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Abstract

Is there a principle to guide transfer learning
across tasks in natural language processing
(NLP)? Taxonomy (Zamir et al., 2018) finds
that a structure exists among visual tasks, as a
principle underlying transfer learning for them.
In this paper, we propose a cognitively inspired
framework, CogTaskonomy, to learn taxonomy
for NLP tasks. The framework consists of
Cognitive Representation Analytics (CRA) and
Cognitive-Neural Mapping (CNM). The former
employs Representational Similarity Analysis,
which is commonly used in computational neu-
roscience to find a correlation between brain-
activity measurement and computational mod-
eling, to estimate task similarity with task-
specific sentence representations. The latter
learns to detect task relations by projecting neu-
ral representations from NLP models to cogni-
tive signals (i.e., fMRI voxels). Experiments
on 12 NLP tasks, where BERT/TinyBERT are
used as the underlying models for transfer
learning, demonstrate that the proposed Cog-
Taskonomy is able to guide transfer learning,
achieving performance competitive to the An-
alytic Hierarchy Process (Saaty, 1987) used
in visual Taskonomy (Zamir et al., 2018) but
without requiring exhaustive pairwise O(m2)
task transferring. Analyses further discover
that CNM is capable of learning model-
agnostic task taxonomy. The source code
is available at https://github.com/
tjunlp-lab/CogTaskonomy.git.

1 Introduction

Transfer learning (TL) has attracted extensive re-
search interests in natural language processing with
a wide range of forms, e.g., TL from pretrained
language models (PLM) to downstream tasks (De-
vlin et al., 2018; Radford et al., 2018), from a task
with rich labeled data to a task with low resource

†Equal contribution.
*Corresponding author.

(Chu and Wang, 2018; Yu et al., 2021), from high-
resource languages to low-resource languages (Gu
et al., 2018; Ko et al., 2021), etc.1 A high-level
concept or question on cross-task transfer learn-
ing is how these involved tasks are related to each
other. Is sentiment analysis related to paraphras-
ing? Is textual entailment more related to question
answering than named entity recognition? All these
sub-questions resolve themselves into whether a
structure exists among NLP tasks. Such task taxon-
omy is of notable values to transfer learning in NLP
in that it has the potential to guide TL and reduce
redundancies across tasks (Zamir et al., 2018).

In this paper, partially inspired by the task taxon-
omy in visual tasks (Zamir et al., 2018), we study
the hierarchical task structure for NLP tasks. But
significantly different from the visual Taskonomy
(Zamir et al., 2018), we construct NLP taskonomy
from a cognitively inspired perspective.

Cognitively inspired NLP is the intersection of
NLP and cognitive neuroscience that aims at un-
covering cognitive processes in the brain, including
cognition in language comprehension. With the in-
creasing availability of cognitively annotated data,
on the one hand, cognitive processing signals (e.g.,
eye-tracking, EEG, fMRI) have been explored to
enhance neural models for a wide range of NLP
tasks (Barrett and Søgaard, 2015; Bingel et al.,
2016; Hollenstein and Zhang, 2019; Hollenstein
et al., 2019a). On the other hand, representations
learned in NLP models are used to predict brain
activation patterns recorded in cognitive process-
ing data (Mitchell et al., 2008; Pereira et al., 2018;
Hale et al., 2018; Hollenstein et al., 2019b). These
studies on the bidirectional association between the
two areas demonstrate that information underly-
ing cognitive processing data is closely related to
tasks and representations in NLP. Hence we want
to know whether it is feasible to isolate task repre-

1In this paper, we focus on cross-task transfer learning in
the same language.
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Figure 1: Illustration of CogTaskonomy. Pretrained language models are fine-tuned on downstream tasks to obtain
task-specific sentence representations, which are then fed into CRA, CNM for estimating task similarity. We can
obtain the most similar task for each target task by the corresponding task similarity estimation method and rank it
according to the oracle task ranking obtained according to transfer learning performance. R is the task ranking score
which is averaged over all target tasks.

sentations from cognitive processing data and use
them to learn task taxonomy in NLP.

To examine this hypothesis, we propose
CogTaskonomy, a Cognitively Inspired Task
Taxonomy framework, as illustrated in Figure 1, to
learn a task structure for NLP tasks. CogTaskon-
omy consists of two main cognitively inspired
components: Cognitive Representation Analyt-
ics (CRA) and Cognitive-Neural Mapping (CNM).
CRA extracts task representations from NLP mod-
els and employs Representational Similarity Anal-
ysis (RSA) (Kriegeskorte et al., 2008), which is
commonly used to measure the correlation between
brain activity and computational model, to esti-
mate NLP task similarity. CNM trains fully con-
nected neural networks to build the mapping from
sentence representations of pretrained models fine-
tuned on specific tasks to fMRI signals recorded
when human subjects read those sentences. It then
uses mapping correlation coefficients as task repre-
sentations to compute task similarity.

Both methods require sentence representations
to compute task representations. We use pretrained
language models fine-tuned on specific tasks, par-
ticularly BERT (Devlin et al., 2018) and TinyBERT
(Jiao et al., 2020), to obtain sentence representa-
tions.

We compare the proposed CogTaskonomy
against the Analytic Hierarchy Process (AHP) used
in Taskonomy (Zamir et al., 2018). We guide TL
across tasks with the learned task structure and
evaluate the effectiveness of these methods by es-
timating TL performance from various source to
target tasks.

Contributions Our main contributions include:
• We propose CogTaskonomy, a cognitively in-

spired framework to measure task similarity
and to build the task taxonomy in NLP. This is
the first attempt to study NLP task structures
with cognitive processing data.

• We present two cognitively inspired methods,
CRA and CNM, and compare them against
AHP. Different from AHP, the two methods do
not require O(m2) exhaustive pairwise trans-
fer learning for task similarity estimation.

• We build a taxonomy tree for 12 NLP tasks,
including sentiment analysis, question answer-
ing, natural language inference, semantic tex-
tual similarity, passage ranking, etc., to guide
transfer learning across them.

• TL experiments and analyses validate the ef-
fectiveness of the proposed CogTaskonomy
and find that CNM is able to learn stable task
relations that are general to different underly-
ing models.

2 Related Work

Our work is related to cognitively inspired NLP and
a variety of learning formalisms that involve knowl-
edge transfer across different tasks. We briefly re-
view these topics within the scope of NLP and the
constraint of space.

2.1 Cognitively Inspired NLP

Using NLP Representations for Brain Activity
Prediction Since the pioneering work (Mitchell
et al., 2008), connecting statistical NLP represen-
tations with cognition has attracted widespread at-
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tention. Chang et al. (2009) explore adjective-noun
composition in fMRI based on co-occurrence statis-
tics. Huth et al. (2016) use distributed word rep-
resentations to map fMRI data to activated brain
regions, revealing a semantic map of how words
are distributed in the human cerebral cortex. A
great deal of research (Murphy et al., 2012; Ander-
son et al., 2016; Søgaard, 2016; Bulat et al., 2017)
has been devoted to word decoding. Pereira et al.
(2018) extend brain decoding to sentence stimuli,
suggesting that neural network language models
can be used to interpret sentences in a long-term
context. Ren and Xiong (2022) investigate the rela-
tionship between linguistic features and cognitive
processing signals by developing a unified atten-
tional network to bridge them.

Augmenting NLP Models with Cognitive Pro-
cessing Signals Recent years have witnessed that
many efforts have been devoted to exploring cog-
nitive processing signals (e.g., eye-tracking, EEG,
fMRI) in neural NLP models. Muttenthaler et al.
(2020) use cognitive data to regularize attention
weights in NLP models. Hollenstein et al. (2019a)
evaluate word embeddings using cognitive data.
Toneva and Wehbe (2019) utilize fMRI scans to
interpret and improve BERT. Many other works
use cognitive processing signals to improve NLP
models (Barrett and Søgaard, 2015; Bingel et al.,
2016; Gauthier and Levy, 2019; Hollenstein and
Zhang, 2019; Ren and Xiong, 2021), just to name
a few.

2.2 Learning across Tasks
A very important trend in recent NLP is that mod-
els, algorithms, and solutions are not developed for
only a single task, but for multiple tasks or across
tasks (Devlin et al., 2018; Radford et al., 2018;
McCann et al., 2018; Worsham and Kalita, 2020).
Learning methods that are capable of handling a
set of tasks simultaneously or sequentially, e.g.,
multi-task learning, transfer learning, meta learn-
ing, have attracted growing research interests in
NLP. Beyond learning methods, yet another impor-
tant dimension to this research trend is task relation
learning, which is the topic of this work.2

Multi-task Learning is to jointly train all tasks
of interests with task linkages, e.g., in the form of
regularization or sharing parameters across tasks

2Task taxonomy learned by our methods could be applica-
ble to other learning formalisms beyond transfer learning. We
leave this to our future work.

(Collobert et al., 2011). It is important in multi-
task learning to find related tasks for target tasks as
auxiliary tasks (Ruder, 2017).

Transfer Learning targets at transferring knowl-
edge from a source task to a target task. According
to the task and domain difference in the source and
target, TL is divided into transductive TL (same
task, different domain, a.k.a. domain adaptation),
inductive TL (same domain, different task) and
unsupervised TL (both different) (Eaton and des-
Jardins, 2011; Ghifary et al., 2014; Wang et al.,
2019; Yuan and Wen, 2021). If the source and tar-
get are dissimilar, negative transfer may hurt TL
(Niu et al., 2020).

Meta Learning aims to gain experience over a
set of related tasks for improving the learning al-
gorithm itself (Hospedales et al., 2020). Existing
meta learning methods implicitly assume that tasks
are similar to each other, but it is often unclear
how to quantify task similarities and their roles in
learning (Venkitaraman and Wahlberg, 2020).

Lifelong Learning is to learn continuously and
accumulate knowledge along a sequence of tasks
and uses it for future learning (Chen and Liu, 2018).
The system is tuned to be able to select the most
related prior knowledge to bias the learning towards
a new task favourably (Silver et al., 2013).

2.3 Learning Task Relations

As task relatedness is important for cross-task learn-
ing formalisms mentioned in Section 2.2, efforts
have also been made to learn task relations. Craw-
shaw (2020) groups previous methods on task rela-
tionship learning into three categories. The first is
task grouping or clustering, which divides a set of
tasks into clusters so that tasks in the same cluster
can be jointly trained (Bingel and Søgaard, 2017;
Standley et al., 2019). The second is learning trans-
fer relationships, which analyzes whether transfer
between tasks is beneficial to learning, regardless
of whether tasks are related or not (Zamir et al.,
2018; Dwivedi and Roig, 2019; Song et al., 2019).
The third is task embedding, which learns a specific
representation space for tasks (James et al., 2018;
Lan et al., 2019).

Our research can be considered as a mix of these
categories. CNM learns cognition-based task rep-
resentations while both CNM and CRA learn task
relations aiming at transfer learning. Additionally,
significantly different from previous studies, we
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learn task structures from a cognitive perspective3,
which is expected to estimate task relatedness in a
cognitively tuned space. As will be demonstrated
below, our cognitively motivated methods incur a
low computation cost and exhibit generalization
across underlying models to some extend.

3 CogTaskonomy

Figure 1 illustrates the basic framework of Cog-
Taskonomy. First, we obtain task-specific sentence
representations of text stimuli from cognitive data
by feeding them into fine-tuned or distilled pre-
trained language models on 12 downstream tasks
(Section 3.1). Subsequently, task-specific represen-
tations are fed into two cognitively inspired compo-
nents, cognitive representation analytics (Section
3.2) and cognitive-neural mapping (Section 3.3),
for estimating task similarity and inducing task tax-
onomy.

3.1 Task-Specific Sentence Representations
Fine-tuning a pretrained language model for an end
task is a widely used strategy for quickly and effi-
ciently building a model for that task with limited
labeled data. Zhou and Srikumar (2021) find that
fine-tuning reconfigures underlying semantic space
to adjust pretrained representations to downstream
tasks. In view of this, we take sentence-level tex-
tual stimuli of cognitive data as input data for a
specific fine-tuned model to obtain representations
that contain information specific to that task.4 Ad-
ditionally, Cheng et al. (2020) suggest that knowl-
edge distillation (KD) helps models to be more
focused on task-relevant concepts. Therefore, with-
out loss of generality, we use BERT and TinyBERT
(performing KD) to obtain task-specific sentence
representations.

BERT Following Devlin et al. (2018), we
prepend a special classification token [CLS] to each
input sentence in order to extract the contextualized
representation of the corresponding sentence. Mer-
chant et al. (2020) find that fine-tuning primarily
affects top layers of BERT. Hence, we take the hid-
den state of the prepended token of each sequence
in the last layer as the sentence representation.

3Dwivedi and Roig (2019) also use RSA to learn task
taxonomy, in some way similar to our CRA. But they learn
relations for visual tasks and use different correlation functions
from our CRA.

4Sentence-level textual stimuli of cognitive data refer to
natural textual stimuli, i.e., sentences presented to subjects for
collecting cognitive processing signals.

TinyBERT TinyBERT (Jiao et al., 2020) per-
forms knowledge distillation at both the pretraining
and fine-tuning stage. By leveraging KD, Tiny-
BERT learns to transfer knowledge encoded in the
large teacher BERT (Devlin et al., 2018) to itself.
As a result, TinyBERT can capture both general
and task-specific knowledge. Similarly, we use the
hidden state of [CLS] token in the last layer as the
contextualized representation for a given sentence.

3.2 Cognitive Representation Analytics
With task-specific representations learned by feed-
ing text stimuli of cognitive data into a fine-tuned
model, we can estimate pairwise task similar-
ity for any two tasks in a given task list T =
{t1, t2, ..., tm}. The first cognitively inspired
method is the cognitive representation analytics
that adapts a common method in computational
neuroscience to our scenario. We first briefly intro-
duce the common method, representational similar-
ity analysis, and then elaborate the adaptation.

Representational Similarity Analysis is widely
applied in cognitive neuroscience, which can not
only realize cross-modal cognitive data comparison
but also quantitatively relate brain activity measure-
ments to computational models. It first calculates a
representation dissimilarity matrix (RDM) of differ-
ent modal data, and then estimates the correlation
between RDMs. In this way, it successfully cap-
tures cross-modal data relationships (Kriegeskorte
et al., 2008). RSA can be also applied for the com-
parison between computational models and cog-
nitive data. The RDM of a computational model
is obtained by comparing the dissimilarity of data
representations obtained from the computational
model in pairs. It is then compared with the RDM
of brain activity measurements.5

We take all sentence representations Ri gener-
ated by a task-specific model PLMFT

i (a pretrained
language model (either BERT or TinyBERT) fine-
tuned on the ith task) as the base to simulate cogni-
tive representations required by RSA. For each pair
of sentence representations (Rij , Rij′) for the jth
and j′th sentence of the ith task, we compute a dis-
similarity score in three metrics (e): Euclidean dis-
tance (euclidean), Canberra distance (canberra)
and Pearson correlation coefficient (ρ). Among

5In our CRA, only RDMs from computational models are
used. This is because we don’t have cognitive data that are
curated for specific NLP tasks. In our preliminary experiments,
we have created pseudo cognitive data for different NLP tasks
by predicting cognitive signals with a mapping model similar
to that used in CNM. But it performs poorly.
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Figure 2: RDMs and task similarity matrix calculated
by RSA from task-specific sentence representations.

them, the first two distance metrics can naturally
represent dissimilarity (Dis), while the last ρ needs
to be converted to 1 − ρ to indicate dissimilarity,
as follows:

Disijj′ =

{
e(Rij , Rij′) e is not ρ
1− e(Rij , Rij′) e is ρ

(1)

RDM for the ith task consists of the dissimilarity
scores of all sentence pairs. We formulate it as
follows:

RDMi = [Disi12,Disi13, . . . ,Disi1n, . . .

Disijj′ , . . . ,Disi(n−1)n], j ̸= j′
(2)

where n is the number of sentences. RDMs com-
puted in this way are then used for estimating simi-
larity between NLP tasks. The pairwise similarity
Simii′ of the ith and i′th task is computed as fol-
lows:

Simii′ = Similarity(RDM⊺
i · RDMi′) (3)

Similarity(·) is a similarity function, which can be
Spearman rank correlation (rs), ρ and cosine (cos,
by default).

In summary, we calculate the similarity between
each RDM pair and finally obtain a similarity ma-
trix for a set of tasks, as shown in Figure 2.

3.3 Cognitive-Neural Mapping
The idea behind cognitive-neural mapping is to
project sentence representations of NLP models
fine-tuned in a specific task to cognitive signals (i.e.,
fMRI voxels in this paper) recorded when humans
read those sentences with a neural network. The
connections between the specific task and cognitive
signals learned in this way could be transformed
into cognitively inspired task representations for
further task similarity estimation. The mapping
can be considered as a way to isolate brain activity
related to the specific task from fMRI cognitive sig-
nals. Particularly, for the ith task and sth subject,
we use a fully connected 3-layer feed-forward neu-
ral network to project sentence representation Rij

specific to this task to fMRI yis
j of the sth subject

reading the jth sentence as follows:

yis
j = W i

2(ReLU(W i
1(Rij)) (4)

To optimize the mapping model, we use the
mean squared error (MSE) as loss function. 5-fold
cross-validation is performed for each mapping
model. Before training, grid search is conducted,
and the optimal number of hidden layer units in
the mapping network is obtained by three times of
cross-validation on the verification set accounting
for 20% training data.

Each mapping is run 5 times. We average mod-
els over all subjects and 5 runs and then evaluate
mapping model performance in all voxels. Partic-
ularly, we compute the cognitively inspired task
representation CogRi for the ith task, which con-
sists of the correlation coefficients on all voxels
between predicted values and ground-truth values,
defined as follows :

CogRi =[c(ŷi
0,y0), . . . , c(ŷ

i
k,yk),

. . . , c(ŷi
v,yv)], 0 ≤ k ≤ v

(5)

where ŷi
k is a vector of all predicted values for

the kth voxel from all input sentences by the map-
ping model tuned for the ith task, yk is a vector
of the ground-truth values for the kth voxel from
all sentence-level signals of text stimuli in fMRI
data, v is the number of voxels used, and c(·) is
a function for comparing two input vectors. We
instantiate c in two functions: the coefficient of
determination (R2) and ρ.6

We then use cosine similarity to calculate pair-
wise task similarity as follows:

Simii′ = cos(CogR⊺
i · CogRi′) (6)

4 Experiments

We conducted experiments with widely-used NLP
benchmark datasets and cognitive data to evaluate
the effectiveness of CogTaskonomy.

4.1 Cognitive Dataset

The brain fMRI dataset in our experiments is from
Pereira et al. (2018), which is recorded on a whole-
body 3-Tesla Siemens Trio scanner with a 32-
channel head coil by showing 627 natural language
sentences to 5 adult subjects.7 Since voxels were

6R2 is a statistical measure that examines how much a
model is able to predict or explain an outcome, usually defined
as the square of the correlation between predicted values and
actual values. According to the results in Appendix A.1, we
set R2 as c in CNM by default.

7This dataset is publicly available at https://osf.
io/crwz7/. The cognitive data of subjects who both partic-
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randomly selected, Z-Score standardization was
carried out for voxels obtained from different stim-
uli at each location on the basis of the original data
set to avoid the influence of outliers. Subjects are
asked to read each encyclopedic statement care-
fully, while the fMRI scanner records brain signals
at this point. As a result, each fMRI scan covers
multiple words at a time, subject to continuous
stimulation. Each fMRI recording contains a num-
ber of voxels. We flattened 3d fMRI images into 1d
vectors. v voxels were randomly selected, yielding
matrices Is ∈ R627×v for each subject s.

4.2 Tasks

We selected 8 NLP tasks from the GLUE bench-
mark (Wang et al., 2018), including CoLA, MNLI,
MRPC, QNLI, QQP, RTE, SST-2, STS-B. These
tasks are considered important for generalizable
natural language understanding, exhibiting diver-
sity in domains, dataset sizes, and difficulties
(Wang et al., 2018). To cover the spectrum of NLP
tasks as much as possible, we also included Ex-
tractive Question Answering (QA), Relation Ex-
traction (RE), Named Entity Recognition (NER),
and Passage Reranking (PR). The datasets of these
four tasks are SQuAD 2.0 (Rajpurkar et al., 2018),
Semeval-2010 task 8 (Hendrickx et al., 2010),
CoNLL 2003 (Sang and Meulder, 2003), MS
MARCO (Nguyen et al., 2016; Craswell et al.,
2020), respectively.

4.3 Baselines and Settings

We mainly used two methods as our baselines, in-
cluding Direct Similarity Estimation (DSE), Ana-
lytic Hierarchy Process (AHP) (Zamir et al., 2018).
Detailed experimental settings are shown in Ap-
pendix A.2.

Direct Similarity Estimation (DSE) A straight-
forward way to estimate pairwise task similarity
is to calculate sentence-level similarities based on
task-specific sentence representations and then av-
erage them. Concretely, let Rij be the task-specific
representation for the jth sentence in the ith task.
The task similarity Simii′ for a task pair (i, i′) is
computed as follows:

Rij = PLMFT
i (xj) (7)

Simii′ =

∑
j Similarity(R⊺

ij ·Ri′j)

n
(8)

ipated in experiments 2 and 3 were chosen in this paper.

where PLMFT
i is the pretrained language model

fine-tuned on the ith task. PLM can be instantiated
as TinyBERT or BERT.

Analytic Hierarchy Process (AHP) The main
idea is to construct a matrix Wt for each target
task t, where the element at (i, i′) in the matrix
shows how many times the ith source task is better
than i′th source task in terms of the transferability
to the target task on a held-out set. The principal
eigenvector of Wt is then taken as the task repre-
sentation for the corresponding task, and all task
representations are stacked up to obtain an affinity
matrix.8 The affinity matrix is then viewed as the
task similarity matrix.

4.4 Evaluation Metric
Task Transferring To assess the similarity be-
tween tasks, all models fine-tuned on non-target
tasks will be used as source models, and continue
to be fine-tuned in the same way to transfer on the
target task. In task transferring, all parameters of
source models are fine-tuned (i.e., not fixed). We
used the same learning rate and a number of train-
ing steps for all task transferring. This allows a fair
comparison between different source tasks.

Oracle Task Ranking The final similarity rank-
ing of source tasks to a given target task is based
on the results obtained from the task transferring
experiments. Generally speaking, the better the
source-to-target transfer performance is, the more
similar the two tasks are, since the essence of TL
is to apply knowledge learned in the source task
to the target task. Based on this concept, we rank
tasks in terms of transfer learning performance, for
more details please see Appendix A.3.

Task Ranking Score Based on similarity results
computed by each task estimation method, we can
obtain the most similar task for each target task.
We then check the ranking position of the most
similar task in the oracle task ranking. We average
ranking positions of all target tasks as the final task
ranking score for the corresponding task estimation
method. Note that we exclude the transfer to the
target task itself in computing task ranking scores.9

8For more details about AHP, please refer to (Zamir et al.,
2018). Since the test sets of our NLP tasks are not publicly
available, we obtain AHP results based on the validation set of
each task except the NER task of which the test set is publicly
available. In all experiments, the hyper-parameters are the
same for all tasks.

9Generally, the lower the task ranking score, the better
the task similarity estimation method. A perfect estimation
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Method
TRS

TinyBERT BERT

DSE 6.2 4.8
CRA 3.5 4.4
CNM 4.2 4.6
AHP 1.4 2.5

CRA+CNM 2.8 4.3
Random 6.0

Table 1: Task ranking scores (TRS) for different task
similarity estimation methods. cos was used as the
similarity function for DSE. ρ was used in Eq.(1) and
cos was used in Eq.(3) for CRA. R2 was used as c in
CNM.

4.5 Main Results

Task ranking scores (using the ranking of task trans-
ferring as the oracle ranking) of different task sim-
ilarity estimation methods are shown in Table 1.
From these results, we have the following observa-
tions:

• Both CRA and CNM are better than random
ranking and DSE, suggesting that cognitively
inspired task similarity estimation is able to
capture relations of NLP tasks.

• When TinyBERT is used, DSE is even worse
than random ranking. This suggests that sim-
ply using task-specific sentence representa-
tions cannot well detect task relations and dis-
tinguish different tasks.

• TinyBERT performs better than BERT across
three task estimation methods (i.e., CRA,
CNM and AHP) although the number of pa-
rameters in the former is only half of that in
the latter. We conjecture that TinyBERT uses
knowledge distillation, making sentence rep-
resentations more relevant to individual tasks
and hence resulting in better task similarity
estimation.

• We can also combine CRA and CNM (CRA+
CNM) by averaging task similarity scores es-
timated by them. Such combination is better
than both methods alone.

Although AHP is better than our methods, it
directly uses the results of transfer learning to mea-
sure similarities between different tasks, which is
very time-consuming. if we have m tasks, we have

similarity method would yield a task ranking score of 1 on
each target task. A random method would yield a ranking
score of 0.5(1 + 11) = 6 in our experiments theoretically.
We have also conducted random sampling 5000 times on
TinyBERT and BERT, and obtained mean task ranking scores
of 6.05 and 6.04 respectively. Hence, we take the 6 as the task
ranking score for random ranking.

Sent. Diss. Task Sim.
TRS

BERT TinyBERT

euclidean
rs 5.6 4.5
cos 5.0 2.6
ρ 5.6 3.5

canberra
rs 5.0 5.2
cos 5.8 2.2
ρ 5.5 5.1

ρ
rs 5.5 6.7
cos 4.4 3.5
ρ 5.1 4.3

Table 2: Task ranking scores of CRA with different
combinations of sentence dissimilarity an task similarity
measurements.

to perform O(m2) transfer learning to obtain the
task similarity matrix across all task pairs. In con-
trast, our methods do not require any costly trans-
fer learning between tasks. It is hence easier to
perform and able to guide transfer learning across
tasks. We further evaluated the actual transfer learn-
ing performance of each target task from the most
similar source task according to different task sim-
ilarity estimation methods. Results are shown in
Appendix A.4, which further validate the effective-
ness of our methods and show that CRA+CNM
is very close to that of AHP. In later experiments
and analyses, we will show more advantages of our
methods over AHP.

4.6 Evaluating CRA with Different
Dissimilarity/Similarity Measurement
Combinations

CRA adopts RSA to transform the dissimilarity of
task-specific sentence representations into the simi-
larity of tasks. We have different options for dissim-
ilarity measurement (e.g., euclidean,canberra) in
sentences and for similarity measurement (e.g.,
cos,ρ) in tasks. Hence we want to know the im-
pact of the combinations of different measurements
in sentence dissimilarity and task similarity on fi-
nal performance. Results are provided in Table
2. Again, we have several interesting observations.
First, with different combinations of these measure-
ments, our CRA significantly outperforms random
ranking in almost all cases. This suggests that RSA
is able to be adapted to NLP task structure detec-
tion. Second, in comparison to the combination of
ρ and rs in the original RSA (Kriegeskorte et al.,
2008), in our case, the combination of ρ and cos
is better than other combinations in the majority
of cases. Third, TinyBERT is more robust to these
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Figure 3: Task ranking scores of CNM with TinyBERT
and BERT predicting different numbers of voxels.

different combinations than BERT.

4.7 Evaluating CNM with Different PLMs
and Numbers of Voxels

Since CNM bridges pretrained language models on
the input side and voxels in fMRI images on the
output side, we further evaluated CNM by varying
the selection of PLMs (either BERT or TinyBERT)
and the numbers of voxels. Results are displayed
in Figure 3. It is interesting to find that with a small
number of cognitive signals (voxels), TinyBERT
for CNM can achieve a good task ranking score.
By contrast, without sufficient cognitive signals,
BERT for CNM fails in task similarity estimation,
obtaining a task ranking score worse than random
ranking. This is consistent with our previous find-
ing in the main results that TinyBERT (with KD)
captures more task-relevant knowledge than BERT
for task relation detection.

5 Analysis

5.1 CNM: Voxel Prediction Evaluation

We conducted experiments to take a deep look into
the feed-forward neural mapping model in CNM.
The number of voxels was set to 30K.

Pretrained Language Models We compared
the prediction performance (measured by MSE
between predicted results and ground-truth vox-
els) across different tasks using BERT vs. Tiny-
BERT as the pretrained language model to obtain
task-specific sentence representations. Results are
shown in Figure 4(a). We can clearly see that both
BERT and TinyBERT are better than the random
baseline across all tasks. And TinyBERT is better
than BERT on all tasks, which resonates with the
main results shown in Section 4.5.

Subjects We analyzed prediction performance
across different subjects, as shown in Figure 4(b).
Although the prediction performance varies across
different tasks, the shapes of the prediction perfor-

(a) MSEs (averaged over 5 subjects and 30K
voxels) for different tasks with BERT vs.
TinyBERT being used as the pretrained lan-
guage model.

(b) MSEs (averaged over 30K voxels) for dif-
ferent tasks across different subjects. BERT
is used as the pretrained language model.

Figure 4: CNM voxel prediction results (i.e., the mean
square errors between predicted results by CNM and
ground-truth voxels). Y-coordinate is the ratio of the
MSE value of BERT to the MSE of the random predic-
tion baseline.

mance curve over 12 tasks for different subjects
are similar to each other, indicating that similar
brain activities are activated for these tasks across
different subjects.

5.2 Analysis on the Generality of Task
Similarity Estimation to Underlying
PLMs

Models underlying our cross-task transfer learning
are different pretrained language models, which is
a widely acknowledged practice for transfer learn-
ing in NLP. We therefore want to investigate how
general our task similarity estimation methods (e.g.,
CNM, CRA, AHP) are to the underlying models.
This is important as we want to find a task tax-
onomy method that is not sensitive to underlying
models. That is, the learned task taxonomy can be
used to guide transfer learning for any model. For
this, we first computed the Pearson correlation co-
efficient (ρ) and the Spearman rank correlation (rs)
between task similarities obtained with TinyBERT
and those with BERT using the same similarity
estimation method. The correlation coefficients
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Method TB→B B→TB
k 3 4 5 3 4 5

CRA 0.39 0.40 0.42 0.61 0.54 0.58
CNM 0.64 0.58 0.62 0.75 0.79 0.73
AHP 0.53 0.52 0.52 0.69 0.65 0.67

Table 3: Probabilities that transferability learned with
TinyBERT (TB) can be used for BERT (B) or vice versa.

between BERT-based and TinyBERT-based task
similarity matrices obtained by the CRA, CNM
and AHP are (ρ = 0.23, rs = 0.11), (ρ = 0.85, rs =
0.76) and (ρ = 0.36, rs = 0.34) respectively. Both
AHP and CRA show pool correlations between task
similarity matrices using BERT and TinyBERT. On
the contrary, CNM is very robust to the variations
of underlying models. We speculate that both CRA
and AHP capture task relations specific to under-
lying models while CNM could remove such bias
by building the task taxonomy based on the cog-
nitive data. In other words, CNM is able to detect
model-agnostic task relations, yet another desirable
advantage over AHP with exhaustive computation
cost.

To further examine this hypothesis, we used the
task ranking estimated with another underlying
PLM x to guide transfer learning with an under-
lying PLM y. In our work, this would be using
TinyBERT to guide BERT (TB → B) or vice versa.
For each target task, we used the top k source tasks
according to the task ranking with the guiding PLM
x for transfer learning with the PLM y. The results
were compared to the actual performance of trans-
fer learning to the target task from the top 6 source
tasks according to the task ranking with the PLM
y itself. The probability of the top k source tasks
occurring in the real top 6 tasks shows how much
transferability learned with the PLM x can be used
for the PLM y. Results are shown in Table 3, which
again suggests the superiority of CNM over AHP.

We further analyzed the generality of CNM to
different subjects of cognitive data used in CNM,
which can be found in Appendix A.5. The experi-
mental results show that the CNM is also robust to
different subjects.

5.3 Taxonomy Tree of 12 NLP Tasks

We visualize all pairwise task similarities for 12
tasks learned by CNM (averaged over 5 subjects)
as a heatmap, shown in Figure 5(a). It is clear
to see from the heatmap that 6 GLUE tasks (i.e.,
CoLA, QNLI, RTE, MNLI, SST-2, and MRPC)

(a) Task similarity matrix

(b) Taxonomy tree

Figure 5: Task similarity learned by CNM: (a) Task
similarity matrix learned by CNM. (b) Taxonomy tree
for the 12 tasks learned by CNM.

form a cluster. These tasks are all related to sen-
tence understanding. We further perform hierar-
chical clustering over the 12 tasks according to
their similarities to create a taxonomy tree, which
is illustrated in Figure 5(b).

6 Conclusions

In this paper, we have presented a cognitively in-
spired framework, termed CogTaxonomy, to learn
relation and structure for NLP tasks. Experiments
demonstrate that the task taxonomy detected by
CogTaxonomy can be used to guide transfer learn-
ing across 12 different NLP tasks. Both CRA and
CNM, the two essential components of CogTax-
onomy, do not require exhaustive transfer learn-
ing across all source-target task pairs. The former
is robust to different combinations of dissimilar-
ity/similarity measurements. The latter resorts to
cognitive signals to learn model-agnostic task rela-
tions.
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(a) BERT

(b) TinyBERT

Figure 6: Task ranking scores with different correla-
tion coefficients in Cognitive-Neural Mapping based on
BERT (a) and TinyBERT (b).

A Appendix

A.1 Correlation Selection in Cognitive-Neural
Mapping

We have different options for the calculation of
CogR (e.g., R2 and ρ). Therefore, we computed
task ranking scores with different options for CNM
with BERT and TinyBERT. Results are shown in
Figure 6. We find that R2 is better than ρ in almost
all cases.

A.2 Experimental Settings

Fine-tuning and Transferring For most tasks,
we fine-tuned BERT to obtain task-specific rep-
resentations, with the exception of RE and PR.
REDN (Li and Tian, 2020) was used for RE
tasks, and Cross-Encoder (Reimers and Gurevych,
2019) was used for PR. Table 4 shows the hyper-
parameters and configuration for task training in
our experiments.

For source-to-target task transfer learning, all
source models were fine-tuned on the target task
dataset with the same settings as the target model.

Knowledge Distillation Since TinyBERT has of-
ficially released models distilled on GLUE, we di-
rectly used them on our 8 GLUE tasks. For the
PR task, we used the open-source model (Reimers
and Gurevych, 2019) with the same TinyBERT ar-

Task epoch batch size lr optimizer

GLUE 3 32 2e-5 AdamW
NER 3 32 2e-5 AdamW
QA 3 16 3e-5 AdamW
PR 1 8 2e-5 AdamW
RE 50 64 3e-5 AdamW

Table 4: Hyper-parameter settings for fine-tuning and
transfer learning. lr: learning rate.

Task ID PD

NER 5 3
QA 5 3
RE 25 25

Table 5: The number of epochs for NER, RE, and PR
tasks in the task-specific knowledge distillation phase.
ID/PD: intermediate/prediction layer knowledge distil-
lation.

chitecture directly. For NER, QA, and RE tasks,
we adopted the above fine-tuned models as the
teacher model and used the open-source General
TinyBERT for task-specific distillation, following
the recommended practice of TinyBERT (Jiao et al.,
2020). The number of epochs in the task-specific
distillation phase is shown in Table 5, and the set-
tings of other parameters are consistent with fine-
tuning. In CoNLL 2003 (Sang and Meulder, 2003),
we also carried out data augmentation according
to the method proposed by TinyBERT (Jiao et al.,
2020), while no data augmentation was performed
on other datasets.

A.3 Oracle Task Ranking

Evaluation Metrics for 12 Tasks Among the 8
GLUE tasks, Matthews correlation was used in the
CoLA task, Spearman correlation coefficient was
used in the STS-B task. For the passage reranking
task, NDCG@10 was used. All other tasks used F1

score as the evaluation metric.

Pairwise Transfer Learning Results and Oracle
Ranking We obtain pair-wise transfer learning
results based on the validation set of each task ex-
cept the NER task of which the test set is publicly
available. The results with BERT and TinyBERT
are shown in the Table 6 and Table 7 respectively.
Sorted by transfer performance, the oracle ranking
of each source task to a target task is marked in
parentheses.
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Source Task
Target Task

CoLA QNLI RTE MNLI SST-2 MRPC STS-B QQP NER RE QA PR

CoLA 54.96 90.81(4.5) 54.87(10) 84.05(2) 92.43(2) 76.47(7) 40.95(9) 90.17(4) 90.58(1) 89.62(7) 75.92(6) 67.79(1)

QNLI 43.3(9) 90.98 66.06(3) 83.74(8) 92.09(6.5) 81.62(2) 66.62(1) 90.01(5) 90.34(3.5) 89.09(11) 76.37(3) 61.05(10)

RTE 51.81(1) 90.57(6) 61.01 83.92(3.5) 91.97(8.5) 77.94(6) 45.5(6) 90.19(3) 90.28(8) 90.16(3) 76.18(5) 67.01(4.5)

MNLI 48.15(6) 90.28(8) 74.37(1) 83.94 93.12(1) 82.84(1) 49.22(5) 89.96(7) 90.33(5.5) 89.17(9) 76.9(2) 67.01(4.5)

SST-2 49.12(4) 90.81(4.5) 53.07(11) 84.06(1) 92.55 73.04(9.5) 54.36(2) 90.2(2) 90.06(11) 90.05(5) 75.5(9) 67.04(3)

MRPC 50.46(3) 90.54(7) 62.82(5.5) 83.89(6) 92.2(4.5) 75.25 24.4(11) 89.73(10) 90.22(9) 90.53(2) 75.79(8) 66.41(6)

STS-B 47.2(7) 90.02(10) 64.26(4) 83.68(10) 92.32(3) 79.41(4.5) 49.84 89.41(11) 90.29(7) 90.95(1) 72.74(11) 5.96(11)

QQP 50.51(2) 90.99(2) 62.82(5.5) 83.92(3.5) 92.09(6.5) 80.39(3) 42.43(7) 91.04 90.34(3.5) 90.08(4) 75.85(7) 66.22(7)

NER 48.29(5) 88.65(11) 61.37(8) 83.72(9) 92.2(4.5) 73.04(9.5) 41.26(8) 89.97(6) 90.75 89.57(8) 75.16(10) 62.3(9)

RE 40.65(11) 90.23(9) 56.68(9) 83.91(5) 91.97(8.5) 70.83(11) 30.73(10) 89.92(8) 90.08(10) 89.64 76.19(4) 67.23(2)

QA 43.87(8) 90.98(3) 67.15(2) 83.2(11) 90.6(11) 76.23(8) 50.05(4) 89.78(9) 90.33(5.5) 89.14(10) 74.9 64.66(8)

PR 43.27(10) 91.29(1) 62.45(7) 83.8(7) 91.4(10) 79.41(4.5) 53.02(3) 90.2(1) 90.36(2) 89.77(6) 77.39(1) 65.69

Table 6: Pairwise transfer learning results based on BERT. The oracle ranking of each source task to a target task is
labeled in parentheses.

Source Task
Target Task

CoLA QNLI RTE MNLI SST-2 MRPC STS-B QQP NER RE QA PR

CoLA 50.68 82.74(10) 51.26(10) 78.58(9) 90.83(4) 70.1(8) -14.14(12) 87.66(9) 85.79(9) 89.36(1) 62.84(10) 65.57(10)

QNLI 35.61(1) 91.36 63.18(3) 82.56(1) 91.74(2) 84.07(1) 65.31(2) 89.34(2) 88.37(2) 88.62(2) 74.24(1) 67.92(4)

RTE 20.02(6) 88.67(5) 66.79 81.56(4) 90.14(6) 78.43(4) 60.47(3) 88.66(5) 88.53(1) 87.72(3) 68.15(6) 66.64(7)

MNLI 22.52(5) 90.13(1) 69.68(1) 84.39 91.86(1) 81.86(2) 18.71(6) 89.44(1) 86.64(7) 87.51(5) 72.62(2) 68.72(3)

SST-2 0.0(10) 82.96(9) 53.43(7) 78.3(10) 91.86 68.38(11) 6.73(7) 87.37(10) 84.33(11) 85.15(10) 64.42(9) 65.93(9)

MRPC 28.36(3) 87.2(7) 60.65(4) 81.26(5) 89.91(7) 86.03 -3.4(11) 88.85(4) 88.08(3) 86.46(8) 66.73(7) 69.29(1)

STS-B 28.93(2) 89.04(3) 64.62(2) 81.67(3) 91.17(3) 77.94(6) 75.49 89.19(3) 87.85(4) 86.73(6) 70.16(4) 66.4(8)

QQP 25.73(4) 88.1(6) 58.48(5.5) 81.14(6) 89.33(8) 78.92(3) 42.97(4) 91.06 86.04(8) 86.72(7) 69.39(5) 67.29(5.5)

NER 14.69(8) 80.32(11) 51.99(9) 74.46(11) 88.07(10) 69.36(10) 2.41(8) 84.76(11) 88.44 84.37(11) 58.68(11) 65.26(11)

RE 18.44(7) 86.58(8) 53.07(8) 80.64(7) 90.48(5) 69.85(9) -2.62(10) 87.95(7) 86.99(5) 87.62 66.61(8) 67.29(5.5)

QA 0.0(10) 89.91(2) 58.48(5.5) 79.86(8) 87.84(11) 77.45(7) 33.58(5) 87.89(8) 84.98(10) 87.54(4) 71.98 68.88(2)

PR 0.0(10) 88.96(4) 46.93(11) 81.7(2) 89.11(9) 78.19(5) 65.98(1) 88.43(6) 86.66(6) 86.08(9) 70.78(3) 66.9

Table 7: Pairwise transfer learning results based on TinyBERT.

A.4 Actual Transfer Learning Performance
from the Top 1 Source Task Selected by
Different Task Similarity Estimation
Methods to Each Target Task

Transfer Learning with Same Underlying PLMs
We use different task similarity estimation meth-
ods to find the most similar source task for each
target task and obtain the transfer learning per-
formance from the most similar source task to
the target task. Both the task similarity estima-
tion and transfer learning use the same underlying
PLM. For each task similarity estimation method,
average performance over all target tasks are re-
ported in Table 8. It can be seen that the CRA,
CNM, and CRA+CNM methods show good per-

formance. Significantly, in terms of average tar-
get task performance, CRA+CNM is very close
to AHP that requires exhaustive transfer learning
across all source-target task pairs.

Transfer Learning with Different Underlying
PLMs This time the underlying PLMs for task
similarity estimation and transfer learning are dif-
ferent from each other. Results are displayed in
Table 9. Similarly, CRA+CNM achieves very com-
petitive results to AHP in TinyBERT → BERT and
even better results than AHP in BERT → Tiny-
BERT.

In the two tables, we calculate the average trans-
fer learning performance over 12 tasks shown in
the last column of the two tables for easy compar-
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PLM Method
Target Task

AVG
CoLA QNLI RTE MNLI SST-2 MRPC STS-B QQP QA NER PR RE

B

DSE 49.12 90.57 66.06 83.74 92.43 81.62 45.5 90.2 76.18 90.28 67.79 89.14 76.89
CRA 51.81 90.57 66.06 83.92 91.97 77.94 45.5 90.19 76.18 90.34 67.01 90.16 76.80
CNM 51.81 91.29 54.87 83.74 92.43 81.62 66.62 90.19 76.18 90.08 67.01 89.57 77.95

CRA+CNM 51.81 90.57 66.06 83.92 91.97 77.94 45.5 90.19 76.18 90.34 67.01 90.16 76.80
AHP 51.81 91.29 74.37 83.74 93.12 82.84 41.26 90.2 77.39 90.58 67.01 90.95 77.88

Random 46.97 90.45 62.23 83.8 92.04 77.49 44.75 89.95 75.84 90.3 59.21 89.81 75.24

TB

DSE 20.02 88.67 58.48 78.58 90.14 77.94 -3.4 88.66 66.61 87.85 66.64 87.72 67.33
CRA 18.44 89.04 63.18 82.56 91.74 77.94 65.31 88.66 74.24 88.37 66.4 88.62 74.54
CNM 35.61 82.74 63.18 82.56 91.74 78.43 -3.4 89.44 66.73 87.85 68.72 87.54 69.26

CRA+CNM 35.61 89.04 63.18 82.56 91.74 84.07 65.31 88.66 74.24 87.85 67.92 86.73 76.41
AHP 25.73 90.13 69.68 82.56 91.86 84.07 65.98 89.34 74.24 88.37 69.29 89.36 76.72

Random 17.39 86.65 57.24 80.08 89.99 75.79 25.06 88.19 67.75 86.76 67.18 86.98 69.09

Table 8: Actual target task performance when both task similarity estimation and transfer learning uses the same
underlying PLM. B/TB: BERT/TinyBERT.

Type Method
Target Task

AVG
CoLA QNLI RTE MNLI SST-2 MRPC STS-B QQP QA NER PR RE

TB
→
B

DSE 51.81 90.57 62.82 84.05 91.97 79.41 24.4 90.19 76.19 90.29 67.01 90.16 74.91
CRA 40.65 90.02 66.06 83.74 92.09 79.41 66.62 90.19 76.37 90.34 5.96 89.09 72.54
CNM 43.3 90.81 66.06 83.74 92.09 77.94 24.4 89.96 75.79 90.29 67.01 89.14 74.21

CRA+CNM 43.3 90.02 66.06 83.74 92.09 81.62 66.62 90.19 76.37 90.29 61.05 90.95 77.69
AHP 50.51 90.28 74.37 83.74 93.12 81.62 53.02 90.01 76.37 90.34 66.41 89.62 78.28

Random 46.97 90.45 62.23 83.8 92.04 77.49 44.75 89.95 75.84 90.3 59.21 89.81 75.24

B
→
TB

DSE 0.0 88.67 63.18 82.56 90.83 84.07 60.47 87.37 68.15 88.53 65.57 87.54 72.24
CRA 20.02 88.67 63.18 81.56 90.14 78.43 60.47 88.66 68.15 86.04 66.64 87.72 73.31
CNM 20.02 88.96 51.26 82.56 90.83 84.07 65.31 88.66 68.15 86.99 66.64 84.37 73.15

CRA+CNM 20.02 88.67 63.18 81.56 90.14 78.43 60.47 88.66 68.15 86.04 66.64 87.72 73.31
AHP 20.02 88.96 69.68 82.56 91.86 81.86 2.41 87.37 70.78 85.79 68.72 86.73 69.73

Random 17.39 86.65 57.24 80.08 89.99 75.79 25.06 88.19 67.75 86.76 67.18 86.98 69.09

Table 9: Actual target task performance when task similarity estimation and transfer learning use different underlying
PLMs. B/TB: BERT/TinyBERT. Type (x → y ) denotes that the most similar source task selected according to a task
similarity estimation method with underlying PLM x is used for transfer learning to a target task with underlying
PLM y.

ison. The results of "Random" in the two tables
are averaged over 5000 times of random sampling.
Specifically, each round of random sampling se-
lects a task other than itself for each target task as
the source task for transfer learning.

A.5 Analysis on the Generality of CNM across
Subjects

We calculate task similarity matrices that are av-
eraged over 5 subjects in CNM. Are results for

individual subjects are consistent with each other?
Hence we separately calculated task similarity ma-
trices for each subject and used the Spearman corre-
lation coefficient to measure task similarity matrix
correlations among subjects. Results are shown in
Figure 7, which indicates high correlations among
subjects.
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(a) BERT (b) TinyBERT

Figure 7: Correlations among task similarity matrices calculated in CNM across different subjects with BERT (a)
and TinyBERT (b). Dots of the same color refer to the same subject across experiments.
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