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Abstract
We propose a method for controlling the diffi-
culty of a sentence based on deep reinforcement
learning. Although existing models are trained
based on the word-level difficulty, the sentence-
level difficulty has not been taken into account
in the loss function. Our proposed method gen-
erates sentences of appropriate difficulty for the
target audience through reinforcement learning
using a reward calculated based on the differ-
ence between the difficulty of the output sen-
tence and the target difficulty. Experimental
results of English text simplification show that
the proposed method achieves a higher perfor-
mance than existing approaches. Compared to
previous studies, the proposed method can gen-
erate sentences whose grade-levels are closer
to those of human references estimated using a
fine-tuned pre-trained model.

1 Introduction

Text simplification (Alva-Manchego et al., 2020)
is a task of rewriting complex sentences into
simpler versions while preserving the meaning.
This technology assists people with language dis-
abilities (Carroll et al., 1998), language learn-
ers (Petersen and Ostendorf, 2007), and chil-
dren (De Belder and Moens, 2010) in reading texts
and learning a language.

To maximize the effectiveness of text simplifi-
cation, rewrites should be appropriate for the lan-
guage ability of the target audience. Therefore,
controllable text simplification (Scarton and Spe-
cia, 2018; Nishihara et al., 2019; Agrawal et al.,
2021), which is controlled to match the target dif-
ficulty level, has been actively studied. Control-
lable text simplification models are trained on a
parallel corpus of complex and simple sentences
with labels for the target difficulty level, such as
Newsela (Xu et al., 2015). Although studies have
focused on word-level difficulties (Nishihara et al.,
2019; Agrawal et al., 2021), sentence-level difficul-
ties were not taken into account. Therefore, while

these methods are effective for local editing, such
as word substitution, there is room for improve-
ment for global editing, for example, controlling
the sentence length and structure. Such global edit-
ing is crucial to improve the controllability of the
sentence difficulty.

To address this problem, we propose a control-
lable text simplification model based on deep rein-
forcement learning to take advantage of sentence-
level objectives. Although deep reinforcement
learning has also been used in traditional text sim-
plification1 (Zhang and Lapata, 2017; Nakamachi
et al., 2020), in this study, a novel reward func-
tion for difficulty control is designed. Our reward
is calculated based on the difference between the
difficulty of the generated sentence and the target
difficulty level.

Experimental results using Newsela-Auto (Jiang
et al., 2020) show that the proposed method can
generate sentences whose grade-levels are closer to
those of human references estimated using a fine-
tuned pre-trained model than the previous methods.

2 Related Work

Scarton and Specia (2018) first tackled controllable
text simplification by applying a language control
method in multilingual machine translation (John-
son et al., 2017). These methods control the output
sentence, i.e., its language and difficulty level, by
adding a special token at the beginning of the in-
put sentence. Subsequent studies focusing on con-
trollable text simplification, including the present
study, have used special tokens that indicate the
target difficulty level.

Nishihara et al. (2019) proposed a training
method that, in addition to the special tokens, takes
into account the word-level difficulty. They esti-
mate the difficulty of a word based on the target

1A task to simplify input sentences freely without setting
a target difficulty level.
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difficulty and word frequency in the training cor-
pus, and weight the cross-entropy loss to promote
the generation of words appropriate to the target
difficulty level. Agrawal et al. (2021) similarly es-
timated the word difficulty and edited sentences
with a non-autoregressive model to avoid generat-
ing difficult words. In contrast to previous studies
that considered the word-level difficulty, we im-
prove the controllability of the sentence difficulty
by employing the sentence-level difficulty.

In traditional text simplification (Zhang and Lap-
ata, 2017; Nakamachi et al., 2020), deep reinforce-
ment learning has been used to improve the simplic-
ity of the sentences generated using LSTM-based
simplification models (Luong et al., 2015). Zhang
and Lapata (2017) improved the simplification per-
formance with SARI (Xu et al., 2016), an evalu-
ation metric for text simplification, as a reward.
Nakamachi et al. (2020) trained reward models
for the grammaticality, synonymity, and simplicity
through supervised learning using BERT (Devlin
et al., 2019). We also use deep reinforcement learn-
ing based on a reward estimated by BERT. How-
ever, our approach differs from that of Nakamachi
et al. (2020) in two ways. First, we target control-
ling the difficulty of the output sentences. Second,
we use a powerful Transformer-based (Vaswani
et al., 2017) simplification model, which has been
the mainstream in recent years (Zhao et al., 2018;
Kajiwara, 2019; Martin et al., 2020; Maddela et al.,
2021).

3 Proposed Method

We improve the controllability of the sentence dif-
ficulty through reinforcement learning using a re-
ward based on the sentence-level difficulty on a pre-
vious controllable text simplification model (Scar-
ton and Specia, 2018). Our model consists of a
difficulty estimation model and a simplification
model. The former model estimates the difficulty
of the generated sentence, and the latter model is
trained through reinforcement learning to minimize
the difference between the estimated and target dif-
ficulties.2

3.1 Training Difficulty Estimation Model
Our difficulty estimation is based on a regression
model that predicts the difficulty of a sentence. We

2We employed the K-12 grade levels in Newsela (Xu et al.,
2015). Following previous studies (Scarton and Specia, 2018;
Nishihara et al., 2019), we assume that the level of a sentence
is equal to the level of the document containing that sentence.

finetune BERT (Devlin et al., 2019), a Transformer-
based (Vaswani et al., 2017) masked language
model, to develop a difficulty estimation model.

The loss function is the mean squared error
(MSE) of the target difficulty g = (g1, g2, . . . , gN )
and the estimated difficulty ĝ = (ĝ1, ĝ2, . . . , ĝN ):

L =
1

N

N∑
n=1

(gn − ĝn)
2, (1)

where N denotes the batch size.

3.2 Training Simplification Model

Our simplification model is a Transformer-based
sequence-to-sequence model (Vaswani et al., 2017).
Following Scarton and Specia (2018), we include
information regarding the target difficulty level in
the input sentence. For example, if the target diffi-
culty level is specified as “3”, a special token “<3>”
is attached at the beginning of the input sentence.

We train the simplification model in two steps.
First, we train a controllable text simplification
model corresponding to Scarton and Specia (2018)
during the pretraining step. We then improve the
controllability of the sentence difficulty during the
reinforcement learning step.

3.2.1 Pretraining
Following Nakamachi et al. (2020), we apply a
pretraining with cross-entropy loss to stabilize the
reinforcement learning. Letting x be a complex
source sentence and y = (y1, y2, . . . , yM ) be a
simple target sentence of length M , the loss func-
tion is as follows:

Lc = − 1

M

M∑
m=1

log p(ym|y<m,x). (2)

3.2.2 Reinforcement Learning
We finetune the pretrained simplification model
through deep reinforcement learning using the RE-
INFORCE algorithm (Williams, 1992). Our reward
is calculated based on the estimated difficulty of the
generated sentence by the simplification model and
the target difficulty assigned to the input sentence.
It was designed such that a smaller difference be-
tween these difficulties results in a larger reward.

First, the difficulty estimation model receives the
sentences generated by the simplification model
and outputs the estimated difficulty ĝ. Based on
this estimated difficulty ĝ and target difficulty g,
the squared error e = (g − ĝ)2 is calculated.
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Next, based on the maximum and minimum val-
ues of error e, i.e., emax and emin, we transform e
into a reward r by applying the following normal-
ization:

r =
rmax − rmin

emin − emax
(e− emax) + rmin, (3)

where rmin and rmax are the lower and upper
bounds of the reward, respectively. This normal-
ization gives a larger reward close to the maximum
reward rmax as the squared error e decreases.

Finally, we use reward r to weigh the cross-
entropy loss in Equation (2):

Lr = −r · 1

M

M∑
m=1

log p(ym|y<m,x). (4)

4 Experiments

4.1 Dataset
We used a parallel corpus for English controllable
text simplification, Newsela-Auto3 (Jiang et al.,
2020). Following the official setup, we used this
dataset for the training, validation, and test sets
shown in Table 1. The difficulty estimation model
uses pairs of sentences and difficulty labels rather
than parallel sentence pairs. We used both the
source and target sentences, removing the sentence
overlap4.

4.2 Implementation Details
For the difficulty estimation model, we used
BERT5 (Devlin et al., 2019). We used Hugging-
Face Transformers (Wolf et al., 2020) to fine-tune it
for 5 epochs with a batch size of 32 sentences, and
Adam (Kingma and Ba, 2015) optimizer. The learn-
ing rate was set to 5e− 5 and decreased linearly to
zero at the end of the training. The model with the
smallest MSE was selected after every 1, 000 steps
of the evaluation conducted using the validation set.
Although we also trained RoBERTa6 (Liu et al.,
2019) and ALBERT7 (Lan et al., 2020) under the
same settings, we chose BERT, which achieved the
lowest MSE8 in our preliminary experiments.

3https://github.com/chaojiang06/
wiki-auto

4The deduplication process reduced the training, valida-
tion, and test sets for the difficulty estimation model.

5https://huggingface.co/
bert-base-cased

6https://huggingface.co/roberta-base
7https://huggingface.co/albert-base-v2
8In our test set, BERT, RoBERTa, and ALBERT had MSE

of 3.32, 3.37, and 3.36, respectively.

Train Valid Test

Difficulty Estimation Model 236, 773 28, 921 29, 381
Simplification Model 394, 300 43, 317 44, 067

Table 1: Number of sentences in the training, validation,
and test sets. Note that the difficulty estimation model
is trained using sentences, whereas the simplification
model is trained using sentence pairs.

For the simplification model, we used Trans-
former (Vaswani et al., 2017) with Reinforce-
Joey9 (Kiegeland and Kreutzer, 2021) for reinforce-
ment learning. This model consists of 6 layers, 8
attention heads, 512 dimensions for the embed-
ding layers, 2, 048 dimensions for the feed forward
layers, and a Dropout rate of 0.1. We shared the
weights of all embedding layers. As a preprocess-
ing step, we tokenized the corpus using Sentence-
Piece10 (Kudo and Richardson, 2018) with a vocab-
ulary size of 30, 000.

We pretrained the model for 20 epochs with a
minibatch of 6, 000 tokens, and Adam optimizer.
We set the learning rate to 1e−8 and used the learn-
ing scheduling applied by Vaswani et al. (2017)
with 4, 000 warmup steps. The model with the
largest SARI (Xu et al., 2016) was selected after
every 1, 000 steps of evaluation using the validation
set.

We then conducted reinforcement learning for
10 epochs with a minibatch of 240 tokens and the
Adam optimizer whose learning rate was fixed at
1e − 8. The model was selected in the same way
as for the pretraining, using 6, 000 steps. Follow-
ing Kiegeland and Kreutzer (2021), in Equation (3),
we set rmin = −0.5 and rmax = 0.5, respectively.

4.3 Comparative Methods

We compare four types of Transformer-based sim-
plification models: a model without the target
difficulty (base), a controllable model with the
target difficulty level attached to the beginning
of the input sentence (base+grade) (Scarton
and Specia, 2018), a controllable model trained
while taking into account the word-level difficulty
(base+grade+word) (Nishihara et al., 2019),
and the proposed model (base+grade+sent).

9https://github.com/samuki/
reinforce-joey

10https://github.com/google/
sentencepiece

https://github.com/chaojiang06/wiki-auto
https://github.com/chaojiang06/wiki-auto
https://huggingface.co/bert-base-cased
https://huggingface.co/bert-base-cased
https://huggingface.co/roberta-base
https://huggingface.co/albert-base-v2
https://github.com/samuki/reinforce-joey
https://github.com/samuki/reinforce-joey
https://github.com/google/sentencepiece
https://github.com/google/sentencepiece
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Automatic Evaluation Human Evaluation

Models SARI add keep del Grammar Meaning Simplicity (↓)

base 37.51 3.04 38.64 70.85 3.53 2.54∗ 0.046
base+grade 41.10 3.35 42.90 77.04 3.53∗ 2.32∗ 0.087∗

base+grade+word 41.50 3.44 42.97 78.07 3.62 2.34∗ 0.030
base+grade+sent (ours) 41.96 3.41 42.22 80.24 3.59 2.08 −0.013

Table 2: Results on the Newsela-Auto test set. Here, add, keep, and del are the F1 scores for each adding,
keeping, and deletion operations of word 4-grams that comprise SARI. (∗: significant at p < 0.05 between
base+grade+sent and others for paired-sample t-test.)

Grade level base base+grade base+grade+word base+grade+sent References

8 6.79 (1.83) 7.75 (1.47) 8.02 (1.52) 7.67 (1.54) 7.98 (0.92)
7 6.15 (1.71) 7.43 (1.43) 7.40 (1.42) 6.90 (1.34) 6.84 (1.26)
6 5.90 (1.41) 6.61 (1.39) 6.52 (1.34) 6.04 (1.25) 6.12 (1.14)
5 5.81 (1.39) 5.73 (1.21) 5.66 (1.18) 5.24 (1.00) 5.23 (0.90)
4 5.38 (1.53) 4.70 (0.93) 4.54 (0.82) 4.40 (0.73) 4.56 (0.78)
3 5.15 (2.15) 4.04 (1.04) 4.00 (1.00) 3.87 (0.87) 4.07 (1.07)
2 4.93 (2.93) 3.85 (1.85) 3.79 (1.79) 3.74 (1.75) 3.78 (1.78)

All 5.48 (1.74) 5.07 (1.15) 4.98 (1.09) 4.73 (0.98) 4.84 (1.01)

Table 3: Average estimated difficulty of the sentences generated for each target difficulty. The numbers in parentheses
are the MAE between the target and estimated difficulties. The lowest errors are highlighted in bold, except for the
references.

4.4 Automatic Evaluation
Table 2 shows the automatic evaluation results.
For the overall simplification quality, we evalu-
ated SARI (Xu et al., 2016) using the EASSE
toolkit11 (Alva-Manchego et al., 2019). The pro-
posed method achieved the best performance with
SARI. The F1 scores evaluating the addition, keep-
ing, and deletion operations of word 4-grams
show that the proposed method improves the ad-
dition (add) and deletion (del) compared to the
base+grade model. This result implies that the
proposed method actively paraphrases complex ex-
pressions into simpler versions.

4.5 Human Evaluation
To assess the quality of the generated sentences
and the controllability of the sentence difficulty, we
conducted a human evaluation for 100 sentences
randomly selected from the test set. Grammatical-
ity (grammar) and meaning preservation (meaning)
were evaluated on a 4-point scale according to Xu
et al. (2016). For evaluating controllability of the
sentence difficulty, the output and reference sen-
tences were compared and ranked in terms of their
simplicity. Here, we allowed the same ranking

11https://github.com/feralvam/easse

between sentences with no clear difference in sim-
plicity. Note that a simpler sentence, i.e., having
a lower ranking, does not necessarily mean a bet-
ter sentence. We evaluated the difference between
the rank of the reference sentence and that of the
output sentence. That is, the smaller the difference
in the simplicity ranking, the better the model suc-
cessfully controls the difficulty of the sentence. We
hired five human evaluators through a crowdsourc-
ing service.12 The evaluators were master workers,
US residents, and had a minimum approval rate of
95%.13

The right side of Table 2 shows the average
scores of the human evaluations. The proposed
method achieved the best controllability of sen-
tence difficulty with some cost in meaning.

4.6 Analysis: Difficulty of Output Sentences

For a detailed analysis of the sentence-level dif-
ficulty, Table 3 shows the difficulty of the gener-
ated sentences for each target difficulty level.14 To
obtain the average difficulty of the generated sen-

12https://www.mturk.com/
13We estimated the hourly rate to be about $8 and paid a

total of $150 for crowdworkers.
14The Newsela-Auto test set (Jiang et al., 2020) does not

include target difficulty levels higher than 8.

https://github.com/feralvam/easse
https://www.mturk.com/
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source The burning of fossil fuels, such as coal, oil and gas, creates greenhouse
gases that heat up the Earth and change the climate.

base+grade+sent The burning of oil and gas makes the Earth warm.
reference These gases are getting trapped in the air and heating up the Earth.

source "It’s more of a family than living outside the base," said Jessica Konczal,
33, whose husband is Sergeant Matthew Konczal.

base+grade+sent "It’s more of a family than living outside the base," said Jessica Konczal.
reference Jessica Konczal is 33 and lives on the base.

Table 4: Example output sentences.

tences, we used the difficulty estimation model de-
scribed in Section 3.1. The numbers in parentheses
are the MAE between the target and estimated dif-
ficulties. Among them, our base+grade+sent
model achieved the lowest MAE for all target diffi-
culties except the most difficult level of 8.

4.7 Analysis: Quality of Output Sentences

We analyze the trade-off between synonymity
and simplicity in the human evaluation of our
model. Example output sentences from the pro-
posed method are shown in Table 4. Our model
tends to output shorter sentences by reducing the
content from the input sentences to gain simplicity.
In other words, our output sentences do not guar-
antee a “perfect” semantic correspondence with
the input sentences. However, such semantic omis-
sions are often found even in references made by
professional writers at Newsela. Specifically, 70%
of the reference sentences omit more than one quar-
ter of the words of the input sentence, and 44%
delete more than half of the words. As the exam-
ples in Table 4 show, our output sentences remove
supplemental details but preserve the main content.

5 Conclusion

We proposed a deep reinforcement learning method
for controllable text simplification that takes into
account the sentence-level difficulty. We designed
a reward based on the difference between the target
difficulty and that of the generated sentence. Exper-
imental results show that our method is evaluated
highly owing to its overall simplification in an au-
tomatic evaluation, and for its controllability of the
sentence difficulty in a manual evaluation.
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