAT21 official instructions. This
score is the ratio of sentences in the whole corpus
that exactly match the given constraints. For the
EM score evaluation, we use lowercase hypothe-
ses and constraints, then use character-level se-
quence matching (including whitespaces) for each
constraint in En, while for Ja, we use character-
level sequence matching (including whitespaces)
for each constraint without preprocessing. Please
see Appendix A.3 for more preparation details.

3.1 Results and Analysis
We present the performance of the models on the
WAT21 En↔Ja restricted translation tasks in Table
1. First, for both model architectures (Transformer-
base (T-base) and Transformer-big (T-big)), the
end-to-end translation performance (E2E) of our
approach’s models is almost the same as our base-
lines. This demonstrates that our training frame-
work still maintains high end-to-end translation per-
formance, even with restricted translation added,
meaning it effectively supports both end-to-end
translation and restricted translation simultane-
ously.

Second, on our end-to-end baselines, CD can
also be used to accommodate restricted transla-
tion. Its very substantial gain in translation per-
formance suggests that CD is a reasonable op-

1https://taku910.github.io/mecab/
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Model Alg. En→Ja Ja→En Speed (sent./s)

T-base E2E 41.82 [26.49] 28.18 [21.96] 53.98 / 63.39
CD 47.11 [98.29] 31.55 [99.11] 0.74 / 0.78

Ours
E2E 41.87 [26.55] 28.20 [22.01] 53.95 / 63.40
CAC 47.15 [60.26] 35.46 [56.68] 36.01 / 39.32
CD+ 47.30 [98.56] 35.49 [99.30] 0.73 / 0.81

T-big E2E 43.33 [27.51] 29.45 [22.70] 29.68 / 32.53
CD 47.89 [98.30] 32.04 [99.16] 0.68 / 0.71

Ours
E2E 43.40 [27.60] 29.41 [23.25] 29.55 / 32.21
CAC 47.93 [60.77] 35.71 [57.42] 18.13 / 19.32
CD+ 48.01 [98.60] 35.75 [99.44] 0.65 / 0.70

Table 1: Performance on WAT21 En↔Ja test sets. In
the form a[b], a represents the BLEU score and b the
EM score (see Appendix A.3).

tion for restricted translation. However, under the
same conditions, its decoding speed is much lower
than that of ordinary decoding, which prevents it
from being deployed at a large scale. In our pro-
posed framework, restricted translation is success-
fully supported with constraints as context (CAC),
without using CD. Like CD methods, our method
obtains a similar and substantial performance im-
provement, but it does so without sacrificing too
much decoding speed, which demonstrates that our
proposed method is efficient and effective.

Because CAC employs constrained word se-
quences as additional context, it only imposes soft
constraints on the decoder, whereas CD imposes
hard constraints. However, because CAC and CD
do not conflict, we combined the two as CD+ to pro-
duce better results. Our experimental findings attest
to the effectiveness of this practice. Furthermore,
CAC significantly outperforms CD in Ja→En. This
may be due to the beam size of 10, which is insuffi-
cient for longer constrained sequences and limits
CD performance (a larger beam size will be better,
see Figure 1(a)), but our proposed CAC alleviates
this shortcoming obviously. Furthermore, for the
EM score, CD adheres to hard constraints that the
given constrained word must appear in the transla-
tion, whereas CAC leverages soft constraints and
instead focuses on the overall translation, resulting
in a higher BLEU for CAC and a higher EM for
CD. CD+, however, provides higher scores for both
these metrics.

As in previous studies on restricted translation,
we also investigated the impact of constrained
words on restricted translation. The constrained
words were sampled from the translation references
of popular translation datasets (WMT14 En→De
and En→Fr). There are five common sampling

Model En→De En→Fr Speed (sent./s)

(Vaswani et al., 2017) 28.40 41.80 −
T-big (Ours) 28.15 43.12 39.23 / 34.95

+CAC (rand1) 29.95 44.27 31.27 / 29.38
+CAC (rand2) 31.62 45.53 30.63 / 28.37
+CAC (rand3) 33.13 47.21 29.43 / 27.46
+CAC (rand4) 34.51 48.16 28.19 / 26.40
+CAC (phr4) 36.07 48.95 28.26 / 26.38

Table 2: Performance on WMT14 En→De and En→Fr
test sets.

strategies: rand1, rand2, rand3, rand4, and phr4.
randk means that the translation is sampled without
replacement k times, and phrk means that k consec-
utive words are sampled. For a translation length
less than k, an empty string is output because no
constrained words are given.

Table 2 compares the end-to-end translation per-
formance of our T-big model with that of Vaswani
et al. (2017)’s model. Although we used the
same model size and number of training steps, our
model’s performance was inferior on En→De but
superior on En→Fr. This is a consequence of the
use of a larger beam size and the potential bene-
fits of restricted translation training on end-to-end
translation. The results also show that the transla-
tion performance improved dramatically even when
only one constrained word was used. This shows
that our method of using constraints as a soft re-
striction is very effective, and it also demonstrates
that translation can be improved substantially with
some prior knowledge of translation. The dispari-
ties between rand1 and rand4 show that accurate
prior knowledge of translation can lead to more ac-
curate translation, as the translation uncertainty has
been gradually reduced. Additionally, comparing
rand4 and phr4 demonstrates that the continuous
sampling of four constrained words can result in
a greater performance improvement than the dis-
crete sampling of four constrained words. This is
because phr4 generally carries more useful infor-
mation than rand4.

3.2 Ablation Study

To further demonstrate the advantages of our
method, we plotted the performance in BLEU score
and total decoding time with different beam sizes
in Figure 1. The results of BLEU score vs. beam
size show that, for CD methods or variants (CD+),
the translation improves at first as the beam size
increases. However, after the beam size increases
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Model En→Ja Ja→En Speed (sent./s)

T-base (E2E) 41.82 28.18 53.98 / 63.39

Ours (CAC) 47.15 35.46 36.01 / 39.32
- SCC 45.63 33.05 36.05 / 39.25
- RTT 19.42 10.56 36.07 / 39.30
+ CPos 43.36 29.55 35.91 / 39.04
+ IncMask 43.78 29.61 35.79 / 38.93

Table 3: Results of ablation study on WAT21 En↔Ja
test sets.

beyond a certain threshold, the translation perfor-
mance decreases. Moreover, we have also observed
that CD methods require a larger beam size to out-
perform beam search methods, and they perform
worse when beam size is small; because taking
additional constraint words into consideration re-
quires more searching. There is no such issue with
our CAC method that employs beam search, how-
ever.

Figure 1(b) depicts the total decoding time for
various beam sizes. The test set contains 1,812
sentences. We use two y-axes , a larger-scale one
on the right to accommodate and denote CD and
CD+’s longer decoding times, and a smaller-scale
one on the left to denote E2E and CAC’s decoding
times. The decoding time results show that our
CAC method can come close to beam search, a
practical restricted translation solution, but CD and
CD+ are extremely slow in comparison.

T-base (E2E); T-base (CD); Ours (CAC); Ours (CD+)
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Figure 1: BLEU score vs. beam size and Decoding time
vs. beam size on WAT21 En→Ja test set.

We conducted ablation studies on the model
structures and training options of our proposed
framework, as shown in Table 3. Using a general
MLE loss in restricted translation training; without
using SCC loss (-SCC); outperforms the baseline,
which shows that the use of restricted translation
training can effectively support restricted transla-
tion; however, including SCC loss still leads to an

improvement over this. This reveals that impos-
ing additional penalties on the loss of constrained
words exposed to the decoder is an important de-
sign decision. We also evaluated complete removal
of the restricted translation training and directly
using the end-to-end translation training model for
CAC decoding (-RTT). Our results show that the
performance greatly suffered, which illustrates the
necessity of using restricted translation training for
the restricted translation of CAC decoding.

4 Related Work

Lexically constrained (or guided) decoding (CD),
a modification of beam search, has commonly
been used in recent restricted translation studies.
Specifically, some prespecified words or phrases
are forced in translation choice. However, although
these approaches can theoretically achieve the goal
of restricted translation, existing methods are very
expensive in terms of decoding time; this limits the
practicality of CD. Starting from (Post and Vilar,
2018), in which CD was introduced and utilized in
NMT, attempts have been made to reduce the time
overhead of CD by the use of dynamic beam alloca-
tion. Although the time complexity is formally con-
sistent with that of general beam search, it remains
too inefficient to be used on a large scale (Hu et al.,
2019b). Hu et al. (2019a) further extended CD and
improved the throughput of restricted translation
systems by using batching in vectorized dynamic
beam allocation. Although these efforts have im-
proved the practicality of restricted translation, the
decoding speed is still far less than that of ordinary
decoding.

5 Conclusion

In this paper, we proposed novel training and de-
coding methods for restricted translation that do
not use CD. Furthermore, we established a gen-
eral training framework. With our framework, end-
to-end translation and restricted translation can
be implemented in the same model. Compared
to using CD in the end-to-end translation model,
we achieved better translation results, as well as
smaller beam size and consistently higher decoding
speed. We evaluated the framework on multiple
benchmarks, and demonstrated the performance ad-
vantages of restricted translation. Using our train-
ing framework and decoding method, restricted
translation can overcome the limitation of its ex-
tremely slow decoding speed and become practical.
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