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Preface

Welcome to the 18th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology,
and Morphology, to be held on August 5, 2021 as part of a virtual ACL. The workshop aims to
bring together researchers interested in applying computational techniques to problems in morphology,
phonology, and phonetics. Our program this year highlights the ongoing investigations into how neural
models process phonology and morphology, as well as the development of finite-state models for low-
resource languages with complex morphology. .

We received 25 submissions, and after a competitive reviewing process, we accepted 14.

The workshop is privileged to present four invited talks this year, all from very respected members of
the SIGMORPHON community. Reut Tsarfaty, Kenny Smith, Kristine Yu, and Ekaterina Vylomova all
presented talks at this year’s workshop.

This year also marks the sixth iteration of the SIGMORPHON Shared Task. Following upon the success
of last year’s multiple tasks, we again hosted 3 shared tasks:

Task 0:

SIGMORPHON’s sixth installment of its inflection generation shared task is divided into two parts:
Generalization, and cognitive plausibility.

In the first part, participants designed a model that learned to generate morphological inflections from a
lemma and a set of morphosyntactic features of the target form, similar to previous year’s tasks. This year,
participants learned morphological tendencies on a set of development languages, and then generalized
these findings to new languages - without much time to adapt their models to new phenomena.

The second part asks participants to inflect nonce words in the past tense, which are then judged for
plausibility by native speakers. This task aims to investigate whether state-of-the-art inflectors are
learning in a way that mimics human learners.

Task 1:

The second SIGMORPHON shared task on grapheme-to-phoneme conversion expands on the task from
last year, recategorizing data as belonging to one of three different classes: low-resource, medium-
resource, and high-resource.

The task saw 23 submissions from 9 participants.
Task 2:

Task 2 continues the effort from the 2020 shared task in unsupervised morphology. Unlike last year’s
task, which asked participants to implement a complete unsupervised morphology induction pipeline,
this year’s task concentrates on a single aspect of morphology discovery: paradigm induction. This task
asks participants to cluster words into inflectional paradigms, given no more than raw text.

The task saw 14 submissions from 4 teams.

We are grateful to the program committee for their careful and thoughtful reviews of the papers submitted
this year. Likewise, we are thankful to the shared task organizers for their hard work in preparing the
shared tasks. We are looking forward to a workshop covering a wide range of topics, and we hope for
lively discussions.

Garrett Nicolai
Kyle Gorman
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Towards Detection and Remediation of Phonemic Confusion

Francois Roewer-Despres'* Arnold YS Yeung!* Ilan Kogan’*

!Department of Computer Science

?Department of Statistics

University of Toronto
{francoisrd, arnoldyeung}@cs.toronto.edu
mail@ilankogan.ca

Abstract

Reducing communication breakdown is criti-
cal to success in interactive NLP applications,
such as dialogue systems. To this end, we pro-
pose a confusion-mitigation framework for the
detection and remediation of communication
breakdown. In this work, as a first step towards
implementing this framework, we focus on de-
tecting phonemic sources of confusion. As a
proof-of-concept, we evaluate two neural ar-
chitectures in predicting the probability that a
listener will misunderstand phonemes in an ut-
terance. We show that both neural models out-
perform a weighted n-gram baseline, showing
early promise for the broader framework.

1 Introduction

Ensuring that interactive NLP applications, such
as dialogue systems, communicate clearly and ef-
fectively is critical to their long-term success and
viability, especially in high-stakes domains, such as
healthcare. Successful systems should thus seek to
reduce communication breakdown. One aspect of
successful communication is the degree to which
each party understands the other. For example,
properly diagnosing a patient may necessitate ask-
ing logically complex questions, but these ques-
tions should be phrased as clearly as possible to
promote understanding and mitigate confusion.
To reduce confusion-related communication
breakdown, we propose that generative NLP sys-
tems integrate a novel confusion-mitigation frame-
work into their natural language generation (NLG)
processes. In brief, this framework ensures that
such systems avoid transmitting utterances with
high predicted probabilities of confusion. In the
simplest and most decoupled formulation, an exist-
ing NLG component simply produces alternatives
to any rejected utterances without additional guid-
ing information. In more advanced and coupled

* Equal contribution.
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' C.onfusion
prediction component
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Confusion~. No_| Utterance transmitted
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Figure 1: A simplified variant of our proposed
confusion-mitigation framework, which enables gener-
ative NLP systems to detect and remediate confusion-
related communication breakdown. The confusion pre-
diction component predicts the confusion probability
of candidate utterances, which are rejected if this prob-
ability is above a decision threshold, ¢.

formulations, the NLG and confusion prediction
components can be closely integrated to better de-
termine precisely how to avoid confusion. This
process can also be conditioned on models of the
current listener or task to achieve personalized or
context-dependent results. Figure 1 shows the sim-
plest variant of the framework.

As a first step towards implementing this frame-
work, we work towards developing its central con-
fusion prediction component, which predicts the
confusion probability of an utterance. In this work,
we specifically target phonemic confusion, that is,
the misidentification of heard phonemes by a lis-
tener. We consider two potential neural architec-
tures for this purpose: a fixed-context, feed-forward
network and a residual, bidirectional LSTM net-
work. We train these models using a novel proxy
data set derived from audiobook recordings, and
compare their performance to that of a weighted
n-gram baseline.

Proceedings of the Seventeenth SIGMORPHON Workshop on Computational Research
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2 Background and Related Work

Prior work focused on identifying confusion in nat-
ural language, rather than proactively altering it
to help reduce communication breakdown, as our
framework proposes. For example, Batliner et al.
(2003) showed that certain features of recorded
speech (e.g., repetition, hyperarticulation, strong
emphasis) can be used to identify communica-
tion breakdown. The authors relied primarily on
prosodic properties of recorded phrases, rather than
the underlying phonemes, words, or semantics, for
identifying communication breakdown. On the
other hand, conversational repair is a turn-level
process in which conversational partners first iden-
tify and then remediate communication breakdown
as part of a trouble-source repair (TSR) sequence
(Sacks et al., 1974). Using this approach, Orange
et al. (1996) identified differences in TSR patterns
amongst people with no, early-stage, and middle-
stage Alzheimer’s, highlighting the usefulness of
communication breakdown detection. However,
such work does not directly address the issue of
proactive confusion mitigation and remediation,
which the more advanced formulation of our frame-
work aims to address through listener and task con-
ditioning. Our focus is on the simpler formulation
in this preliminary work.

Rothwell (2010) identified four types of noise
that may cause confusion: physical noise (e.g., a
loud highway), physiological noise (e.g., hearing
impairment), psychological noise (e.g., attentive-
ness of listener), and semantic noise (e.g., word
choice). We postulate that mitigating confusion
resulting from each type of noise may be possi-
ble, at least to some extent, given sufficient context
to make an informed compensatory decision. For
example, given a particularly physically noisy envi-
ronment, speaking loudly would seem appropriate.
Unfortunately, such contextual information is often
lacking from existing data sets. In particular, the
physiological and psychological states of listeners
is rarely recorded. Even when such information is
recorded (e.g., in Alzheimer’s speech studies Or-
ange et al., 1996), the information is very coarse
(e.g, broad Alzheimer’s categories such as none,
early-stage,and middle-stage).

We leave these non-trivial data gathering chal-
lenges as future work, instead focusing on phone-
mic confusion, which is significantly easier to op-
erationalize. In practice, confusion at the phoneme-
level may arise from any category of Rothwell

noise. It may also arise from the natural similarities
between phonemes (discussed next). While many
of these will not be represented in the text-based
phonemic transcriptions data set used in this pre-
liminary work, our approach can be extended to
include them.

Researchers in speech processing have studied
the prediction of phonemic confusion but, to our
knowledge, this work has not been adapted to ut-
terance generation. Instead, tasks such as prevent-
ing of sound-alike medication errors (i.e., naming
medications so that two medications do not sound
identical) are common (Lambert, 1997). Zgank
and Kacic (2012) showed that the potential confus-
ability of a word can be estimated by calculating
the Levenshtein distance (Levenshtein, 1966) of its
phonemic transcription to that of all others in the
vocabulary. We take inspiration from Zgank and
Kacic (2012) and employ a phoneme-level Leven-
shtein distance approach in this work.

In the basic definition of the Levenshtein dis-
tance, all errors are equally weighted. In practice,
however, words that share many similar or identical
phonemes are more likely to be confused for one
another. Given this, Sabourin and Fabiani (2000)
developed a weighted phoneme-level Levenshtein
distance, where weights are determined by a human
expert or a learned model, such as a hidden Markov
model. Unfortunately, while these weights are
meant to represent phonemic similarity, selecting
an appropriate distance metric in phoneme space is
non-trivial. The classical results of Miller (1954)
and Miller and Nicely (1955) group phonemes ex-
perimentally based on the noise level at which they
become indiscernible. The authors identify voic-
ing, nasality, affrication, duration, and place of
articulation as sub-phoneme features that predict a
phoneme’s sensitivity to distortion, and therefore
measure its proximity to others. Unfortunately,
later work showed that these controlled conditions
do not map cleanly to the real world (Batliner et al.,
2003). In addition, Wickelgren (1965) found al-
ternative phonemic distance features that could be
adapted into a distance metric.

While this prior research sought to directly de-
fine a distance metric between phonemes based
on sub-phoneme features, since no method has
emerged as clearly superior, researchers now favour
direct, empirical measures of confusability (Bailey
and Hahn, 2005). Likewise, our work assumes that
these classical feature-engineering approaches to



predicting phoneme confusability can be improved
upon with neural approaches, just as automatic
speech recognition (ASR) systems have been im-
proved through the use of similar methods (e.g.,
Seide et al., 2011; Zeyer et al., 2019; Kumar et al.,
2020). In addition, these classical approaches do
not account for context (i.e., other phonemes sur-
rounding the phoneme of interest), whereas our
approach conditions on such context to refine the
confusion estimate.

3 Data

3.1 Data Gathering Process

To predict the phonemic confusability of utterances,
we would ideally use a data set in which each utter-
ance is annotated with speaker phonemic transcrip-
tion (the reference transcription), as well as listener
perceived phonemic transcription (the hypothesis
transcription). We could then compare these tran-
scriptions to identify phonemic confusion.

To the best of our knowledge, a data set of this
type does not exist. The English Consistent Con-
fusion Corpus contains a collection of individual
words spoken against a noisy background, with hu-
man listener transcriptions (Marxer et al., 2016).
This is similar to our ideal data set, however the
words are spoken in isolation, and thus without any
utterance context. This same issue arises in the
Diagnostic Rhyme Test and its derivative data sets
(Voiers et al., 1975; Greenspan et al., 1998). Other
corpora, such as the BioScope Corpus (Vincze
et al., 2008) and the AMI Corpus (Carletta et al.,
2005), contain annotations of dialogue acts, which
represent the intention of the speaker in producing
each utterance (e.g., asking a question is labeled
with the dialogue act elicit_information).
However, dialogue acts relating to confusion only
appear when a listener explicitly requests clarifica-
tion from the speaker. This does not provide fine-
grained information regarding which phonemes
caused the confusion, nor does it capture any in-
stances of confusion in which the listener does not
explicitly vocalize their confusion.

We thus create a new data set for this work (Fig-
ure 2). The Parallel Audiobook Corpus contains
121 hours of recorded speech data across 59 speak-
ers (Ribeiro, 2018). We use four of its audiobooks:
Adventures of Huckleberry Finn, Emma, Treasure
Island, and The Adventures of Sherlock Holmes.
Crucially, the audio recordings in this corpus are
aligned with the text being read, which allows us to

Audiobooks Final data set

Text | > Reference transcriptions

Audio T—»:/Transcriberj—> Hypothesis transcriptions

Figure 2: We create a new data set with parallel ref-
erence and hypothesis transcriptions from audiobook
data with parallel text and audio recordings. The text
simply becomes the reference transcriptions. A tran-
scriber converts the audio recordings into hypothesis
transcriptions. In this preliminary work, we use an
ASR system as a proxy for human transcribers.

create aligned reference and hypothesis transcrip-
tions. For each text-audio pair, the text simply
becomes the reference transcriptions, while a tran-
scriber converts the audio into hypothesis transcrip-
tions. Given the preliminary nature of this work,
we create a proxy data set in which we use Google
Cloud’s publicly-available ASR system as a proxy
for human transcribers (Cloud, 2019). We then
process these transcriptions to identify phonemic
confusion events (as described in Section 3.2). The
final data set contains 84,253 parallel transcriptions.
We split these into 63,189 training, 10,532 valida-
tion, and 10,532 test transcriptions (a 75%-12.5%-
12.5% split). The average reference and hypothesis
transcription lengths are 65.2 and 62.3 phonemes,
respectively. The transcription error rate (i.e., the
proportion of phonemes that are mis-transcribed)
is only 8%, so there is significant imbalance in the
data set.

For the purposes of this preliminary work, the
Google Cloud ASR system (Cloud, 2019) is an
acceptable proxy for human transcription ability
under the reasonable assumption that, for any par-
ticular transcriber, the distribution of error rates
across different phoneme sequences is nonuniform
(i.e., within-transcriber variation is present). This
assumption holds in all practical cases, and is rea-
sonable since the confusion-mitigation framework
we propose can be conditioned on different tran-
scribers to control for inter-transcriber variation as
future work.

3.2 Transcription Error Labeling

We post-process our aligned reference-hypothesis
transcription data set in two steps. First, each tran-
scription must be converted from the word-level
to the phoneme-level. For this, we use the CMU
Pronouncing Dictionary (Weide, 1998), which is
based on the ARPAbet symbol set. For any words
with multiple phonemic conversions, we simply
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Figure 3: Illustration of our transcription error labeling
process (using letters instead of phonemes for readabil-
ity). Given aligned reference (x) and hypothesis (y)
vectors, we use the Levenshtein algorithm to ensure
they have the same length. Because y is not available
at test time, we then “collapse” consecutive insertion
tokens to force the vectors to have the original length
of . Finally, we replace y with the binary vector d,
which has 1’s wherever  and g don’t match.

default to the first conversion returned by the APIL.

Second, we label each resulting phoneme in each
reference transcription as either correctly or incor-
rectly transcribed. This is nontrivial, because the
number of phonemes in the reference and hypothe-
sis transcriptions are rarely equal, and thus require
phoneme-level alignment. For this purpose, we
use a variant of the phoneme-level Levenshtein dis-
tance that returns the actual alignment, rather than
the final distance score (Figure 3).

Formally, let x € K® be a vector of reference
phonemes and y € K’ be a vector of hypothesis
phonemes from the data set. K refers to the set
{1,2,3,...,k,<INS>, <DEL>, <SOS>, <EOS>},
where k is the number of unique phonemes in
the language being considered (e.g., in English,
k =~ 40 depending on the dialect). In general,
a # b, but we can manipulate the vectors by
incorporating insertion, deletion, and substitution
tokens (as done in the Levenshtein distance
algorithm). In general, this yields two vectors
of the same length, &,y € K¢ ¢ = max(a,b).
While this manipulation can be performed at
training time because y and b are known, such
information is unavailable at test time. Therefore,
we modify the alignment at training time to ensure
& = x and ¢ = a. To achieve this, we “collapse”
consecutive insertion tokens into a single instance
of the insertion token, which ensures that |g| = a.

Additionally, we assume that each hypothesis
phoneme, y; € vy, is conditionally independent

of the others. That is, P(§; = x;|x, §4) =
P(3; = ;| z)." We hypothesize that this assump-
tion, similar to the conditional independence as-
sumption of Naive Bayes (Zhang, 2004), will still
yield directionally-correct results, while drastically
increasing the tractability of the computation.

This assumption also allows us to simplify the
output space of the problem. Specifically, since
we only care to predict P(y # x), with this as-
sumption, we now only need to consider, for each ¢,
whether y; = x;, rather than dealing with the much
harder problem of predicting the exact value of ;.
To achieve this, we use an element-wise Kronecker
delta function to replace y with a binary vector, d,
such that d; + 7; # x;. Thus, the binary vector
d records the position of each transcription error,
that is, the position of each phoneme in x that was
confused.

With the x’s as inputs and the d’s as ground truth
labels, we can train models to predict P(d; | x) for
each 7. As a post-processing step, we can then
combine these individual probabilities to estimate
the utterance-level probability of phonemic confu-
sion, P(y # x), which is the output of the central
confusion prediction component in Figure 1.

This formulation is general in the sense that any
x; can affect the predicted probability of any d;.
In practice, however, and especially for long utter-
ances, this is overly conservative, as only nearby
phonemes are likely to have a significant effect. In
Section 4, we describe any additional conditional
independence assumptions that each architecture
makes to further simplify its probability estimate.

4 Model Architectures and Baseline

With recent advances, various neural architectures
have been applied to NLP tasks. Early work in-
cludes n-gram-based, fully-connected architectures
for language modeling tasks (Bengio et al., 2003;
Mikolov et al., 2013). Recurrent neural network
(RNN) architectures were then shown to be suc-
cessful for applications such as language model-
ing, speech recognition, and phoneme recognition
(Graves and Schmidhuber, 2005; Mikolov et al.,
2011). RNN architectures such as the LSTM
(Hochreiter and Schmidhuber, 1997) and GRU
(Chung et al., 2015) variants had been successful
in many NLP applications, such as machine lan-
guage translation and phoneme classification (Sun-
dermeyer et al., 2012; Graves et al., 2013; Graves

'g# is every element in ¢ except the one at position 3.



and Schmidhuber, 2005). Recently, the transformer
architecture (Vaswani et al., 2017), which uses at-
tention instead of recurrence to form dependencies
between inputs, has shown state-of-the-art results
in many areas of NLP, including syllable-based
tasks (e.g., Zhou et al., 2018).

In this work, we propose a fixed-context-window
architecture and a residual bi-LSTM architec-
ture for the central component of our confusion-
mitigation framework. While similar architectures
have already been applied to phoneme-based appli-
cations, such as phoneme recognition and classifi-
cation (Graves and Schmidhuber, 2005; Weninger
et al., 2015; Graves et al., 2013; Li et al., 2017),
to our knowledge, our study is the first to apply
these architectures to identify phonemes related to
confusion for listeners. In our opinion, these archi-
tectures strike an acceptable balance between com-
pute and capability for this current work, unlike the
more advanced transformer architectures, which
require significantly more resources to train.

Since the data set is imbalanced (see Sec-
tion 3.1), without sample weighting, early experi-
ments showed that both architectures never identi-
fied any phonemes as likely to be mis-transcribed
(i.e., high specificity, low sensitivity). Accordingly,
since the imbalance ratio is approximately 1:10,
transcription errors are given 10-times more weight
than properly-transcribed phonemes in our binary
cross-entropy loss function.

4.1 Fixed-Context Network

The fixed-context network takes as input the current
phoneme, x;, and the 4 phonemes before and after
it as a fixed window of context (Figure 4a). This
results in the additional conditional independence
assumption that P(d; | ) = P(d; | ©;_4:44). That
is, only phonemes within the fixed context window
of size 4 can affect the predicted probability of d;.

These 9 phonemes are first embedded in a 15-
dimensional embedding space. The embedding
layer is followed by a sequence of seven fully-
connected hidden layers with 512, 256, 256, 128,
128, 64, and 64 neurons respectively. Each layer
is separated by Rectified Linear Unit (ReL.U) non-
linearities (Nair and Hinton, 2010; He et al., 2016).
Finally, an output with a sigmoid activation func-
tion predicts the probability of a transcription er-
ror. We train with minibatches of size 32, using

2Link to code: https://github.com/francois-rd/phonemic-
confusion

the Adam optimizer with parameters oo = 0.001,
B£1 = 0.9, and B2 = 0.999 (Kingma and Ba, 2014)
to optimize a 1:10 weighted binary cross-entropy
loss function. We explored alternative parameter
settings, and in particular a larger number of neu-
rons, but found this architecture to be the most
stable and highest performing of all variants tested,
given the nature and relatively small size of the
data set.

4.2 LSTM Network

The LSTM network receives the entire reference
transcription, x, as input and predicts the entire bi-
narized hypothesis transcription, d, as output (Fig-
ure 4b). Since the LSTM is bidirectional, we do
not introduce any additional conditional indepen-
dence assumptions. Each input phoneme is passed
through an embedding layer of dimension 42 (equal
to |K|) followed by a bidirectional LSTM layer and
two residual linear blocks with ReLLU activations
(He et al., 2016). An output residual linear block
with a sigmoid activation predicts the probability
of a transcription error. These skip connections
are added since residual layers tend to outperform
simpler alternatives (He et al., 2016). Passing the
embedded input via skip connections ensures that
the original input is accessible at all depths of the
network, and also helps mitigate against any van-
ishing gradients that may arise in the LSTM.

We use the following output dimensions for each
layer: 50 for LSTM hidden and cell states, 40 for
the first residual linear block, and 10 for the second.
We train with minibatches of size 256, using the
Adam optimizer with parameters o = 0.00005,
B1 = 0.9, and B2 = 0.999 (Kingma and Ba, 2014)
to optimize a 1:10 weighted binary cross-entropy
loss function.

4.3 Weighted n-Gram Baseline

We compare our neural models to a weighted n-
gram baseline model. That is, d; depends only
on the n previous phonemes in « (an order-n
Markov assumption). Formally, we make the con-
ditional independence assumption that P(d; | ) =
p(ciz | £;—n+1.1). Extending this baseline model to
include future phonemes would violate the order-n
Markov assumption that is standard in n-gram ap-
proaches. In this preliminary work, we opt to keep
the baseline as standard as possible.

A weighted n-gram model is computed using an
algorithm similar to the standard maximum like-
lihood estimation (MLE) n-gram counting algo-
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Figure 4: Architectural variants of the confusion prediction component of our confusion-mitigation framework.

rithm, but with the introduction of a weighting
scheme to deal with the class imbalance issue. The
weighting is necessary for a fair comparison to the
weighted loss function used in the neural network
models. This approaches generalizes the standard
MLE n-gram counting algorithm, which implicitly
uses a weight of 1.

Formally, let W > 0 be the selected weight, and
define ¢; = x;_p41.; to simplify the notation. Also,
let C(d; | ¢;) be the count of all incorrect phoneme
transcriptions in the context c; in the entire data set,
and similarly, C'(1 — d; | ¢;) for correct transcrip-
tions.? The weighted n-gram is then computed as
follows:

W x C(dz ‘ CZ')

P(d; | ¢;) = . _
ile) = G d ey 3 W = O o)

Empirically, we find that a weighted 3-gram
model works best; larger contexts are too sparse
given the size of the data set and smaller contexts
lack expressive capacity. We do not use any n-gram
smoothing methods. Instead, any missing contexts
encountered at test time are simply marked as in-
correct predictions. For this particular data set,
such missing contexts are vanishingly rare (occur-
ring only 0.003% of the time), which justifies our
approach.

3We slightly abuse the notation here. Recall that di «
9; # T;, SO we notate §j; = x; as 1 — d;.

5 Results and Discussion

5.1 Quantitative Analysis

We report receiver operating characteristic (ROC)
curves for all models (Figure 5). To facilitate fair
comparison, all models are trained with the same
random ordering of training data in each epoch.
Both neural network architectures outperform the
weighted n-gram baseline by a small margin, with
the fixed-context network appearing to perform
slightly better overall. While no individual model
exhibits any significant performance gain over the
others, all models perform significantly better than
random chance. This shows the promise of our
framework, which is precisely the objective of this
work. We next speculate as to the causes of the
slight gaps that are observed.

The neural network models likely outperform
the weighted n-gram baseline for multiple reasons.
First, both neural network models condition on a
context that includes both past and future phonemes
(i.e., bidirectional), whereas the baseline only con-
ditions on past phonemes (i.e., unidirectional). Uti-
lizing future phonemes as context is useful since
both humans and most state-of-the-art ASR sys-
tems use this information to revise their predic-
tions. Second, the neural networks can learn sub-
contextual patterns that the baseline cannot. For
example, the contexts 2 B C and A B D have
the sub-context A B in common. Whereas the
weighted n-gram treats these as completely dif-



Ground Truth Phrase

Transcription of Audio Recording

.. for they say every body is in love once ...

.. his grave looks shewed that she was not ...

.. shall use the carriage to night ...

.. making him understand I warn’t dead ...
.. shore at that place so we warn’t afraid ...
.. read Elton’s letter as I was shewn in ...

.. sacrifice my poor hair to night and ...

.. we warn’t feeling just right ...

... that there was no want of taste ...

.. knew that Arthur had discovered ...

.. for they say everybody is in love once ...
.. his grave look showed that she was not ...
.. shall use the carriage tonight ...

.. making him understand I warrant dead ...
.. sure at that place so we weren’t afraid ...
.. read Elton’s letters I was shown in ...

.. sacrifice my poor head tonight and ...

.. we weren’t feeling just right ...

.. that there was no on toothpaste ...

.. knew was it also have discovered ...

Table 1: Randomly selected phrases from amongst the top 100 phonemes predicted to be incorrectly transcribed
by the fixed-context model (transcription error probability > 0.999). Bold text denotes ASR transcription errors.
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Figure 5: ROC curves for our model variants.

ferent contexts, the neural networks may be able to
exploit the similarity between them. This kind of
parameter sharing is more data efficient, which can
lead to lower variance estimates (less overfitting)
in the small data set setting we are considering.

The simpler fixed-context network slightly out-
performs the more complex LSTM alternative.
While RNN architectures have been shown to out-
perform feed-forward networks in language pro-
cessing tasks (Sundermeyer et al., 2012), other re-
search has shown that simpler architectures are still
able to process phonemic data effectively (Ba and
Caruana, 2014). The lack of an additional con-
ditional independence assumption for the LSTM
model may have resulted in worse data efficiency,
since the model needs to expend parameters on
all reference phonemes, even those very far away
that may have little impact on the current one. In
addition, the smaller number of parameters to esti-
mate may have lead to lower variance in the fixed-

context model. Given this, our avoidance of more
advanced or deeper model, such as transformers,
seems justified for this preliminary work. We hy-
pothesize that such models could outperform all
the models considered here given a significantly
larger data set.

5.2 Qualitative Analysis
5.2.1 Description

We perform qualitative error analysis on randomly
selected phonemes from amongst those that are
most (Table 1) and least (Table 2) likely to contain
transcription errors according to the fixed-context
model. This offers some qualitative insights re-
garding phonemic confusion. We sample from the
fixed-context model due to its slightly superior per-
formance, and show small phrases centered around
the phoneme most (least) likely to cause confusion,
rather than full transcriptions, for clarity.

In addition, to improve readability, we show
words rather than the underlying phonemes. As a
result, some of the errors appear to be orthographic
in nature even if they are not. For example, “every
body” becomes “everybody” in the first example
of Table 1. However, the phonemes that constitute
“every body” and “everybody” are indeed differ-
ent: “EH V ER IY B AA D IY” versus “EH
V R IY B AA D IY”. Asper our definitions in
Section 3.2, these cases do represent transcription
errors. However, it may be argued that such errors
introduce unwanted noise in the data set, which we
hope to correct in future work.

5.2.2 Analysis

First, we note that every sample in Table 1 does
indeed have a transcription error, while few sam-



Ground Truth Phrase

Transcription of Audio Recording

... the exquisite feelings of delight and ...

.. gone Mister Knightley called ...

.. has been exceptionally ...

.. not afraid of your seeing ...

.. the sale of Randalls was long ...

.. her very kind reception of himself ...

.. for the purpose of preparatory inspection ...
.. you would not be happy until you ...

.. with the exception of this little blot ...

.. night we were in a great bustle getting ...

.. the exquisite feelings of delight and ...

.. gone Mister Knightley called ...

.. has been exceptionally ...

.. not afraid if you’re saying ...

.. the sale of Randalls was long ...

.. her very kind reception to himself ...

.. for the purpose of preparatory inspection ...
.. you would not be happy until you ...

.. with the exception of this little blot ...

.. night we were in a great bustle getting ...

Table 2: Randomly selected phrases from amongst the top 100 phonemes predicted to be correctly transcribed by
the fixed-context model (transcription error probability < 0.03). Bold text denotes ASR transcription errors.

ples have errors in Table 2. It therefore seems as
though, when the fixed-context model is very cer-
tain about the presence or absence of errors, it is
usually correct.

Second, many of the transcription errors in Ta-
ble 1 are seemingly caused by the archaic or id-
iosyncratic writing present in the books used to
create the data set. While this can be seen as a
source of unwanted noise (we used an ASR sys-
tem trained on standard modern English), we argue
that, as per Rothwell’s model of communication
(Section 2), familiarity with the vocabulary is, in
fact, a very legitimate source of semantic noise.
Indeed, phrases using more modern and standard
vernacular are seemingly less likely to be confus-
ing, according to the fixed-context model.

Third, many of the errors not related to ar-
chaism involve stop words, homonyms, or near-
homophones, which intuitively makes sense. Ad-
ditionally, hard consonant sounds between words
(and stress at the beginning rather than at the end
of words) appears more common in the set of
correctly-transcribed phrases as compared to the set
of incorrectly-transcribed ones. These findings sug-
gest the fixed-context model has picked up on some
underlying patterns governing phonemic confusion,
which is promising for our confusion-mitigation
framework as a whole.

5.3 Future Work

This work uses a relatively small data set. Creat-
ing and using a significantly larger corpus using
human subjects rather than an ASR proxy would
likely yield more directly relevant results. We pos-
tulate that, with a larger and higher quality data
set, a deeper and more advanced neural network

architecture, such as the transformer, may produce
stronger results. Future work can also investigate
the differences in human phonemic confusability
on ‘natural’ versus semantically-unpredictable sen-
tences.

A major aspect of our confusion-mitigation
framework, which we have not explored in this
work, is the generation of alternative, clearer utter-
ances that retain the initial meaning. Constructively
enumerating these alternatives is non-trivial, as is
identifying the neighbourhood beyond which their
meaning differs too significantly from the original.
Conditioning on a specific listener’s priors as an
additional mechanism to reduce communication
breakdown is another major aspect we leave to fu-
ture work.

Perhaps most significantly, we have limited the
scope of our confusion assessment drastically in
this preliminary work, primarily to simplify the
data gathering process. While our results are
promising, communication breakdown is a nuanced
and multi-faceted phenomenon of which phonemic
confusion is but one small component. Modeling
these larger and more complex processes remains
an important open challenge.

6 Conclusion

Reducing communication breakdown is critical
to successful interaction in dialogue systems and
other generative NLP systems. In this work, we
proposed a novel confusion-mitigation framework
that such systems could employ to help minimize
the probability of human confusion during an in-
teraction. As a first step towards implementing
this framework, we evaluated two potential neu-



ral architectures—a fixed-context network and an
LSTM network—for its central component, which
predicts the confusion probability of a candidate
utterance. These neural architectures outperformed
a weighted n-gram baseline (with the fixed-context
network performing best overall) when trained us-
ing a proxy data set derived from audiobook record-
ings. In addition, qualitative analyses suggest that
the fixed-context model has uncovered some of the
more intuitive causes of phonemic confusion, in-
cluding stop words, homonyms, near-homophones,
and familiarity with the vocabulary. These prelim-
inary results show the promise of our confusion-
mitigation framework. Given this early success,
further investigation and refinement is warranted.
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Recursive prosody is not finite-state
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Abstract

This paper investigates bounds on the generative
capacity of prosodic processes, by focusing
on the complexity of recursive prosody in
coordination contexts in English (Wagner, 2010).
Although all phonological processes and most
prosodic processes are computationally regular
string languages, we show that recursive prosody
is not. The output string language is instead
parallel multiple context-free (Seki et al., 1991).
We evaluate the complexity of the pattern over
strings, and then move on to a characterization
over trees that requires the expressivity of multi
bottom-up tree transducers. In doing so, we
provide a foundation for future mathematically
grounded investigations of the syntax-prosody
interface.

1 Introduction

At the level of words, all attested processes in phonol-
ogy form regular string languages and can be gener-
ated via finite-state acceptors (FSAs) and transducers
(FSTs) (Johnson, 1972; Kaplan and Kay, 1994; Heinz,
2018). However, not much attention has been given
to the generative capacity of prosodic processes at
the phrasal or sentential level (but see Yu, 2019). The
little work that exists in this respect has shown that
many attested intonational processes are finite-state
and regular (Pierrehumbert, 1980). It is thus a common
hypothesis in the literature that the cross-linguistic ty-
pology of prosodic phonology should also be regular.

In this paper, we falsify this hypothesis by provid-
ing a mathematically grounded characterization of a
pattern of recursive prosody in English coordination,
as empirically documented by Wagner (2010). Specif-
ically, we show that when converting a syntactic repre-
sentation into a prosodic representation, the string lan-
guage that is generated by this prosodic process is nei-
ther a regular nor context-free language, and thus can-
not be generated by string-based FSAs. As a tree-to-
tree function, the pattern can be captured by a class of
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bottom-up tree transducers whose outputs correspond
to parallel multiple context-free string languages.

This paper is organized as follows. In §2, we
provide a literature review of phonology and prosodic
phonology, with emphasis on the general tendency for
regular computation. In §3, we describe the recursive
prosody of coordination structures, and why it cannot
be generated with an FST over string inputs. In §4,
we show how a multi bottom-up tree transducer can
generate the prosodic patterns. We discuss our results
in §5, and conclude in §6.

2 Computation of prosody

Within computational prosody, there are two strands
of work. One focuses on the generation of prosodic
structure at or below the word level. The other
operates above the word-level.

At the word level, there is a plethora of work
on generating prosodic constituents, all of which
require finite-state or regular computation, whether
for syllables (Kiraz and Mobius, 1998; Yap, 2006;
Hulden, 2006; Idsardi, 2009), feet (van Oostendorp,
1993; Idsardi, 2009; Yu, 2017), or prosodic words
(Coleman, 1995; Chew, 2003).! In fact, most word-
level prosody seems to require at most subregular
computation (Strother-Garcia, 2018, 2019; Hao, 2020;
Dolatian, 2020; Dolatian et al., 2021; Koser, in prep).

However, there is a dearth of formal results for
phrasal or intonational prosody. Early work in genera-
tive phonology treated the prosodic representations as
directly generated from the syntax, with any deviations
caused by readjustment rules (Chomsky and Halle,
1968). Notoriously, syntactic representations are at

"For syllables and feet, there is a large literature of formal-
ization within Declarative Phonology (Scobbie et al., 1996). This
work tends to employ formal representations that are similar
to context-free grammars (Klein, 1991; Walther, 1993, 1995;
Dirksen, 1993; Coleman, 1991, 1992, 1993, 1996, 2000, 1998;
Coleman and Pierrehumbert, 1997; Chew, 2003). But these
representations can be restricted enough to be equivalent to
regular languages (see earlier such restrictions in Church, 1983).
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least context-free (Chomsky, 1956; Chomsky and
Schiitzenberger, 1959). Because sentential prosody
interacts with the syntactic level in non-trivial ways, it
might seem sensible to assume that 1) the transforma-
tion from syntax to prosody is not finite-state definable
(= definable with finite-state transducers), and that
2) the string language of prosodic representations
is a supra-regular language, not a regular language.
Importantly though, this assumption is not trivially
true. In fact, early work has shown that even if syntax
is context-free, the corresponding prosodic structures
can be a regular string language. For instance, Reich
(1969) argued that the prosodic structures in SPE can
be generated via finite-state devices (see also Langen-
doen, 1975), while Pierrehumbert (1980) modeled
English intonation using a simple finite-state acceptor.

When analyzed over string languages, this
mismatch between supra-regular syntax and regular
prosody was not explored much in the subsequent
literature. In fact, it seems that current research on
computational prosody uses the premise that prosodic
structures are at most regular (Gibbon, 2001). Cru-
cially, this premise is confounded by the general lack
of explicit mathematical formalizations of prosodic
systems. For example, there are algorithms for Dutch
intonation that capture surface intonational contours
and other acoustic cues (t'Hart and Cohen, 1973;
t"Hart and Collier, 1975). These algorithms however
do not themselves provide sufficient mathematical
detail to show that the prosodic phenomenon in
question is a regular string language. Instead, one
has to deduce that Dutch intonation is regular because
the algorithm does not utilize counting or unbounded
look-ahead (t’Hart et al., 2006, pg. 114).

As a reflection of this mismatch, early work in
prosodic phonology assumed something known as the
strict layer hypothesis (SLH; Nespor and Vogel, 1986;
Selkirk, 1986). The SLH assumed that prosodic trees
cannot be recursive — i.e. a prosodic phrase cannot
dominate another prosodic phrase — thus ensuring
that a prosodic tree will have fixed depth. Subsequent
work in prosodic phonology weakened the SLH:
prosodic recursion at the phrase or sentence level is
now accepted as empirically robust (Ladd 1986, 2008,
ch8; Selkirk 2011; Ito and Mester 2012, 2013). But
empirically, it is difficult to find cases of unbounded
prosodic recursion (Van der Hulst, 2010). Consider
a language that uses only bounded prosodic recursion
— e.g. there can be at most two recursive levels of
prosodic phrases. The prosodic tree will have fixed
depth; and the computation of the corresponding
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string language is regular. It is then possible to create
a computational network that uses a supra-regular
grammar for the syntax which interacts with a
finite-state grammar for the prosody (Yu and Stabler,
2017; Yu, 2019). To summarize, it seems that the
implicit consensus in computational prosody is that
1) syntax can be supra-regular, but the corresponding
prosody is regular; 2) prosodic recursion is bounded.

However, as we elaborate in the next section,
coordination data from Wagner (2005) is a case where
syntactic recursion generates potentially unbounded-
recursive prosodic structure. The rest of the paper is
then dedicated to exploring the consequences of this
construction for the expressivity of sentential prosody.

3 Prosodic recursion in coordination

To our knowledge, Wagner (2005, 2010) is the
clearest case where syntactic recursion gets mapped
to recursive prosody, such that the recursion is
unboundedly deep for the prosody. In this section, we
go over the data and generalizations (§3.1), we sketch
Wagner'’s cyclic analysis (§3.2), and we discuss issues
with finiteness (§3.3). Finally, we show that that this
construction does not correspond to a regular string
language (§3.4).

3.1 Unbounded recursive prosody

Wagner documents unbounded prosodic recursion
in the coordination of nouns, in contrast to earlier
results which reported flat non-recursive prosody
(Langendoen, 1987, 1998). Based on experimental
and acoustic studies, Wagner reports that recursive
coordination creates recursively strong prosodic
boundaries. Syntactic edges have a prosodic strength
that incrementally depends on their distance from the
bottom-most constituents.

When three items are coordinated with two non-
identical operators, then two syntactic parses are pos-
sible. Each syntactic parse has an analogous prosodic
parse. The prosodic parse is based on the relative
strength of a prosodic boundary, with | being weaker
than ||. The boundary is placed before the operator.

Table 1: Prosody of three items with non-identical
operators

Syntactic grouping | Prosodic grouping

[A and [B or C]] Alland B |or C

[[A and B] or C] Aland B || or C

When the two operators are identical, then three
syntactic and prosodic parses are possible. The



difference between the parses is determined by
semantic associativity. For example, a sentence like
I saw [[A and B] and C] means that I saw A and B
together, and I saw C separately.

Table 2: Prosody of three items with identical operators

Syntactic grouping | Prosodic grouping
[Aand [BandC]] | A||and B |and C
[[Aand B]andC] | A|and B || and C
[[AandBandC] | A|andB |andC

When four items are coordinated, then at most
11 parses are possible. The maximum is reached
when the three operators are identical. We can have
three levels of prosodic boundaries, ranging from the
weakest | to the strongest |||.

Table 3: Prosody of four items with identical operators

Syntactic grouping Prosodic grouping

[A and B and C and D]

[A and B and [C and D]]
[A and [B and C] and D]
[[A and B] and C and D]
[A and [B and C and D]]
[[A and B and C] and D]

Aland B |and C [and D
Alland B || and C | and D
Alland B | and C || and D
AlandB ||and C || and D
Alland B | and C | and D
AlandB |and C || and D

[[A and B] and [C and D]]
[A and [B and [C and D]]

[A and [[B and C] and D]]
[[A and [B and C]] and D]

AlandB || and C | and D
Al||and B || and C | and D
Al||and B | and C || and D
Alland B |and C ||| and D

[[[A and Bland Cland D] | A |and B || and C ||| and D

We can extract the following generalizations from
the data above. First, the depth of a constituent di-
rectly affects the prosodic strength of its edges. At a
syntactic edge, the strength of the prosodic boundary
depends on the distance between that edge and the
most embedded element: for instance, in (1a) the left-
bracket between A-B is mapped to a prosodic bound-
ary of strength three |||, because A is above two layers
of coordination. The deepest constituent C-D gets the
weakest boundary |. Second, when there is associativ-
ity, the prosodic strength percolates to other positions
within this associative span. For example, in (1b) the
boundary of strength || is percolated to A-B from B-C.

1. Generalizations on coordination

(a) Strength is long-distantly calculated
[A and [B and [C and D]]] is mapped to
Al|land B || and C | and D

(b) Strength percolates when associative
[A and B and [C and D]] is mapped to
Alland B || and C | and D
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3.2 Wagner’s cyclic analysis

In order to generate the above forms, Wagner devised
a cyclic procedure which we summarize with the
algorithm below.

2. Wagner’s cyclic algorithm

(a) Base case: Let X be a constituent that
contains a set of unprosodified nouns
(terminal nodes) that are in an associative
coordination. Place a boundary of strength
| between each noun.

(b) Recursive case: Consider a constituent Y.
Let S be a set of constituents S (terminals
or non-terminals) that is properly contained
in Y, such that at least one constituent in
S be prosodified. Let |* be the strongest
prosodic boundary inside Y. Place the
boundary |**! between each constituent
inY.

The algorithm is generalized to coordination of any
depth. It takes as input a syntactic tree, and the output
is prosodically marked strings. We illustrate this below,
with the input tree represented as a bracketed string.

3. lllustrating Wagner’s algorithm
Input [A and B and [C and D]]
Base case C|and D
Recursive case A || and B || and C | and D

3.3 Issues of finiteness

Because Wagner’s study used noun phrases with
at most three or four items, the resulting language
of prosodic parses is a finite language. Thus, the
relevant syntax-to-prosody function is bounded. It is
difficult to elicit coordination of 5 items, likely due
to processing reasons (Wagner, 2010, 194).

If the primary culprit is performance, though,
then syntactic competence may in fact allow for
coordination constructions of unbounded depth with
any number of items. Wagner’s algorithm generates
a prosodic structure for any such sentence, such as
for (4). For the rest of this paper, we abstract away the
finite bounds on coordination size in order to analyze
the generative capacity of the underlying system (see
Savitch, 1993, for mathematical arguments in support
of factoring out finite bounds).

4. Hypothetical prosody for large coordination
[A and B and [C and [D and E]]] is mapped to
All|and B ||| and C || and D | and E



34 Computing recursive prosody over strings

The choice of representation plays an important role
in determining the generative capacity of the prosodic
mapping. We first start by treating the mapping as
a string-to-string function. We show that the mapping
is not regular.

Let the input language be a bracketed string
language, such that the input alphabet is a set of
nouns{A, ..., Z}, coordinators, and brackets. The
output language replaces the brackets with substrings
of |*. For illustration, assume that the input language
is guaranteed to be a well-bracketed string. At a
syntactic boundary, we have to calculate the number
of intervening boundaries between it and deepest node.
But this requires unbounded memory. For instance, to
parse the example below, we incrementally increase
the prosodic strength of each boundary as we read
the input left-to-right.

5. Linearly parsing the prosody:
[[[A and B] and C] and D] is mapped to
A]and B || and C ||| and D, where
Input alphabet ¥ ={ A, ... ,Z, and, or, [, ]}
Output alphabet A ={ A, ... ,Z, and, or, |}
Input language is 3* and well-bracketed

Given the above string with only left-branching
syntax, the leftmost prosodic boundary will have a
juncture of strength |. Every subsequent prosodic
boundary will have incrementally larger strength.
Over a string, this means we have to memorize the
number z of prosodic junctures that were generated
at any point in order to then generate x+1 junctures
at the next point. A 1-way FST cannot memorize an
unbounded amount of information. Thus, this function
is not rational function and cannot be defined by a
1-way FST. To prove this, we can look at this function
in terms of the size of the input and output strings.

6. lllustrating growth size of recursive prosody
[ Agand A; ] and Aj] and ... and A, ]
is mapped to
Ap|and A; || and A ||| and ... | and A,

Abstractly, for a left-branching input string with
n number of left-brackets [, the output string has
a monotonically increasing number of prosodic
junctures: | - || - ||| -+ |n. The total number of

prosodic junctures is a triangular number n(n+1)/2.

We thus derive the following lemma.

Lemma 1. For generating coordination prosody as a
string-to-string function, the size of the output string
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grows at a rate of at least O(n?) where n is the size
of the input string.

Such a function is neither rational nor regular.
Rational functions are computed by 1-way FSTs,
and regular functions by 2-way FSTs (Engelfriet
and Hoogeboom, 2001).> They share the following
property in terms of growth rates (Lhote, 2020).

Theorem 1. Given an input string of size n, the size
of the output string of a regular function grows at
most linearly as c-n, where c is a constant.

Thus, this string-to-string function is not regular.
It could be a more expressive polyregular function
(Engelfriet and Maneth, 2002; Engelfriet, 2015;
Bojariczyk, 2018; Bojariczyk et al., 2019), a question
that we leave for future work.

The discussion in this section focused on generat-
ing the output prosodic string when the input syntax
is a bracketed string. Importantly though, Lemma 1
entails that no matter how one chooses their string
encoding of syntactic structure, prosody cannot be
modeled as a rational transduction unless there is
an upper bound on the minimum number of output
symbols that a single syntactic boundary must be
rewritten as. To the best of our knowledge, there is
no syntactic string encoding that guarantees such a
bound. In the next section, we will discuss how to
compute prosodic strength starting from a tree.

4 Computing recursive prosody over trees

Wagner (2010)’s treatment of recursive prosody as-
sumes an algorithm that maps a syntactic tree to a
prosodic string. It is thus valuable to understand the
complexity of processes at the syntax-prosody inter-
face starting from the tree representation of a sen-
tence. Assuming we start from trees, there is one
more choice to be made, namely whether the prosodic
information (in the output) is present within a string or
a tree. Notably, every tree-to-string transduction can
be regarded as a tree-to-tree transduction plus a string
yield mapping. As the tree-to-tree case subsumes the
tree-to-string one, it makes sense to consider only
the former. For a tree-to-tree mapping, the goal is
to obtain a tree representation that already contains
the correct prosodic information (Ladd, 1986; Selkirk,
2011). This is the focus of the rest of this paper.

4.1 Dependency trees

When working over syntactic structures explicitly, it is
important to commit to a specific tree representation.

This equivalence only holds for functions and deterministic
FSTs. Non-deterministic FSTs can also compute relations.



In what follows, we adopt a type of dependency trees,
where the head of a phrase is treated as the mother of
the subtree that contains its arguments. For example,
the coordinated noun phrase Pearl and Garnet is
represented as the following dependency tree.

and

N

Pearl Garnet

Dependency trees have a rich tradition in descrip-
tive, theoretical, and computational approaches to lan-
guage, and their properties have been defined across a
variety of grammar formalisms (Tesniere, 1965; Nivre,
2005; Boston et al., 2009; Kuhlmann, 2013; Debus-
mann and Kuhlmann, 2010; De Marneffe and Nivre,
2019; Graf and De Santo, 2019; Shafiei and Graf,
2020, a.o.). Dependency trees keep the relation be-
tween heads and arguments local, and they maximally
simplify the readability of our mapping rules. Hence,
they allow us to focus our discussion on issues that
are directly related to the connection of coordinated
embeddings and prosodic strength, without having to
commit to a particular analysis of coordinate structure.

Importantly, this choice does not impact the gener-
alizability of the solution. It is fairly straightforward to
convert basic dependency trees into phrase structure
trees. Similarly, although it is possible to adopt n-ary
branching structures, we chose to limit ourselves
to binary trees (in the input). This turns out to be
the most conservative assumption, as it forces us to
explicitly deal with associativity and flat prosody.

4.2 Encoding prosodic strength over trees

We are interested in the complexity of mapping a
“plain” syntactic tree to a tree representation which con-
tains the correct prosodic information. Because of this,
we encode prosodic strength over trees in the form of
strength boundaries at each level of embedding. Each
embedding level in our final tree representation will
thus have a prosodic strength branch. The tree below
shows how the syntactic tree for Pearl and Garnet
is enriched with prosodic information, according to
our encoding choices. For readability, we use $ to
mark prosodic boundaries in trees instead of |, since
the latter could be confused with a unary tree branch.

and
%\
Pear]l $ Garnet

As the tree below shows, the depth of the prosody
branch at each embedding level corresponds to the
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number of prosodic boundaries needed at that level.

and4
T
Pearl; $5 and;
\ P
$3  Garnets $¢ Roseg

Finally, the prosodic tree is fed to a yield function
to generate an output prosodified string. In particular,
the correct tree-to-string mapping can be obtained
by a modified version of a recursive-descent yield,
which enumerates nodes left-to-right, depth first,
and only enumerates the mother node of each
level after the boundary branch. This strategy is
depicted by the numerical subscripts in the tree above,
which reconstruct how the yield of the prosodically
annotated tree produces the string: Pearl || and
Garnet | and Rose. The rest of this section will focus
on how to obtain the correct tree encoding of prosodic
information, starting from a plain dependency tree.

4.3 Mathematical preliminaries

For a natural number n, we let [n] = {1,...,n}. A
ranked alphabet 3. is a finite set of symbols, each one
of which has a rank assigned by the function r: ¥ — N.
We write (™ to denote {s €% |7(0)=n}, and ¢
indicates that o has rank n.

Given a ranked alphabet ¥ and a set A, 7%:(A) is
the set of all trees over Y indexed by A. The symbols
in X are possible labels for nodes in the tree, indexed
by elements in A. The set T of X-trees contains
all o € £ and all terms 0™ (¢4,...,t,,) (n>0) such
that ¢1,...,t, € Tx. Given a term m(")(sl, ey Sn)
where each s; is a subtree with root d;, we call m the
mother of the daughters dy,...,d, (1 <i<n). If two
distinct nodes have the same mother, they are siblings.
Essentially, the rank of a symbol denotes the finite
number of daughters that it can take. Elements of A
are considered as additional symbols of rank 0.

Example 1. Given ¥ := {a(o),b(o),c(Q),d@)}, Ty, is
an infinite set. The symbol a(®) means that a is
a terminal node without daughters, while ?is a
non-terminal node with two daughters. For example,
consider the tree below.

d

N
C d

NN
b b b a

This tree corresponds to the term d(c(b,b),d(b,a)),

contained in 75. 2



As is standard in defining meta-rules, we introduce
X as a countably infinite set of variable symbols
(X NX = X) to be used as place-holders in the
definitions of transduction rules over trees.

4.4 Multi bottom-up tree transducers

We assume that the starting point of the prosodic pro-
cess is a plain syntactic tree. Thus, in order to derive
the correct prosodic encoding, we need to propagate
information about levels of coordination embedding
and about associativity. We adopt a bottom-up ap-
proach, and characterize this process in terms of multi
bottom-up tree transducers (MBOT; Engelfriet et al.,
1980; Lilin, 1981; Maletti, 2011). Essentially, MBOTs
generalize traditional bottom—up tree transducers in
that they allow states to pass more than one output sub-
tree up to subsequent transducer operations (Gildea,
2012). In other words, each MBOT rule potentially
specifies several parts of the output tree. This is high-
lighted by the fact that the transducer states (q € () can
have rank greater than one — i.e. they can have more
than one daughter, where the additional daughters are
used to hold subtrees in memory. We follow Fiilop
et al. (2004) in presenting the semantics of MBOTs.

Definition 1 (MBOT). A multi bottom-up tree trans-
ducer (MBOT) is a tuple M = (Q,3,A,ro0t,q7,R),
where Q, XUA, {root}, {q;} are pairwise disjoint,
such that:

Q is a ranked alphabet with Q(®) =0, called the
set of states

> and A are ranked input and output alphabets,
respectively

root is a unary symbol, called the root symbol
qr is a unary symbol called the final state

R is a finite set of rules of two forms:

* U(Ql(xl,la"'axl,n1)7"'7Qk(xk,17"'7$k,nk))
—)QQ(tl,...,tnO)

where ¥ > 0, ¢ € X®_ for every
i € [k]U{0},q € QM) for some n; > 1, for
every j € [no],tj ETA({xm‘ﬂ S [k?] ,j € [nl]})

* root(q(1,...,xn)) = qf(t)

where n>1,€ Q™ and teTA(Xn).

|

The derivational relation induced by M is a binary re-
lation =5y over the set TsuAUQU{root g o} defined as
follows. For every ¢,1) € TxuauqQu{root.qr}» =M Y
iff there is a tree 3 € TEuAuQu{root,qf}(Xl) st xp
occurs exactly once in 3 and either there is a rule
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° U(Ql(xl,ly"'7371,711)7"'7qk(xk,17---7xk,nk)) —T
in R

and there are trees T ;

i € [k] and j € [ng), st @

B[U((ﬂ(tl,la ’tlml)v ey qk(th, ?tkﬂlk))]’ and
=Pz <t li € [k].j € [n]]]; or there is a rule

€ Ty for every

s root(q(x1,...,xn)) = qf(t) in R

and there are trees t; € Ta for every i € [n] s.t. p=

Blroot(q(t1,...,tn))], and ¢ = Blqs(t[t1,...,tn])]. The
tree transformation computed by M is the relation:

v ={(s,t) €T X T | root(s) =}, qr(t)}

Intuitively, tree transductions are performed by
rewriting a local tree fragment as specified by one
of the rules in R. For instance, a rule can replace
a subtree, or copy it to a different position. Rules
apply bottom—up from the leaves of the input tree,
and terminate in an accepting state qy.

4.5 MBOT for recursive prosody

We want a transducer which captures Wagner
(2010)’s bottom-up cyclic procedure. Consider now
the MBOT M,,,s = (Q,%, A, root, qf, R), with
Q ={4q+,qc}, 0c € {and,or} C %, 0 € ¥ —{and,or},
and ¥ = A. We use ¢ to indicate that M, has
verified that a branch contains a coordination (so o),
with g, assigned to any other branch. As mentioned,
we use $ to mark prosodic boundaries in the trees
instead of |. The set of rules R is as follows.
Rule 1 rewrites a terminal symbol o as itself. The
MBOT for that branch transitions to g, (o).
0—¢.(0) (1)
Rule 2 applies to a subtree headed by
o€ {and,or}, with only terminal symbols as daugh-
ters: 0.(q«(),q«(y)). It inserts a prosodic boundary
$ between the daughters x,y. The boundary $ is also
copied as a daughter of the mother q., as record of
the fact that we have seen one coordination level.

0c(q:+(7),q:(y)) = ge(0c(,3,y),8) )

We illustrate this in Figure 1 with a coordination
of two items, representing the mapping: [B and A]
— B | and A. We also assume that sentence-initial
boundaries are vacuously interpreted.

We now consider cases where a coordination is
the mother not just of terminal nodes, but of other
coordinated phrases. Rule 3 handles the case in which
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and ——~

B A Qx Qx
B A
and e
/N o /N
Gx Qs — and $
. PN
B A B $§ A

Figure 1: Example of the application of rules (1) and (2).
The numerical label on the arrow indicates which rule
was applied in order to rewrite the tree on the left as the
tree on the right.

the right sibling of the mother was also headed by
a coordination (as encoded by o, having ¢, as one
of its daughters). Here, q. is the result of a previous
rule application (e.g. rule 2) and it has two subtrees
itself: g.(w,y). Although we do not have access to
the internal labels of z, y, and w, by the format of the
previous rules we know that the right daughter of g,
(i.e. y) is the one that contains the strength informa-
tion. Then, rule 3 has three things to do. It increments
y by one boundary: $(y). It places $(y) in between
the two subtrees = and w. And, it copies $(y) as the
daughter of the new ¢, state in order to propagate
$(y) to the next embedding level (see Figure 2).

0c(q:+(@),ge(w,y)) = ge(oe(2,8(y),w) 5(y))  (3)
and qe
/\ A
C q and $
AN 7 T~
and $i> cC 3 and $
PN N
B $ A $ B $§ A

Figure 2: Example of the application of rule (3). For ease
of readability, we omit g, states over terminal nodes.

Rule 4 applies once all coordinate phrases up to the
root have been rewritten. It simply rewrites the root
as the final accepting state. It gets rid of the daughter
of q. that contains the strength markers, since there
is no need to propagate them any further.

“)

As the examples so far should have clarified,
Mros as currently defined readily handles cases

root(qe(x,y)) = qf(x)
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where the embedding of the coordination is strictly
right branching, with the bulk of the work done via
rule 3. However, while these rules work well for
instances in which a coordination is always the right
daughter of a node, they cannot deal with cases in
which the coordination branches left, or alternates
between the two. This is easily fixed by introducing
variants to rule 3, which consider the position of
the coordination as marked by ¢.. Importantly, the
position of the copy of the boundary branch is not
altered, and it is always kept as the rightmost sibling
of g.. What changes is the relative position of the w
and x subbranches in the output (see Figure 3).

Oe(Ge(w,y),q(2)) = ge(oc(w,$(y),2).8(y))  (5)
and ge
AN N
¢ C and $
AN P
and $ i, and $ C §
RN AN
B § A B $§ A §

Figure 3: Left branching example as in rule (5).

Following the same logic, rule 6 handles cases like
[[A and B] and [C and D]], in which both daughters
of a coordination are headed by a coordination
themselves (see Figure 4).

Uc(Qc(x7z)7qC(va)> _>QC($($)aUc(Z>$(x)>w)) (6)

and qe
/\ /\
Qe Qe and $
N N © T |
and $ and $ 5 and $ and $
N g N N e N
A $ B $ C $ D § A $ B $§ C $ D §$

Figure 4: Example of the application of rule (6).

Finally, we need to take care of the flat prosody
or associativity issue. The MBOT M), as outlined
so far increases the depth of the boundary branch at
each level of embedding. Because we are adopting
binary branching trees, the current set of rules is
trivially unable to encode cases like [A and B and
C]J. We follow Wagner’s assumption that semantic
information on the syntactic tree guides the prosody
cycles. Representationally, we mark this by using
specific labels on the internal nodes of the tree. We
assume that the flat constituent interpretation is



Input Apply rule (2) | Apply rule (3) Apply rule (3) Apply rule (4)
and and Je and
/N /N T T | 7T
and D and D q and $| D $ and
N /N | T | | T T
D and C q and $| D $ and $ $ C $ and
C and and $§ | C $ and $ $ C $ and $ $ $ B $ A

SN N T | T

B A B § A $ B $ A $ $ B $ A

Figure 5: Walk-through of the transduction defined by M),,. For ease of readability, and to highlight how g, propagates
embedding information about the coordination, g, and g states are omitted.

obtained by marking internal nodes as non-cyclic,
introducing the alphabet symbol o,:

On (Q* (I)vqc(w’y) _>qc(0-0(x7y7w)’y) (7

Essentially, rule 7 tells us that when a coordination
node is marked as o, M, just propagates the level
of prosodic strength that it currently has registered (in
1), without increments (see Figure 6). This rule can be
trivially adjusted to deal with branching differences,
as done for rules 3 and 5.

andn e
AN N
C [¢18 and,, $
N -
and $ ———, C $ and
RN
B $ A B $ A

Figure 6: Application of rule (7) for flat prosody.

A full, step by step M, transduction is shown
in Figure 5. Taken together, the recursive prosodic
patterns are fully characterized by M, when it is
adjusted with a set of rules to deal with alternating
branching and flat associativity. The tree transducer
generates tree representations where each level of
embedding is marked by a branch, which carries
information about the prosodic strength for that level.
As outlined in Section 4.2, this final representation
may then be fed to a modified string yield function
for dependency tree languages.

Dependency trees allowed us to present a transducer
with rules that are relatively easy to read. But, as men-
tioned before, this choice does not affect our general
result. Under the standard assumption that the distance
between the head of a phrase and its maximal projec-
tion is bounded, M,,,,; can be extended to phrase struc-
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ture trees, by virtue of the bottom-up strategy being
intrinsically equipped with finite look-ahead. A switch
to phrase structure trees may prove useful for future
work on the interaction of prosody and movement.

5 Generating recursive prosody

The previous section characterized recursive prosody
over trees with a non-linear, deterministic MBOT.
This is a nice result, as MBOTs are generally well-
understood in terms of their algorithmic properties.
Moreover, this result is in line with past work explor-
ing the connections of MBOTs, tree languages, and
the complexity of movement and copying operations
in syntax (Kobele, 2006; Kobele et al., 2007, a.o0.).

We can now ask what the complexity of this
approach is. MBOTs generate output string languages
that are potentially parallel multiple context-free
languages (PMCFL; Seki et al., 1991, 1993; Gildea,
2012; Maletti, 2014; Fiilop et al., 2005). Since this
class of string languages is more powerful than
context-free, the corresponding tree language is not
a regular tree language (Gécseg and Steinby, 1997).
This is not surprising, as MBOTs can be understood
as an extension of synchronous tree substitution
grammars (Maletti, 2014).

Notably, independently of our specific MBOT solu-
tion, prosody as defined in this paper generates at least
some output string languages that lack the constant
growth property — hence, that are PMCFLs. Consider
as input a regular tree language of left-branching
coordinationate phrases, where each level is simply of
the form and(X, Mary). The n— th level of embedding
from the top extends the string yield by n+2 symbols.
This immediately implies no constant growth, and
thus no semi-linearity (Weir, 1988; Joshi et al., 1990).

Interestingly though, the prosody MBOT devel-
oped here is fairly limited in its expressivity as the



transducer states themselves do almost no work,
and most of the transduction rules in My, rely
on the ability to store the prosody strength branch.
Hence, the specific MBOT in this paper might turn
out to belong to a relatively weak subclass of tree
transductions with copying, perhaps a variant of input
strictly local tree transductions (cf. Ikawa et al., 2020;
Ji and Heinz, 2020), or a transducer variant of sensing
tree automata (cf. Fiilop et al., 2004; Kobele et al.,
2007; Maletti, 2011, 2014; Graf and De Santo, 2019).
Since all of those have recently been used in the
formal study of syntax, they are natural candidates
for a computational model of prosody, and their sensi-
tivity to minor representational difference might also
illuminate what aspects of syntactic representation
affect the complexity of prosodic processes.

Finally, one might worry that the mathematical
complexity is a confound of the representation we use,
rather than a genuine property of the phenomenon.
However, a representation of prosodic strength is
necessary and cannot be reduced further for two
reasons. First, strength cannot be reduced to syntactic
boundaries because a single prosodic edge ( may
correspond to | for any k> 1. As discussed in depth
by Wagner (2005, 2010), one cannot simply convert
a syntactic tree into a prosodic tree by replacing the
labels of nonterminal nodes. Second, strength also
cannot be reduced to different categories of prosodic
constituents — e.g. assuming that | is a prosodic
phrase while || is an intonational phrase. As argued
in depth in (Wagner, 2005, 2010), these different
constituent types do not map neatly to prosodic
strength. Instead, these boundaries all encode relative
strengths of prosodic phrase boundaries.

6 Conclusion

This paper formalizes the computation of unbounded
recursive prosodic structures in coordination. Their
computation cannot be done by string-based finite-
state transducers. They instead need more expressive
grammars. To our knowledge, this paper is one of
the few (if only) formal results on how prosodic
phonology at the sentence-level is computationally
more expressive than phonology at the word-level.
As discussed above, recent work in prosodic
phonology relies on the assumption that prosodic
structure can be recursive. However, because such
work usually uses bounded-recursion, such phenom-
ena are computationally regular. Departing from this
stance, this paper focused on the prosodic phenomena
reported in Wagner (2005) as a core case study,
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because of the following fundamental properties:

* The syntax has unbounded recursion.

* The prosody has unbounded recursion.

* All recursive prosodic constituents have the
same prosodic label (= a prosodic phrase).

* The recursive prosodic constituents have
acoustic cues marking different strengths.

* There is an algorithm which explicitly assigns
the recursive prosodic constituents to these
different strengths.

In this paper, we focused on explicitly generating
the prosodic strengths at each recursive prosodic
levels, putting aside the mathematically simpler task
of converting a recursive syntactic tree into a recursive
prosodic tree (Elfner, 2015; Bennett and Elfner,
2019) — which is a process essentially analogous to
a relabeling of the nonterminal nodes of the syntactic
tree, without care for the prosodic strength. The
mapping studied in this paper has been conjectured in
the past to be computationally more expressive than
regular languages or functions (Yu and Stabler, 2017).
Here, we formally verified that hypothesis.

An open question then is to find other empirical
phenomena which also have the above properties.
One potential area of investigation is the assignment
of relative prominence relations in English compound
prosody (Chomsky and Halle, 1968). However, En-
glish compound prosody is a highly controversial area.
It is unclear what is the current consensus on an exact
algorithm for these compounds, especially one that
utilizes recursion and is not based on impressionistic
judgments (Liberman and Prince, 1977; Gussenhoven,
2011). In this sense, the mathematical results in this
paper highlight the importance of representational
commitments and of explicit assumptions in the study
of prosodic expressivity. Our paper might then help
identify crucial issues in future theoretical and em-
pirical investigations of the syntax-prosody interface.
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Abstract

Raimy (1999; 2000a; 2000b) proposed a
graphical formalism for modeling redu-
plication, originallymostly focused on
phonological overapplication in a deriva-
tional framework. This framework is now
known as Precedence-based phonology
or Multiprecedence phonology. Raimy’s
idea is that the segments at the input to
the phonology are not totally ordered by
precedence. This paper tackles a chal-
lenge that arose with Raimy’s work, the
development of a deterministic serializa-
tion algorithm as part of the derivation of
surface forms. The Match-Extend algo-
rithm introduced here requires fewer as-
sumptions and sticks tighter to the attested
typology. The algorithm also contains no
parameter or constraint specific to individ-
ual graphs or topologies, unlike previous
proposals. Match-Extend requires nothing
except knowing the last added set of links.

1 Introduction

This paper provides a general serialization algo-
rithm for all morphological structures in all lan-
guages. The challenge of converting non-linear
structures of linguistic representation into a format
ready to be handled in production is one that mat-
ters to both morphosyntax and morphophonology.
Reduplication is a phenomenon at the frontier of
morphology and phonology that has drawn a lot
of attention in the last few decades. Reduplica-
tion’s non-concatenative nature and the fact that
it manifests long-distance dependencies among
segments set it apart from the ‘standard’ word-
formation that most theories are designed to han-
dle. These properties have often pushed theoreti-
cians to propose expansive systems such as copy-
ing procedures on top of traditional linear seg-
mental phonology to make the system powerful
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enough to handle these dependencies. The mul-
tiprecedence model expanded upon here builds
on properties that are already implicit in all ap-
proaches to phonological representation, and ac-
tually gets rid of some standard assumptions. It
accounts for attested patterns and predicts an unat-
tested reduplication pattern to be impossible.

2 Multiprecedence

The theory of Multiprecedence seeks to account
for reduplication representationally via loops in a
graph. Eschewing correspondence statements and
copying procedures, Multiprecedence treats redu-
plication as fundamentally a structural property
created by the addition of an affix, whose serial-
ization has the effect of pronouncing all or part of
the form twice.

Consider a string like Fig. 1a, the standard
way of representing the segments that constitute
a phonological representation. An alternative way
to encode that same information is in the form of
a set of immediate precedence statements like Fig.
1b. For legibility the set of pairs in Fig. 1b can
be represented in the form of a graph. Adding the
convention that of using # and % for the START
and END symbols respectively we get the picture
in Fig. lc. In general I will refer to this as the
graph representation.

a.keet
b. { (START, k ), (k.2 ),(@,t),(t,END )}
cHt—ok—oae—t—%

Figure 1: Phonological representations of the
word cat as a string (a), ordered pairs (b), and a
graph (c).

The graph representation should highlight an
important detail. There is no a priori logical rea-
son in this representation why forms should be lin-
ear, with one segment following another in a chain.
This is only an assumption that we impose on the
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structure when assuming strings. This assumption
is what Multiprecedence abandons. Multiprece-
dence proposes that asymmetry and irreflexivity
are not relevant to phonology. A segment can pre-
cede or follow multiple segment, two segments
can transitively precede each other, and a segment
can precede itself. A valid multiprecedence graph
is not restricted by topology, a term a will use for
the pattern of the graph independent from the con-
tent of the nodes.

Using this view of precedence, affixation is the
process of combining the graph representations of
different morphemes. A word is a graph consist-
ing of the edges and vertices (precedence relations
and segments) of one or more morphemes. An ex-
ample of the suffixation of the English plural is
shown in Fig. 2a, and the infixation of the Atayal
animate focus morpheme is given in Fig. 2b. Full
root reduplication, which expresses the plural of
nouns in Indonesian is shown in Fig. 2c. There are
two things to notice in Fig. 2c. First, that a prece-
dence arrow is added, without any segmental ma-
terial: the reduplicative morpheme consists of just
that arrow. Second, although Fig. 2a and Fig. 2b
each offer two paths from the START to the END
of the graph, Fig. 2¢ contains a loop that offers an
infinite number of paths from START to End. The
representation itself does not enforce how many
times the arrow added by the plural morpheme
should be traversed. All three of these structures
have to be handled by a serialization algorithm in
order to be actualized by the phonetic motor sys-
tem, which selects a path through the graph to be
sent to the articulators. A correct serialization al-
gorithm must be able to select the correct of the
two paths in Fig. 2a and Fig. 2b and the path go-
ing through the back loop only once in Fig. 2c.

I will assume here that these forms are con-
structed by the attachment of an affix morpheme
onto a stem as in Fig. 3. English speakers have a
graph as a lexical item for the plural as in Fig. 3a
and a lexical item for CAT as in Fig. 3b, which
combine as in Fig. 3c. The moniker “last seg-
ment” is an informal way to refer to that part of
the affix that is responsible for attaching it to the
stem in the right location. This piece of the plural
affix will attach onto the last segment, the one pre-
ceding the end of the word %, of what it combined
with, and onto %, yielding Fig 3c. Similarly the
Atayal form in Fig. 2 is built from a root #hngu 7%
‘soak’ and an infix -m- marking the animate ac-
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4
4 N
#—o>k—axe—>1t—>%

— #—>k—aare—>t—272—>%
b.

m

7 Y

#—>h—>yg—u1u—>?7—>%

= #—>h—->m—->753—>u—>?—>%

C.

¥~ O\

#>k>o0>1r>a>»%

= #>k>o>r>a>k>o0>r>a»%

Figure 2: Affixation in Multiprecedence. Suffixa-
tion (a), infixation (b), reduplication (c).

tor focus and attaching between the first and the
second segment. For details on the mechanics
of attachment see Raimy (2000a, §3.2), Samuels
(2009, p.177-87), and Papillon (2020, §2.2). It
suffices here to say that at vocabulary insertion an
affix can target certain segments of the stem for
attachment. Raimy (2000a) shows how this rep-
resentation can generate the reduplicative patterns
from numerous languages as well as account for
such phenomena as over- and under-application of
phonological processes in reduplication.

a. [last segment] — z — %
b#—>k—>e—>t—>%
c.

z
A4
#—a>k—2xe—>t—>%

Figure 3: Affix (a) and root (b) combined in (c).

Given the assumption that a non-linear graph
cannot be pronounced, phonology requires an al-
gorithm capable of converting graph representa-
tions into strings like in Fig. 2. Two main fam-
ilies of algorithms have been proposed. Raimy
(1999) proposed a stack-based algorithm which
was expanded upon by Idsardi and Shorey (2007)
and McClory and Raimy (2007). This algo-
rithm traverses the graph from # to % by access-
ing the stack. This idea suffers the problem of
requiring parameters on individual arcs. Every



morphologically-added precedence link must be
parametrized as to its priority determining whether
it goes to the top or the bottom of the stack. This is
necessary in this system because when a given arc
is traversed is not predictable on the basis of when
it is encountered in a traversal. This parametriza-
tion radically explodes the range of patterns pre-
dicted to be possible much beyond what is at-
tested. Fitzpatrick and Nevins (2002; 2004) pro-
posed a different constraint-base algorithm which
globally compares paths through the graph for
completeness and economy but suffers the prob-
lem of requiring ad hoc constraints targeting indi-
vidual types of graphs, lacking generality. In the
rest of this article I will present a new algorithm
which lacks any parameter and whose two opera-
tions are generic and not geared towards any spe-
cific configuration.

3 The Match-Extend algorithm

This section will present the Match-Extend al-
gorithm and follow up with a demonstration of
its operation on various attested Multiprecedence
topologies.

The input to the algorithm is the set of pairs
of segments corresponding to the pairs of seg-
ments in immediate precedence relation without
the affix, e.g. {#kkea,@t,t%} for the English stem
keet, and the set of pair of segments correspond-
ing to the precedence links added by the affix, e.g.
{tz,z%} when the plural is added.

Intuitively the algorithm starts from the mor-
phologically added links and extends outwards by
following the precedence links in the StemSet, the
set of all precedence links in the stem to which the
morpheme is being added. If there is more than
one morphologically added link, they all extend in
parallel and collapse together if one string ends in
one or more segment and the other begins with the
same segment or segments. A working version of
this algorithm coded in Python will be included as
supplementary material.

3.1 Match-Extend in action

Consider first total reduplication as in Fig. 2c
above. Fig. 3.1 shows the full derivation of kora-
kora with total reduplication. As there is only one
morphologically-added link, no Match step will
happen.

Let us turn to more complex graphs discussed
in the literature. Raimy discusses a process of CV
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1 .The precedence links of the stem begin in a
set StemSet.

2. The morphologically added links begin in
a set WorkSpace.

3. Whenever two strings in the WorkSpace
match such that the end of one string is iden-
tical to the end of the other, the operation
Match collapses the two into one string such
that the shared part appears once. E.g. abcd
and cdef to abcdef. A Match along multi-
ple characters is done first.

4.  When there is no match within the
WorkSpace, the operation Extend simultane-
ously lengthens all strings in the WorkSpace
to the right and left using matching prece-
dence links of the stem. StemSet remains un-
changed.

5.Steps 3 and 4 are repeated until # and %
have been reached by Extend and there is a
single string in the WorkSpace.

Algorithm 1: The Match-Extend Algorithm
(informal version).

| StemSet | {#k ko, or,ra,a%} |

WorkSpace ak
Extend rako
Extend orakor
Extend korakora
Extend #korakora%

Figure 4: Match-Extend derivation of kora-kora.

reduplication in Tohono O’odham involving redu-
plicated pattern such as babad to ba-b-bad, and
Cipkan to Ci-Cpkan requiring graphs as in Raimy
(20004, p.114). Although there are multiple plau-
sible paths through this graph, only one is attested
and this path requires traversing the graph by fol-
lowing the backlink before the front-link, even
though the front-link would be encountered first
in a traversal.

. 4
ol —i—>p-—k—>a—n—%

»
Figure 5: Tohono O’odham ¢i-épkan.

The match-Extend algorithm will correctly de-
rive the correct form as shown in . Right away
the strings 1¢ and ¢p match, as one starts with



the node c and the other ends with the same node.
The two are collapsed as i¢p and then keep ex-
tending.

StemSet | {#, &i, ip, pk, ka, an, n%} |

WorkSpace C?
i¢
Match iép
Extend ¢icpk
Extend #Cicpka
Extend #Cicpkan
Extend #Cic¢pkan%

Figure 6: Match-extend derivation of Tohono
O’odham cicpkan.

A similarly complex graph is needed in Nan-
cowry. Raimy (2000a, p.81) discusses examples
like Nancowry reduplication of the last consonant
toward the beginning of the word, e.g. sut ‘to rub’
to Pit-sut which requires a graph as in Fig. 7.
However here the opposite order of traversal must
be followed, not skipping the first forward link. I
assume here, like Raimy, that the glottal stop is
epenthetic and added after serialization. Here, not
taking the first link would also result in the wrong
output [*sutsut]. So this form requires the first
morphologically-added link to be taken to produce
the correct form.

i .

R4

2N
#>s>u—-t>%
¥ :

Figure 7: Nancowry ?it-sut.

Again Match-Extend will serialize Fig. 7 with-
out any further parameter as in Fig. 8. The three
strings #1, it, and ts can match right away into
a single string #1its which will keep extending.

As these examples illustrate, Match-Extend
does not need to be specified with look-ahead,
global considerations, or graph-by-graph specifi-
cations of serialization to derive the attested seri-
alization of graphs like Fig. 5 or Fig. 7. The se-
rialization starts in parallel from two added links
that extend until they reach each other in the mid-
dle, and this will work regardless of the order in
which ‘backward’ and ‘forward’ arcs are located.
They will meet in one direction and serialize in
this order.

Another interesting topology is found in the
analysis of Lushotseed. Fitzpatrick & Nevins
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StemSet ‘ {#s, su, ut, t%} ‘

#i

WorkSpace it

ts

Match it

ts

Match #its
Extend #itsu
Extend #itsut
Extend #itsut%

Figure 8: Derivation of Nancowry 7Zitsut.

(2002; 2004) observed that in cases where mul-
tiple reduplication processes of different size hap-
pen to the same form, with multiple morpholog-
ically added arrows forking away from the same
segment, these graphs are seemingly universally
serialized such that they follow the shorter arc
first. They discuss Lushotseed forms with both
distributive and Out-Of-Control (OOC) reduplica-
tion. They argue on the basis of the fact that in ei-
ther scope order the form is serialized in the same
way, suggesting that they are serialized simultane-
ously. This implies forms like g"ad, ‘talk’, surfac-
ing in the distributive OOC or the OOC distribu-
tive as g¥ad-ad-g"ad, requiring a graphs like Fig.
9.

b

#>g">a >d>%
Figure 9: Lushotseed g"ad-ad-g"ad.

Fitzpatrick & Nevins (2002; 2004) proposed
an ad hoc constraint to handle this type of sce-
nario, the constraint SHORTEST, enforcing seri-
alizations that follow the shorter arrow first. But
Match-Extend derives the attested pattern without
any further assumptions. Consider the derivation
of the Lushotseed form in Fig. 9. After one Ex-
tend step, the two strings adg”a and adad match
along the nodes ad. You might notice that the two
strings also match in the other order with the node
a, so we must assume the reasonable principle that
in case of multiple matches, the best match, mean-
ing the match along more nodes, is chosen. From
that point on adadg”a extends into the desired
form.

It is somewhat intuitive to see why this works:
because Match-Extend applies one step of Extend
at a time and must Match and collapse separate



StemSet ‘ {#g%, g%a, ad, d%} ‘

dg"
WorkSpace da
adg%a
Extend adad
Match adadg™a
Extend g¥adadg%ad
Extend #g%adadg“ad%

Figure 10: Derivation of Lushotseed g"adadg" ad.

strings from the WorkSpace immediately when a
Match is found, two arcs added by the morphology
will necessarily match in the direction in which
they are the closest. The end of the d—a arc is
closer to the beginning of the d—g" one than vice-
versa, and hence the two will join in this direction
and therefore surface in this order. This can be
generalized as Fig. 11.

* If the graph contains two morphologically
added links @ — $ and v — 9, and

» There is a unique path X from  to v not
going through o — 3 or v — §, and

» There is a unique path Y from § to o not
going through o« — S ory — 6,

* Then the Match-Extend algorithm will output
a string containing:

» ..af..yd... if X is shorter than Y
» ..y0..af... if Y is shorter than X

Figure 11: Closest Attachment in Match-Extend.

Note that this is not a new assumption: this is
a theorem of the model derivable from the way
Match and Extend interact with multiple morpho-
logically added arcs. This can allow us to work
out some serializations without having to do the
whole derivation.

Consider for instance the Nlaka’pamuctsin dis-
tributive+diminutive double reduplication, e.g. sil,
‘calico’, to sil-si-sil, (Broselow, 1983). This pat-
tern requires the Multiprecedence graph to look as
in Fig. 12.

¥ .
#—s—>1—1—%
Yo

Figure 12: Nlaka’pamuctsin sil-si-sil.
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The graph in Fig. 12 is simply the transpose
graph of a graph where SHORTEST would apply
like Fig. 9, but it does not actually fit the pat-
tern of SHORTEST as its two ‘backward’ arrows
do not start from the same node. In fact if any-
thing SHORTEST would predict the wrong surface
form, as *si-sil-sil would be the form if the shorter
path were taken first. In Match-Extend and Clos-
est Attachment Fig. 11 the prediction is clear: it is
predicted to serialize as sil-si-sil because the path
from 1—s to i—s is shorter than the path from i—s
to 1—s, thus deriving the correct string.

Fitzpatrick and Nevins (2002) report some
forms with graphs like Fig. 12 which must be
linearized in ways that would contradict Match-
Extend, such as sax" to sa-sax"-sax" in Lusot-
sheed Diminutive+Distributive forms. But con-
trary to the Distributive+OOC forms discussed
earlier there is no independent evidence here for
the two reduplications being serialized together.
I therefore assume that those instances consist
of two separate cycles, serialized one at a time:
sax" to sax"-sax" to sa-sax"-sax". Match-Extend
therefore relies on cyclicity, with the graph built
up through affixation and serialized multiple times
over the course of the derivation.

3.2 Non-Edge Fixed Segmentism

Fixed segmentism refers to cases of reduplication
where a segment of one copy is overridden by one
or more fixed segments. A well known English
example is schm-reduplication like fable to table-
schmable where schm-replaces the initial onset. I
will call Non-Edge Fixed Segmentism (NEFS) the
special case of fixed segmentism where the fixed
segment is not at the edge of one of the copies.
These are the examples where the graph needed is
like Fig. 13 or Fig. 14.

#>a’>b>c—>d—>e>%
- .
.

X

Figure 13: NEFS ‘early’ in the copy.

#>a5S5b>c—>d—>e>%
) g
EY
X

Figure 14: NEFS ‘late’ in the copy.



Closest Attachment in Match-Extend predicts
that if a fixed-segment is added towards the be-
ginning of the form, it should surface in the sec-
ond copy, and if it is added toward the end of the
form, it should surface in the first copy. Or in other
words the fixed segment will always occur in the
copy such that the fixed segment is closer to the
juncture of the two copies. The graph in Fig. 13
will serialize as abcde-axcde and the graph in
Fig. 14 will serialize as abcxe—abcde. This
follows from the properties of Match and Extend:
as the precedence pairs of the overwriting segment
and the precedence pair of the backward link ex-
tend outward, it will either reach the left or right
side first and this will determine the order in which
they appear in the final serialized form.

This prediction is borne out by many exam-
ples of productive patterns of reduplication with
NEFS such as Marathi saman-suman (Alderete et
al., 1999, citing Apte 1968), Bengali sajra-sujia
(Khan, 2006, p.14), Kinnauri migo-mago (Chang,
2007).

Apparent counterexamples exist, but have other
plausible analyses. A major one worth discussing
briefly is the previous multiprecedence analysis of
the Javanese Habitual-Repetitive as described by
Yip (1995; 1998). Most forms surface with a fixed
/al in the first copy as in elag-eliy ‘remember’.
This requires a graph such as Fig. 15 which se-
rializes in comformity with Match-Extend.

o -
el —iog-%
..“ .‘__4
a

Figure 15: Javanese elag-elin.

However when the first copy already contains
/al as the second vowel the form is realized with
/el in the second copy as udan-uden ‘rain’. Id-
sardi and Shorey (2007) and McClory and Raimy
(2007) have analyzed this as a phonologically-
conditioned allomorph with fixed segment /e/ that
must be serialized differently from the /a/ allo-
morph, with the overwriting vowel in the second
copy, i.e. a graph such as Fig. 16 that does not
serialize in comformity with Match-Extend. Id-
sardi and Shorey (2007) and McClory and Raimy
(2007) use this example to argue for a system of
stacks that serialization must read from the top-
down. Precedence arcs in turn can be lexically
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parametrized as to whether they are added on top
or at the bottom of the stack upon affixation, thus
deriving elaneliy from the /a/ allomorph being on
top of the stack and traversed early and udanuden
from the /e/ allomorph being at the bottom of the
stack and traversed late. This freedom of lexical
specification grants their system the power to en-
force any order needed, including the capacity to
handle the ‘look-ahead’ and ‘shortest’ cases above
in terms of full lexical specification. They could
also easily handle languages with the equivalent
of a LONGEST constraint. This model is less pre-
dictive while also being more complex.

¥ -
#>u—->d—-a—->n->%

<
B

.
Figure 16: Javanese udan-uden according to Id-

sardi and Shorey (2007) and McClory and Raimy
(2007).

But this complexity is unneeded if we instead
adopt dissimilation analysis closer in spirit to
Yip’s original Optimality-Theory analysis. We
can say that the /a/ of the first copy is an over-
written /a/ in both elap-elin and in udan-uden
and a phonological process causes dissimilation of
the root /a/ in the presence of the added /a/. In
Optimality-Theory this requires an appeal to the
Obligatory Contour Principle operating between
the two copies, but in Multiprecedence the dissim-
ilation is even simpler to state because the two /a/’s
are very local in the graph. We simply need a rule
to the effect of raising a stem /a/ in the context of a
morphologically-added /a/ that precedes the same
segment as in Fig.17.

Figure 17: Dissimilation Rule

¥ e ¥ e
#>u>d>a>n>% — #>u>d>e>n>%
A e A e

a a
Figure 18: Derivation of udan-uden.

There is therefore no need to abandon Match-



Extend on the basis of Javanese.

Consider another apparent counterexample to
the prediction: the Palauan root /rebot"/ forms
its distributive with CVCV reduplication and the
verbal prefix mo- forming mo-robo-rebot! (Zuraw,
2003). At first blush, one may be tempted to see
the first schwa of the first copy as overwriting the
root’s /e/. But the presence of this schwa actually
follows from the independently-motivated phonol-
ogy of Palauan in which all non-stressed vowels
go to [0]. This thus is the result of a phonolog-
ical rule applying after serialization about which
Match-Extend has nothing to say.

Relatedly, other apparent issues may be caused
by interactions with phonology. D’souza (1991,
p-294) describes how echo-formation in some
Munda languages is accomplished by replacing all
the vowels in the second copy with a fixed vowel,
e.g. Gorum bubu? ‘snake’ > bubu?-bibi?. Fixed
segmentism of each vowel individually may not
be the best analysis of these forms, there may in-
stead be a single fixed segment and a separate pro-
cess of vowel harmony or something along those
lines. This type of complex interaction of non-
local phonology with reduplication has been in-
vestigated before in Multiprecedence, e.g. the
analyses of Tuvan vowel harmony in reduplicated
forms in Harrison and Raimy (2004) and Papillon
(2020, §7.1), but these analyses make extra as-
sumptions about possible Multiprecedence struc-
tures that go far beyond the basics explored here.
The subject requires further exploration, but ap-
pears to be more of an issue of phonology and rep-
resentation than of serialization per se.

Apparent counterexamples will have to be ap-
proached on a case-by case basis, but I have not
identified many problematic examples so far that
did not turn out to be errors of analysis. !

'One such apparent counter-example is worth briefly
commenting on here due to its being mentioned in well-
known surveys of reduplication. This alleged reduplication
is from in Macdonald and Darjowidjojo (1967, p.54) and
repeated in Rubino (2005, p.16): Indonesian belat ‘screen’
to belat-belit ‘underhanded’. If correct this example would
be a counterexample to Match-Extend, as a fixed /i/ must
surface in the second copy. However this pair seems to be
misidentified. The English-Indonesian bilingual dictionary
by (Stevens and Schmidgall-Tellings, 2004) lists a word be-
lit meaning ‘crooked, cunning, deceitful, dishonest, under-
handed’, which semantically seems like a more plausible
source for the reduplicated form belat-belit and fits the pre-
dictions of Match-Extend. The same dictionary’s entry under
belat lists some screen-related entries and then belat-belit as
meaning ‘crooked, devious, artful, cunning, insincere’ cross-
referencing to belit as the base. I conclude that this example
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We have therefore seen that Match-Extend can
straightforwardly account for a number of attested
complex reduplicative patterns without any special
stipulations. More interestingly Match-Extend
makes strong novel predictions about the loca-
tion of fixed segments. I have not been able to
locate many examples of NEFS in the literature.
For example the typology of fixed segmentism in
Alderete et al. (1999) does not contain any exam-
ple of NEFS. This will require further empirical
research.

4 One limitation of Match-Extend:
overly symmetrical graphs

There is a gap in the predictions of Fig. 11:
Closest Attachment predicts that morphologically-
added edges will attach in the order they are the
closest, which relies on an asymmetry in the form
such that morphologically-added links are closer
in one order than the other. This leaves the prob-
lem of symmetrical forms like Fig. 19. The former
of there was posited in the analysis of Semai con-
tinuative reduplication by Raimy (2000a, p.146-
47) for forms like dnoh ‘appearance of nodding’
to dh-dnoh; the latter would be needed in various
languages reduplicating CVC forms with vowel
changes such as the Takelma aorist described
in Sapir (1922, p.58) like #’eu ‘play shinny’ to
t’eut’au.

N TN
#>a->b->c>% #>a->b->c>%
N

xS

Figure 19: Two structures overly symmetrical for
Match-Extend.

These are the forms which, in the course of
Match-Extend, will come to a point where Match
is indeterminate because two strings could match
equally well in either direction. For example the
WorkSpace of the first of these structures will start
with ac and ca, which can match either as aca
or cac. The former would extend into #acabc$%
and the latter into #abcac%. Match-Extend as
stated so far is therefore indeterminate with regard
to these symmetrical forms.

This is not an insurmountable problem for
Match-Extend. To the contrary this is a problem

was misidentified by previous authors and is unproblematic
for Match-Extend.



of having too many solutions without a way to de-
cide between them, none of which require adding
parametrization to Match-Extend. Maybe sym-
metrical forms crash the derivation and all appar-
ent instances in the literature must contain some
hidden asymmetry. It is worth noting that the pat-
tern in Fig. 19 attested in Semai has a close cog-
nate in Temiar, but in this language the symmet-
rical structure is only obtained for simple onsets,
kow ‘call’ to kw-kow, but slog ‘sleep with’ to s-
g-log (Raimy, 2000a, p.146). This asymmetry re-
solves the Match-Extend derivation. It may simply
be the case that the forms that look symmetrical
have a hidden asymmetry in the form of silent seg-
ments. For example if the root has an X at the start
as in Fig. 21. This is obviously very ad hoc and
powerful so minimally we should seek language-
internal evidence for such a segment before jump-
ing to conclusions.

#>s>1>0->2>%

N

Figure 20: Temiar sglog.

PR
#>X>k>0>w>%D

NS

Figure 21: Semai kw-kow with hidden asymme-
try in the form of a segment X without a phonetic
correlate, which breaks the symmetry.

Alternatively it could be that symmetrical forms
lead to both options being constructed and this op-
tionality is resolved in extra-grammatical ways. I
will leave this hole in the theory open, as a prob-
lem to be resolved through further research.

5 Conclusion

This article presents an invariant serialization al-
gorithm for all morphological patterns in Multi-
precedence.

The Multiprecedence research  program
has been fruitful in bringing various non-
concatenative phenomena other than reduplication
within the scope of a derivational item-and-
arrangement model of morphology, including
e.g. subtractive morphology (Gagnon and Piché,
2007), Semitic templatic morphology (Raimy,
2007), and vowel harmony, word tone, and
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allomorphy (Papillon, 2020). A serialization
algorithm capable of handling these structures is
crucial for the completeness of the theory.

As pointed out by a reviewer, it is crucial to de-
velop a a typology of the possible attested graph-
ical input structures to the algorithm so as to
properly characterize and formalize the algorithm
needed. In every form discussed here the roots is
implicitly assumed to be underlyingly linear and
affixes alone add some topological variety to the
graphs, as is mostly the case in all the forms from
(Raimy, 1999; Raimy, 2000a). Elsewhere I have
challenged this idea by positing parallel structures
both underlyingly and in the output of phonol-
ogy (Papillon, 2020). If these structures are al-
lowed in Multiprecedence Phonology then Match-
Extend will need to be amended or enhanced to
handle more varied structures.

In this paper I proposed a model that departs
from the previous ones in being framed as patch-
ing a path from the morphology-added links to-
wards # and % from the inside-out, as opposed to
the existing models seeking to give a set of instruc-
tions to correctly traverse the graph from # to %
from beginning to the end.
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Abstract

This paper investigates how the ordering
of tone relative to the segmental string
influences the calculation of phonotactic
probability. Trigram and recurrent neu-
ral network models were trained on sylla-
ble lexicons of four Asian syllable-tone lan-
guages (Mandarin, Thai, Vietnamese, and
Cantonese) in which tone was treated as
a segment occurring in different positions
in the string. For trigram models, the
optimal permutation interacted with lan-
guage, while neural network models were
relatively unaffected by tone position in all
languages. In addition to providing a base-
line for future evaluation, these results sug-
gest that phonotactic probability is robust
to choices of how tone is ordered with re-
spect to other elements in the syllable.

1 Introduction

The phonotactic probability of a string is an
important quantity in several areas of lin-
guistic research, including language acquisi-
tion, wordlikeness, word segmentation, and
speech production and perception (Bailey and
Hahn, 2001; Daland and Pierrehumbert, 2011;
Storkel and Lee, 2011; Vitevitch and Luce,
1999). When the language of interest is a
tone language, the question arises of how tone
should be incorporated into the probability cal-
culation. As phonotactic probability is fre-
quently computed based on some type of n-
gram model, this means deciding on which
segment(s) the probability of a tone should
be conditioned. For instance, using a bigram
model, one might compute the probability of
the Mandarin syllable fang as P(a|f) x P(yla)
x P(tone 1|y), but could just as well consider
P(tone 1|f) x P(a|l) x P(yla), or any other
conceivable permutation of tone and segments.
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While this issue is occasionally remarked on
(e.g. Newman et al., 2011: 246), there remains
no widespread consensus in practice. Choice
of ordering is sometimes justified based on
segment-tone co-occurrence restrictions in the
language under study (Myers and Tsay, 2005),
but is often presented without justification
(Kirby and Yu, 2007; Yang et al., 2018), and
in some cases tone is simply ignored (Gong,
2017). When the space of possibilities is con-
sidered, researchers generally select the permu-
tation which maximizes model fit to some ex-
ternal data, such as participant judgments of
phonological distance (Do and Lai, 2021a) or
wordlikeness (Do and Lai, 2021b).

Although extrinsic evaluation is in some
sense a gold standard, intrinsic metrics of
model fit can also be informative, in part be-
cause extrinsic metrics are not always robust
across data sets. For instance, participant
wordlikeness judgments can vary considerably
based on the particulars of the experimen-
tal design (Myers and Tsay, 2005; Shademan,
2006; Vitevitch and Luce, 1999), so the treat-
ment of tone that produces a best-fit model for
one dataset may not do so for another. The
lexicon of a given language is much more in-
ternally stable in terms of how segments and
tones are distributed, so intrinsic evaluation
may provide a useful baseline for reasoning
about the treatment of tone relative to seg-
ments both within and across languages.

This short paper a simple
information-theoretic motivation for selecting
a permutation: all else being equal, we should
prefer a model that maximizes the probability
of the lexicon (i.e., minimizes the cross-entropy
loss), because this will be the model that by
definition does the best job of capturing the
phonotactic regularities of the lexicon (Cherry

considers
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et al., 1953; Goldsmith, 2002; Pimentel et al.,
2020). By treating tone as another phone in
the segmental string, we can see whether and
to what degree this choice has an effect on the
overall entropy of the lexicon.

Intuitively, any model that can take into ac-
count phonotactic constraints will result in a
reduction in entropy. Thus, even an n-gram
model with a sufficiently large context window
should in principle be able model segment-tone
co-occurrences at the syllable level. However,
tone languages differ with respect to tone-
segment co-occurrence restrictions (see Sec. 2).
If a relevant constraint primarily targets syl-
lable onsets, for instance, placing the tonal
“segment” in immediate proximity to the on-
set will increase the probability of the string,
even relative to a model capable of capturing
the dependency at a longer distance.

2 Languages

Four syllable-tone languages were selected for
this study: Mandarin Chinese, Cantonese,
Vietnamese and Thai. They are partially a
convenience sample in that the necessary lex-
ical resources were readily available, but also
have some useful similarities: all share a sim-
ilar syllable structure template and have five
or six tones. However, the four languages vary
in terms of their segment-tone co-occurrence
restrictions, as detailed below.

In all cases, the lexicon was defined as
the set of unique syllable shapes in each lan-
guage. For consistency, the syllable tem-
plate in all four languages is considered to be
(C1)(C2)V(C)T, with variable positioning of
T. Offglides were treated as codas in all lan-
guages. The syllable lexicons for all four lan-
guages are provided in the supplementary ma-
terials (nttp://doi.org/10.17605/0SF .10/NASFB).

Mandarin (cmn) The Mandarin syllabary
consists of 1,226 syllables based on list of at-
tested readings of the 13,060 BIG5 characters
from Tsai (2000), phonetized using the phono-
logical system of Duanmu (2007). This rep-
resentation encodes 22 onsets, 3 medials (/]
q w/), 6 nuclei, 4 codas and 5 tones (includ-
ing the neutral tone). In Mandarin, unaspi-
rated obstruent onsets rarely appear with mid-
rising tone (MC yang ping), and sonorant on-
sets rarely occur with the high-level tone (MC
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yin ping). Obstruents never occur as codas.

Thai (tha) A Thai lexicon of 4,133 unique
syllables was created based on the dictionary
of Haas (1964) which contains around 19,000
entries and 47,000 syllables. The phonemic
representation encodes 20 onsets, 3 medials /w
1 r/, 21 nuclei (vowel length being contrastive
in Thai), 8 codas and 5 tones. In Thai, high
tone is rare/unattested following unaspirated
and voiced onsets, but there is also statistical
evidence for a restriction on rising tones with
these onsets (Perkins, 2013). In syllables with
an obstruent coda (/p t k/), only high, low, or
falling tones occur, depending on length of the
nuclear vowel (Morén and Zsiga, 2006).

Vietnamese (vie) The Vietnamese lexicon
of 8,128 syllables was derived from a freely
available dictionary of around 74,000 words
(Dtic, 2004), phonetized using a spelling pro-
nunciation (Kirby, 2008). The resulting repre-
sentation encodes 24 onsets, 1 medial (/w/),
14 nuclei, 8 codas and 6 tones. Vietnamese
syllables ending in obstruents /p t k/ are re-
stricted to just one of two tones.

Cantonese (yue) The Cantonese syllabary
consists of the 1,884 unique syllables in the
Chinese Character Database (Kwan et al.,
2003), encoded using the jyutping system.
This representation distinguishes 22 onsets, 1
medial (/w/), 11 nuclei, 5 codas and 6 tones.
In Cantonese, unaspirated initials do not oc-
cur in syllables with low-falling tones, and
aspirated initials do not occur with the low
tone. Syllables ending with /p t k/ are re-
stricted to one of the three “entering” tones
(Yue-Hashimoto, 1972).

3 Methods

Two classes of character-level language models
(LMs) were considered: simple n-gram models
and recurrent neural networks (Mikolov et al.,
2010). In an n-gram model, the probability
of a string is proportional to the conditional
probabilities of the component n-grams:

P(ai|ay™") m P(xila; 2 0)

(1)

The degree of context taken into account is
thus determined by the value chosen for n.

In a recurrent neural network (RNN), the
next character in a sequence is predicting using



the current character and the previous hidden
state. At each step t, the network retrieves an
embedding for the current input z; and com-
bines it with the hidden layer from the previ-
ous step to compute a new hidden layer h;:

(2)

where W is the weight matrix for the current
time step, U the weight matrix for the previ-
ous time step, and g is an appropriate non-
linear activation function. This hidden layer
ht is then used to generate an output layer
4+, which is passed through a softmax layer to
generate a probability distribution over the en-
tire vocabulary. The probability of a sequence
T1,T9...T, is then just the product of the
probabilities of each character in the sequence:

ht = g(Uht_l + W.I‘t)

P(xi,x9...2,) = ﬁyz (3)
i=1

The incorporation of the recurrent connec-
tion as part of the hidden layer allows RNNs to
avoid the problem of limited context inherent
in n-gram models, because the hidden state
embodies (some type of) information about all
of the preceding characters in the string. Al-
though RNNs cannot capture arbitrarily long-
distance dependencies, this is unlikely to make
a difference for the relatively short distances
involved in phonotactic modeling.

Trigram models were built using the SRILM
toolkit (Stolcke, 2002), with maximum likeli-
hood estimates smoothed using interpolated
Witten-Bell discounting (Witten and Bell,
1991). RNN LMs were built using PyTorch
(Paszke et al., 2019), based on an implementa-
tion by Mayer and Nelson (2020). The results
reported here make use of simple recurrent net-
works (Elman, 1990), but similar results were
obtained using an LSTM layer (Hochreiter and
Schmidhuber, 1997).

3.1 Procedure

The syllables in each lexicon were arranged
in 5 distinct permutations: tone following the
coda (T|C), nucleus (T|N), medial (T|M), on-
set (T|O) and with tone as the initial seg-
ment in the syllable (T|#). As many syl-
lables in these languages lack onsets, medi-
als, and/or codas, a sizable number of the
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resulting strings were identical across permu-
tations. Both smoothed trigram and simple
RNN LMs were then fit to each permuted lex-
icon 10 times, with random 80/20 train/dev
splits (other splits produced similar results).
For each run, the perplexity of the language
model on the dev set D = zqyx2... 2y (ie., the
exponentiated cross-entropy!) was recorded:

PPL(D) (4)
(5)

bf%long(azla:g...zN)

4 Results

For brevity, only the main findings are sum-
marized here; the full results are available as
part of the online supplementary materials
(http://doi.org/10.17605/0SF.10/NASFB).

Table 1 show the orderings which minimized
perplexity for each method and language, aver-
aged over 10 runs. Table 2 shows the average
perplexity over all permutations for a given
language and method.

method lexicon order PPL
cmn T|C  4.91 (0.06)
poran | tP2 TIM 7.34(012)
& vie  T|C 7.35(0.03)
yue TIM  5.84 (0.09)
cmn TIM 4.01 (0.08)
tha  T|M  5.20 (0.04)
RNN vie TIM  5.16 (0.02)
yue T|# 4.37 (0.05)
Table 1: Orders which produced the lowest per-

plexities averaged over 10 runs (means and stan-
dard deviations).

Differences between orderings were then as-
sessed visually, aided by simple analyses of
variance. For the trigram LMs, perplexity was
lowest in Mandarin when tones followed co-
das, while differences in perplexity between
other orderings were negligible. For Thai,
Vietnamese, and Cantonese, all orderings were
roughly comparable except for when tone was
ordered as the first segment in the syllable
(T|#), which increased perplexity by up to
1 over the mean of the other orderings. For
Thai, the ordering T|M resulted in signifi-
cantly lower perplexities compared to all other

'Equivalently, we may think of PPL(D) as the in-

verse probability of the set of syllables D, normalized
for the number of phonemes.



cmn tha vie yue
3-gram 5.15 (0.17) 7.76 (0.4) 7.49 (0.27) 5.98 (0.18)
RNN 4.01 (0.07) 5.28 (0.05) 5.18 (0.03) 4.42 (0.07)
Table 2: Mean and standard deviation of perplexity across all permutations by lexicon and language
model.
permutations. For the RNN LMs, although  thelanguage model. Even a model with a large

T|M was the numerically optimal ordering for
three out of the four languages, in practical
terms permutation had no effect on perplex-
ity, with numerical differences of no greater
than 0.1 (see Table 2).

5 Discussion

Consistent with other recent work in compu-
tational phonotactics (e.g. Mayer and Nel-
son, 2020; Mirea and Bicknell, 2019; Pimentel
et al., 2020), the neural network models out-
performed the trigram baselines by a consider-
able margin (a reduction in average perplexity
of up to 2.5, depending on language). Neu-
ral network models were also much less sen-
sitive to the linear position of tone relative
to other elements in the segmental string (cf.
Do and Lai, 2021b), no doubt due to the fact
that the ability of the RNNs to model co-
occurrence tendencies within the syllable is not
constrained by context in the way that n-gram
models are.

Perhaps as a result, however, the RNN mod-
els reveal little about the nature of segment-
tone co-occurrence restrictions in any of the
languages investigated. In this regard, the tri-
gram models, while clearly less optimal in a
global sense, are still informative. The fact
that the ordering T|# was significantly worse
under the trigram model for Cantonese, Viet-
namese and Thai but not Mandarin can be ex-
plained (or predicted) by the fact that of the
four languages, only Mandarin does not per-
mit obstruent codas, and consequently has no
coda-tone co-occurrence restrictions (indeed,
the four primary tones of Mandarin occur with
more or less equal type frequency). In the
other three languages, syllables with obstruent
codas can only bear a restricted set of tones,
and in a trigram model, this dependency is not
modeled when tone is prepended to the sylla-
ble, since this means it will frequently, though
not always, fall outside the window visible to
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enough context window to capture such depen-
dencies will assign the lexicon a higher perplex-
ity when structured in this way.

The finding that the T|M ordering is always
optimal in Thai (and by a larger margin than
in the other languages) is presumably due to
the fact that the distribution of the medials
/w 11/ is severely restricted in this language,
occurring only after /p p® t t! k kP f/. The
distribution of tones after onset-medial clus-
ters is inherently more constrained and there-
fore more predictable. A similar restriction
holds in Cantonese, albeit to a lesser degree
(the medial /w/ only occurs with onsets /k/
and /kP/).

5.1 Shortcomings and extensions

This work did not explore representations
based on phonological features, given that
their incorporation has failed to provide evalu-
ative improvements in other studies of com-
putational phonotactics (Mayer and Nelson,
2020; Mirea and Bicknell, 2019; Pimentel et al.,
2020). However, feature-based approaches can
be both theoretically insightful and may even
prove necessary for other quantifications, such
as the measure of phonological distance where
tone is involved (Do and Lai, 2021a).

The present study has focused on a small
sample of structurally and typologically simi-
lar languages. All have relatively simple syl-
lable structures in which one and only one
tone is associated with each syllable. Not all
tone languages share these properties, how-
ever. In so-called “word-tone” languages, such
as Japanese or Shanghainese, the surface tone
with which a given syllable is realized is fre-
quently not lexically specified. In other lan-
guages, such as Yolox6chitl Mixtec (DiCanio
et al., 2014), tonal specification may be tied
to sub-syllabic units, such as the mora. Fi-
nally, data from many other languages, such
as Kukuya (Hyman, 1987), make it clear that



in at least in some cases tones can only be
treated in terms of abstract melodies, which
do not have a consistent association to sylla-
bles, moras, or vowels (Goldsmith, 1976). In
these and many other cases, careful consider-
ation of the theoretical motivations justifying
a particular representation are required before
it makes sense to consider ordering effects.

However, to the extent that it is possible to
generate a segmental representation of a tone
language in which surface tones are indicated,
what the present work suggests is that the pre-
cise ordering of the tonal symbols with respect
to other symbols in the string is unlikely to
have a significant impact on phonotactic prob-
ability. This follows from two assumption (or
constraints): first, that the set of symbols used
to indicate tones is distinct from those used to
indicate the vowels and consonants; and sec-
ond, that one and only one such tone symbol
appears per string domain (here, the syllable).
If these two constraints hold, the complexity
of the syllable template should in general have
a greater impact on the entropy of the string
set than the position of the tone symbol, al-
though the number of unique tone symbols rel-
ative to the number of segmental symbols may
also have an effect. According to Maddieson
(2013) and Easterday (2019), languages with
complex syllable structures (defined as those
permitting fairly free combinations of two or
more consonants in the position before a vowel,
and /or two or more consonants in the position
after the vowel) rarely have complex tone sys-
tems, or indeed tone systems at all, so this is
unlikely to be an issue for most tone languages.

One possibility the present work did not ad-
dress is whether it is even necessary, or desir-
able, to include tone in phonotactic probability
calculations in the first place. The probability
of the lexicon of a tonal language would surely
change if tone is ignored, but whether listeners’
judgments of a sequence as well- or ill-formed
is better predicted by a model that takes tone
into account vs. one that does not is an empir-
ical question (but see Kirby and Yu, 2007; Do
and Lai, 2021b for some evidence that it may
not). Similarly, for research questions focused
on tone sandhis, or on the distributions of the
tonal sequences themselves (tonotactics), the
relevant computations will be restricted to the
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tonal tier in the first instance, and ordering
with respect to segments may simply not be
relevant (but see Goldsmith and Riggle, 2012).

Finally, the present study has focused on the
lexical representation of tone, but in many lan-
guages tone primarily serves a morphological
function. The SIGMORPHON 2020 Task 0
shared challenge (Vylomova et al., 2020) in-
cluded inflection data from several tonal Oto-
Manguean languages in which tone was or-
thographically encoded in different ways via
string diacritics. = While the authors noted
the existence these differences, it is unclear
whether and to what extent the different rep-
resentations of tones affected system perfor-
mance. Similarly, the potential impact of
tone ordering relative to other elements in the
string has yet to be systematically investigated
in this setting.

6 Conclusion

This paper has assessed how different permu-
tations of tone and segments affects the per-
plexity of the lexicon in four syllable-tone lan-
guages using two types of phonotactic lan-
guage models, an interpolated trigram model
and a simple recurrent neural network. The
perplexities assigned by the neural network
models were essentially unaffected by different
choices of ordering; while the trigram model
was more sensitive to permutations of tone and
segments, the effects on perplexity remained
minimal. In addition to providing a baseline
for future evaluation, these results suggest that
the phonotactic probability of a syllable is rel-
atively robust to choice of how tone is ordered
with respect to other elements in the string,
especially when using a model capable of en-
coding dependencies across the entire syllable.

Acknowledgments

This work was supported in part by the ERC
EVOTONE project (grant no. 758605).

References

Todd Bailey and Ulrike Hahn. 2001. Determinants
of wordlikeness: phonotactics or lexical neigh-
borhoods? Journal of Memory and Language,
44:568-591.

E. Colin Cherry, Morris Halle, and Roman Jakob-
son. 1953. Toward the logical description of



languages in their phonemic aspect. Language,
29(1):34-46.

Robert Daland and Janet B. Pierrehumbert. 2011.
Learning diphone-based segmentation. Cogni-
tive Science, 35(1):119-155.

Christian DiCanio, Jonathan D Amith, and
Rey Castillo Garcia. 2014. The phonetics of
moraic alignment in yoloxéchitl mixtec. In Pro-
ceedings of the 4th International Symposium on
Tonal Aspects of Languages (TAL-201/), pages
203-210.

Youngah Do and Ryan Ka Yau Lai. 2021a. Ac-
counting for lexical tones when modeling phono-
logical distance. Language, 97(1):e39—e67.

Youngah Do and Ryan Ka Yau Lai. 2021b. Incor-
porating tone in the modelling of wordlikeness
judgements. Phonology, 37:577-615.

San Duanmu. 2007. The phonology of standard
Chinese, 2nd edition. Oxford University Press,
Oxford.

Shelece Easterday. 2019. Highly complex syllable
structure: A typological and diachronic study.
Studies in Laboratory Phonology. Language Sci-
ence Press.

Jeffrey L. Elman. 1990. Finding structure in time.
Cognitive Science, 14(2):179-211.

John Goldsmith. 1976. Autosegmental Phonology.
Ph.D. thesis, MIT. [Published by Garland Press,
New York, 1979.].

John Goldsmith. 2002. Phonology as information
minimization. Phonological Studies, 5:21-46.

John Goldsmith and Jason Riggle. 2012. Informa-
tion theoretic approaches to phonological struc-
ture: the case of Finnish vowel harmony. Natu-
ral Language and Linguistic Theory, 30:859-896.

Donald Shuxiao Gong. 2017. Grammaticality and
lexical statistics in Chinese unnatural phonotac-
tics. UCL Working Papers in Linguistics, 17:1—
23.

Mary R. Haas. 1964. That-English student’s dic-
tionary. Stanford University Press, Stanford.

Sepp Hochreiter and Jirgen Schmidhuber. 1997.
Long short-term memory. Neural Computation,
9(8):1735-1780.

Larry M. Hyman. 1987. Prosodic domains in
Kukuya. Natural Language € Linguistic The-
ory, 5(3):311-333.

James P. Kirby. 2008. vPhon: a Vietnamese
phonetizer (version 2.1.1) [computer program)].
https://github.com/kirbyj/vPhon.

37

James P. Kirby and Alan C. L. Yu. 2007. Lexi-
cal and phonotactic effects on wordlikeness judg-
ments in Cantonese. In Proceedings of the 16th
International Conference of the Phonetic Sci-
ences, pages 1389-1392, Saarbriicken.

Tze-Wan Kwan, Wai-Sang Tang, Tze-Ming
Chiu, Lei-Yin Wong, Denise Wong, and
Li Zhong. 2003. Chinese character database
with word-formations phonologically disam-
biguated according to the Cantonese dialect.
http://humanum.arts.cuhk.edu.hk/Lexis/lexi-
can/. Accessed 9 February 2007.

Tan Maddieson. 2013. Tone. In Matthew S. Dryer
and Martin Haspelmath, editors, The World At-
las of Language Structures Online. Max Planck
Institute for Evolutionary Anthropology.

Connor Mayer and Max Nelson. 2020. Phonotactic
learning with neural language models. Proceed-
ings of the Society for Computation in Linguis-
tics, 3:16.

Tomds Mikolov, Martin Karafidt, Lukas Burget,
Jan Cernocky, and Sanjeev Khudanpur. 2010.
Recurrent neural network based language model.
In Proc. INTERSPEECH 2010, page 1045-1048.

Nicole Mirea and Klinton Bicknell. 2019. Using
LSTMs to assess the obligatoriness of phonolog-
ical distinctive features for phonotactic learning.
In Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics,
pages 1595-1605. Association for Computational
Linguistics.

Bruce Morén and Elizabeth Zsiga. 2006. The
lexical and post-lexical phonology of Thai
tones. Natural Language and Linguistic Theory,
24(1):113-178.

James Myers and Jane Tsay. 2005. The pro-
cessing of phonological acceptability judgements.
In Proc. Symposium on 90-92 NSC Projects,
Taipei.

Ellen Hamilton Newman, Twila Tardif, Jingyuan
Huang, and Hua Shu. 2011. Phonemes matter:
The role of phoneme-level awareness in emergent
Chinese readers. Journal of Experimental Child
Psychology, 108(2):242-259.

Adam Paszke, Sam Gross, Francisco Massa,
Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein,
Luca Antiga, Alban Desmaison, Andreas Kopf,
Edward Yang, Zachary DeVito, Martin Raison,
Alykhan Tejani, Sasank Chilamkurthy, Benoit
Steiner, Lu Fang, Junjie Bai, and Soumith Chin-
tala. 2019. Pytorch: An imperative style, high-
performance deep learning library. In H. Wal-
lach, H. Larochelle, A. Beygelzimer, F. d'Alché-
Buc, E. Fox, and R. Garnett, editors, Advances
in Neural Information Processing Systems 32,
pages 8024-8035. Curran Associates, Inc.



Jeremy Perkins. 2013. Consonant-tone interaction
in Thai. Ph.D. thesis, Rutgers, The State Uni-
versity of New Jersey.

Tiago Pimentel, Brian Roark, and Ryan Cotterell.
2020. Phonotactic complexity and its trade-offs.
Transactions of the Association for Computa-
tional Linguistics, 8:1-18.

Shabnam Shademan. 2006. Is phonotactic knowl-
edge grammatical knowledge? In Proceedings of
the 25th West Coast Conference on Formal Lin-
guistics, pages 371-379. Cascadilla Proceedings
Project.

Andreas Stolcke. 2002. SRILM — an extensible lan-
guage modeling toolkit. In Proc. Intl. Conf. on
Spoken Language Processing Vol. 2, pages 901—
904, Denver.

Holly L. Storkel and Su-Yeon Lee. 2011. The inde-
pendent effects of phonotactic probability and
neighbourhood density on lexical acquisition by
preschool children. Language and Cognitive Pro-
cesses, 26(2):191-211.

Chih-Hao Tsai. 2000. Mandarin syllable
frequency counts for Chinese characters.
http://technology.chtsai.org/syllable/. Ac-

cessed 10 March 2021.

Michael S. Vitevitch and Paul A. Luce. 1999. Prob-
abilistic phonotactics and neighborhood activa-
tion in spoken word recognition. Journal of
Memory and Language, 40:374-408.

Ekaterina Vylomova, Jennifer White, Eliza-
beth Salesky, Sabrina J. Mielke, Shijie Wu,
Edoardo Maria Ponti, Rowan Hall Maudslay,
Ran Zmigrod, Josef Valvoda, Svetlana Toldova,
and et al. 2020. Sigmorphon 2020 shared task
0: Typologically diverse morphological inflec-
tion. In Proceedings of the 17th SIGMORPHON
Workshop on Computational Research in Pho-
netics, Phonology, and Morphology, page 1-39.
Association for Computational Linguistics.

Tan H. Witten and Timothy C. Bell. 1991. The
zero-frequency problem: estimating the proba-
bilities of novel events in adaptive text compres-
sion. IEEE Transactions on Information The-
ory, 37(4):1085-1094.

Shiying Yang, Chelsea Sanker, and Uriel Co-
hen Priva. 2018. The organization of lexicons:
a cross-linguistic analysis of monosyllabic words.
In Proceedings of the Society for Computation
in Linguistics (SCiL) 2018, page 164-173.

Anne O. Yue-Hashimoto. 1972. Studies in Yue Di-
alects 1: Phonology of Cantonese. Cambridge
University Press.

H6 Ngoc Ditc. 2004 Vietnamese
word list. http://www.informatik.uni-
leipzig.de/~duc/software/misc/wordlist.html.
Accessed 24 February 2021.

38



MorphyNet: a Large Multilingual Database
of Derivational and Inflectional Morphology

Khuyagbaatar Batsuren', G4bor Bella?, and Fausto Giunchiglia®>
"National University of Mongolia, Mongolia
2DISI, University of Trento, Italy
3College of Computer Science and Technology, Jilin University, China
khuyagbaatar@num.edu.mn;{gabor.bella,fausto.giunchiglia}@unitn.it

Abstract

Large-scale morphological databases provide
essential input to a wide range of NLP applica-
tions. Inflectional data is of particular impor-
tance for morphologically rich (agglutinative
and highly inflecting) languages, and deriva-
tions can be used, e.g. to infer the semantics of
out-of-vocabulary words. Extending the scope
of state-of-the-art multilingual morphological
databases, we announce the release of Mor-
phyNet, a high-quality resource with 15 lan-
guages, 519k derivational and 10.1M inflec-
tional entries, and a rich set of morphologi-
cal features. MorphyNet was extracted from
Wiktionary using both hand-crafted and auto-
mated methods, and was manually evaluated
to be of a precision higher than 98%. Both
the resource generation logic and the resulting
database are made freely available!? and are
reusable as stand-alone tools or in combination
with existing resources.

1 Introduction

Despite repeated paradigm shifts in computational
linguistics and natural language processing, mor-
phological analysis and its related tasks, such
as lemmatization, stemming, or compound split-
ting, have always remained essential components
within language processing systems. Recently, in
the context of language models based on subword
embeddings, a morphologically meaningful split-
ting of words has been shown to improve the effi-
ciency of downstream tasks (Devlin et al., 2019;
Sennrich et al., 2016; Bojanowski et al., 2017;
Provilkov et al., 2020). In particular, the rein-
troduction of linguistically motivated approaches
and high-quality linguistic resources into deep
learning architectures has been crucial for deal-
ing with morphologically rich—highly inflecting,
"http://ukc.disi.unitn.it/index.php/

MorphyNet
http://github. com/kbatsuren/MorphyNet
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agglutinative—languages more efficiently (Pinnis
et al., 2017; Vylomova et al., 2017; Ataman and
Federico, 2018; Gerz et al., 2018).

In response to such needs, and as simple and con-
venient substitutes for monolingual morphological
analyzers, multilingual morphological databases
have been developed, indicating for each word
form entry one or more corresponding root or
dictionary entries, as well as analysis (features)
(Kirov et al., 2018; Metheniti and Neumann, 2020;
Vidra et al., 2019). The precision and recall of
these resources vary wildly, and there is still a lot
of ground to cover with respect to the support of
new languages, the modelling of the inflectional
and derivational complexity of each language, as
well as the richness of the information (features,
affixes, parts of speech, etc.) provided.

As a further step towards extending online mor-
phological data, we introduce MorphyNet, a new
database that addresses both derivational and in-
flectional morphology. Its current version cov-
ers 15 languages and has 519k derivational and
10.1M inflectional entries, as well as a rich set of
features (lemma, parts of speech, morphological
tags, affixes, etc.). Similarly to certain existing
databases, MorphyNet was built from Wiktionary
data; however, our extraction logic allows for a
more exhaustive coverage of both derivational and
inflectional cases.

The contributions of this paper are the freely
available MorphyNet resource, the description of
the data extraction logic and tool, also made freely
accessible, as well as its evaluation and compari-
son to state-of-the-art multilingual morphological
databases. Due to the limited overlap between the
contents of these resources and MorphyNet, we
consider it as complementary and therefore usable
in combination with them.

Section 2 of the paper presents the state of the art.
Section 3 gives details on our method for generat-
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Figure 1: The MorphyNet generation process and the input datasets used.

ing MorphyNet data. Section 4 presents the result-
ing resource, and Section 5 evaluates it. Section 6
concludes the paper.

2 State of the Art

Ever since the early days of computational linguis-
tics, morphological analysis and its related tasks —
such as stemming and lemmatization—have been
part of NLP systems. Earlier grammar-based sys-
tems used finite-state transducers or affix stripping
techniques, and certain of them were already mul-
tilingual and were capable of tackling morpholog-
ically complex languages (Beesley and Karttunen,
2003; Trén et al., 2005; Inxight, 2005). However,
due to the costliness of producing the grammar
rules that drove them, many of these systems were
only commercially available.

More recently, several projects have followed
the approach of formalizing and/or integrating ex-
isting morphological data for multiple languages.
UDer (Universal Derivations) (Kyjanek et al.,
2020) integrates 27 derivational morphology re-
sources in 20 languages. UniMorph (Kirov et al.,
2016,2018) and the Wikinflection Corpus (Methen-
iti and Neumann, 2020) rely mostly on Wiktionary
from which they extract inflectional information.
Beyond the data source, however, the two last
projects have little in common: UniMorph is by
far more precise and complete, and being used
as gold standard for NLP community (Cotterell
et al., 2017, 2018) (recently covering 133 lan-
guages (McCarthy et al., 2020)), while Wikinflec-
tion follows a naive, linguistically uninformed ap-
proach of merely concatenating affixes, generat-
ing an abundance of ungrammatical word forms
(e.g. for Hungarian or Finnish).

MorphyNet is also based on extracting morpho-
logical information from Wiktionary, extending

the scope of UniMorph by new extraction rules
and logic. The first version of MorphyNet covers
15 languages, and it is distinct from other resources
in three aspects: (1) it includes both inflectional
and derivational data; (2) it extracts a significantly
higher number of inflections from Wiktionary; and
(3) it provides a wider range of morphological in-
formation. While for the languages it covers Mor-
phyNet can be considered a superset of UniMorph,
the latter supports more languages. With UDer, as
we show in section 4, the overlap is minor on all
languages. For these reasons, we consider Mor-
phyNet as complementary to these databases, con-
siderably enriching their coverage on the 15 sup-
ported languages but not replacing them.

3 MorphyNet Generation

MorphyNet is generated mainly from Wiktionary,
through the following steps.

1. Filtering returns XML-based Wiktionary con-
tent from specific sections of relevant lexical
entries: headword lines, etymology sections,
and inflectional tables are returned for nouns,
verbs, and adjectives.

2. Extraction obtains raw morphological data by
parsing the sections above.

3. Enrichment algorithmically extends the cov-
erage of derivations and inflections obtained
from Wiktionary, through entirely distinct
methods for inflection and derivation.

4. Resource generation, finally, outputs Mor-
phyNet data.

Below we explain the non-trivial Wiktionary ex-
traction and enrichment steps, while Section 4 pro-
vides details on the generated resource itself.



3.1 Wiktionary Extraction

We extract inflectional and derivational data
through hand-crafted extraction rules that target
recurrent patterns in Wiktionary content both in
source markdown and in HTML-rendered form.
With respect to UniMorph that takes a similar ap-
proach and scrapes tables that provide inflectional
paradigms, the scope of extraction is considerably
extended, also including headword lines and ety-
mology sections. This allows us to obtain new
derivations, inflections, and features not covered
by UniMorph, such as gender information or noun
and adjective declensions for Catalan, French, Ital-
ian, Spanish, Russian, English, or Serbo-Croatian.
Our rules target nouns, adjectives, and verbs in all
languages covered.

Inflection extraction rules target two types of
Wiktionary content: inflectional tables and head-
word lines. Inflectional tables provide conjugation
and declension paradigms for a subset of verbs,
nouns, and adjectives in Wiktionary. On tables,
our extraction method was similar to that of Uni-
Morph as described in (Kirov et al., 2016, 2018),
with one major difference. UniMorph also ex-
tracted a large number of separate entries with
modifier and auxiliary words, such as Spanish
negative imperatives (no comas, no coma, no co-
mamos etc.) or Finnish negative indicatives (en
puhu, et puhu, eivit puhu etc.). MorphyNet, on
the other hand, has a single entry for each distinct
word form, regardless of the modifier word used.
This policy had a particular impact on the size of
the Finnish vocabulary.

As inflectional tables are only provided by Wik-
tionary for 62.5 %?3 of nouns, verbs, and adjectives,
we extended the scope of extraction to headword
lines, such as

banca f (plural banche)

From this headword line, we extract two entries:
one for banca is feminine singular and second for
banche is feminine plural. We created specific
parsing rules for nouns, verbs, and adjectives be-
cause each part of speech is described through a dif-
ferent set of morphological features. For example,
valency (transitive or reflexive) and aspect (perfec-
tive or imperfective) are essential for verbs, while
gender (masculine or feminine) and number (singu-
lar or plural) pertain to nouns and adjectives.
Derivation extraction rules were applied to the

*Computed over the 15 languages covered by MorphyNet.
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competicao = {{suffix|ptjcompetir|cao}} -

Wiktiona .
o4 R = {{suffix|en] lation}} |\
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! \ cognate p /
A% _—_— rv.--7
CogNet g
\ cognate A
N> .n ¢ao.n
pt acusar.v acusacdo.n -¢do
MorphyNet pt competir.v competicdo.n -¢do
en accuse.v accusation.n  -ation

Figure 2: Derivation enrichment example: inference of
the derivation of the Portuguese word acusagdo.

etymology sections of Wiktionary entries to collect
the Morphology template usages, such as for the
English accusation:

Equivalent to accuse + -ation.

where we have a morphology entry
{{suffixlenlaccusel-ation}} from the Wiktionary
XML dump. After collecting all morphology
entries, we applied the enrichment method to
increase its coverage.

3.2 Derivation Enrichment

Derivation enrichment is based on a linguistically
informed cross-lingual generalization of deriva-
tional patterns observed in Wiktionary data, in or-
der to extend the coverage of derivational data.

In the example shown in Figure 2, Wik-
tionary contains the Portuguese derivation com-
petir (to compete) — competicdo (competition)
but not acusar (to accuse) — acusagcdo (accusa-
tion). An indiscriminate application of the suf-
fix -cdo to all verbs would, of course, gener-
ate lots of false positives, such as chegar (to ar-
rive) - *chegacdo. Even when the target word
does exist, the inferred derivation is often false, as
in the case of corar (to blush) —» coragdo (heart).
A counter-example from English could be jewel +
-ery — jewellery but gal +-ery - gallery.

For this reason, we use stronger cross-lingual
derivational evidence to induce the applicability
of the affix. In the example above, the existence
of the English derivation accuse — accusation,
where the meanings of the English and the corre-
sponding Portuguese words are the same, serves as
a strong hint for the applicability of the Portuguese
pattern.

This intuition is formalized in MorphyNet as fol-



Table 1: Structure of MorphyNet inflectional data and its comparison to UniMorph. Data provided only by Mor-
phyNet is highlighted in bold. The rest is provided by both resources in a nearly identical format.

Language base_word trg_word features src_word morpheme
Hungarian haz hazak N:NOM;PL haz -ak
Hungarian haz hézat N;ACC;SG haz -at
Hungarian haz hazakat N;ACC;PL hazak -at

Russian UrpaThb WUrpaThb V;NFIN;IPFV;ACT UrpaTh

Russian urpaThb UrparoT V;IND;PRS;3;PL;IPFV;ACT;FIN  urpats -alT
Russian UrpaThb WTPAOLLUI V,V.PTCP;ACT;PRS WUTPaAIOT -I(HAH

Table 2: Structure of MorphyNet derivational data and its comparison to UDer. Data only provided by MorphyNet
is highlighted in bold. The rest is provided by both resources in a nearly identical format.

Language src_word trg_word Src_pos  trg_pos morpheme
English time timeless noun adjective -less
English soda sodium noun substance.noun -ium
English Z00 zoophobia noun state.noun -phobia
Finnish kirjoittaa kirjoittaminen verb noun -minen
Finnish lyoda lyoja verb person.noun -ja

lows: if in language A a derivation from source
word w2 to target word w/ through the affix a” is
not explicitly asserted (e.g. by Wiktionary) but it is
asserted for the corresponding cognates in at least
one language B, then we infer its existence:

cog(wy, wi) A cog(wf', wr') A cog(a”,a”)

A

A der(wf,aB) = wf = der(w‘;‘,aA) = w

where cog(x,y) means that the words x and y are
cognates and der(b, a) = d that word d is derived
from base word b and affix a. In our example,
A = Portuguese, B = English, w} = acusar,
wB = accuse, w! = acusagdo, w? = accusation,
at = -¢do, and a® = -tion.

As shown in Figure 1, we exploited a cognate
database, CogNet4 (Batsuren et al., 2019, 2021),
that has 8.1M cognate pairs, for evidence on cog-
nacy: cog(w?, wP) = True is asserted by the pres-
ence of the word pair in CogNet.

The result of enrichment was a total increase of
25.6% of the number of derivations in MorphyNet.
Efficiency varies among languages, essentially de-
pending on the completeness of the Wiktionary
coverage: it was the lowest for English with 3%
and the highest for Spanish with 57%.

3.3 Inflection Enrichment

The enrichment of inflectional data is based on
the simple observation that Wiktionary does
not provide the root word for all inflected
forms. For example, for the Hungarian muiltjd-
val (with his/her/its past), Wiktionary provides

*http://github.com/kbatsuren/Coglet
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the inflection muiltja — muiltjaval (his/her/its
past +instrumental). For muiltja, in turn, it pro-
vides muilt — miiltja (past+possessive). It does
not, however, directly provide the combination
of the two inflections: muilt — miiltjdval (past +
possessive + instrumental). Inflection enrichment
consists of inferring such missing rules from the
existing data.

The case above is formalized as follows: if, after
the Wiktionary extraction phase, the MorphyNet
data contains the inflections w, — w; (with feature
set F'1) as well as wi — wy (with feature set F5),
then we create the new inflection w, — wy with
feature set F; U F.

The application of this logic increased the inflec-
tional coverage of MorphyNet by 10.8% and its re-
call (with respect to ground truth data presented in
section 5) by 8.2% on average.

4 The MorphyNet Resource

Morphynet is freely available for download, both
as text files containing the data and as the source
code of the Wiktionary extractor> Two text files
are provided per language: one for inflections and
one for derivations. The structure of the two types
of files is illustrated in Tables 1 and 2, respectively.
As shown, MorphyNet covers all data fields pro-
vided by UniMorph for inflections and by UDer
for derivations. In addition, it extends UniMorph
by indicating the affix and the immediate source
word that produced the inflection. Such informa-
tion is useful, for example, to NLP applications
that rely on subword information for understand-

http://github. com/kbatsuren/WiktConv



Table 3: MorphyNet dataset statistics

| Inflectional morphology

| Derivational morphology |

# Languages [ words entries morphemes [ words entries morphemes [ Total
1 Finnish 65,402 1,617,751 1,139 18,142 37,199 446 1,654,950
2 Serbo-Croatian 68,757 1,760,095 263 8,553 20,008 429 1,780,103
3 Italian 75,089 748,321 104 22,650 42,149 749 790,470
4 Hungarian 38,067 1,034,317 428 14,566 37,940 832 1,072,257
5 Russian 67,695 1,343,760 252 21,922 36,922 575 1,380,682
6 Spanish 67,796 677423 145 16,268 27,633 490 705,056
7 French 44,729 453,229 98 15,473 37,203 636 490,432
8 Portuguese 30,969 329,861 161 10,504 15,974 387 345,835
9 Polish 36,940 663,545 251 9,518 18,404 405 681,949
10  German 35,086 214401 243 13,070 23,867 465 238,268
11 Czech 9,781 298,888 112 4875 9,660 318 307,935
12 English 149,265 652,487 8 67412 200,365 2,445 852,852
13 Catalan 16,404 168,462 91 3244 4,083 220 172,545
14  Swedish 14 485 131,693 32 3,190 5,810 217 137,503
15 Mongolian 2,085 14,592 35 1,410 1,940 229 16,532
Total [ 722,550 10,108,825 3,362 [ 230,797 519,157 8,843 [ 10,627,369

Table 4: UniMorph and MorphyNet data sizes com-
pared to Universal Dependencies content.

Language | UniMorph  MorphyNet | Univ. Dep.
Catalan 81,576 168,462 25,443
Czech 134,528 298,888 151,838
English 115,523 652,487 17,296
French 367,733 453,229 28,921
Finnish 2490377 1,617,751 47,813
Hungarian 552,950 1,034,317 3,685
Italian 509,575 748,321 24,002
Serbo-Croatian 840,799 1,760,095 35,936
Spanish 382,955 677423 32,571
Swedish 78411 131,693 15,030
Russian 473482 1,343,760 18,774
Total ‘ 5,893,381  8.,886426 ‘ 401,309

ing out-of-vocabulary words. MorphyNet also ex-
tends the UDer structure by indicating the affix and
the semantic category for the target word when it
can be inferred from the morpheme. Such informa-
tion is again useful for subword regularization of
derivationally rich languages, such as English.

Table 4 provides per-language statistics on Mor-
phyNet data. The present version of the resource
contains 10.6 million entries, of which 95% are in-
flections. Highly inflecting and agglutinative lan-
guages are dominating the resource as 55% of all
entries belong to Finnish, Hungarian, Russian, and
Serbo-Croatian. Language coverage above all de-
pends on the completeness of Wiktionary, the main
source of our data.

5 Evaluation

We evaluated MorphyNet through two different
methods: (1) through comparison to ground truth
and (2) through manual validation by experts.
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Comparison to ground truth. The quality eval-
uation of morphology database is a challenging
task due to many weird morphology aspects of lan-
guages evaluated (Gorman et al.,2019). As ground
truth on inflections we used the Universal Depen-
dencies® dataset (Nivre et al., 2016, 2017), which
(among others) provides morphological analysis
of inflected words over a multilingual corpus of
hand-annotated sentences. McCarthy et al. (2018)
built a Python tool” to convert these treebanks
into UniMorph schema (Sylak-Glassman, 2016).
We evaluated both UniMorph 2.0 and MorphyNet
against this data (performing the necessary map-
ping of feature tags beforehand) over the 11 lan-
guages in the intersection of the two resources:
Hungarian (Vincze et al., 2010), Catalan, Span-
ish (Taulé et al., 2008), Czech (Bejcek et al.,
2013), Finnish (Pyysalo et al.,2015), Russian (Lya-
shevskaya et al., 2016), Serbo-Croatian (De Melo,
2014), French (Guillaume et al., 2019), Italian
(Bosco et al., 2013), Swedish (Nivre and Megyesi,
2007), and English (Silveira et al., 2014). Ta-
ble 5 contains evaluation results over nouns, verbs,
and adjectives separately, as well as totals per lan-
guage. Missing data points (e.g. for Catalan nouns)
indicate that UniMorph did not have any corre-
sponding inflections. For languages and parts of
speech where both resources provide data, Mor-
phyNet always provides higher recall. The excep-
tion is Finnish because of our policy of not extract-
ing conjugations with auxiliary and modifier words
as separate entries (see Section 3.1). Overall, as
*https://universaldependencies.org/

"https://github.com/unimorph/
ud-compatibility



Table 5: Inflectional morphology evaluation of MorphyNet against UniMorph on Universal Dependencies

Laneuage Resource Noun Verb Adjective Total
guag R p F R p Fi R P F R p Fi
Catalan UniMorph - - - [ 719 993 834 | - - -~ [ 213 993 35.1
MorphyNet | 660 984 790 | 73.8 99.1 84.6 | 482 99.6 650 | 643 988 779
Crech UniMorph | 282 99.1 4390 | 95 181 125 | 176 448 253 | 210 727 326
MorphyNet | 332 989 497 | 282 938 434 | 361 98.1 528 | 342 980 507
Enelich UniMorph - - 1961 909 934 - - [ 283 909 432
g MorphyNet | 815 99.1 894 [ 97.1 968 969 | 853 997 919 | 832 988 903
French UniMorph - - ~ 1706 985 822 - - - [ 206 985 341
MorphyNet | 802 986 885 | 944 985 964 | 60.1 946 735|797 979 879
Finmish UniMorph | 455 995 624 | 505 884 643 | 614 817 70.1 | 40.1 935 644
MorphyNet | 498 994 664 | 538 895 672 | 672 98.1 798 | 545 967 69.7
Hunearian UniMorph | 453 990 622 | 319 978 481 - - ~ 1308 988 470
g MorphyNet | 552 99.1 709 | 772 969 859 | 43.1 959 595 | 563 979 715
talian UniMorph - - [ 661 916 768 - - ~ [ 228 916 365
MorphyNet | 867 990 924 | 888 969 927 | 849 989 914 | 870 982 923
Serbo_Croatian | UMMorph [ 00 00 00 [ 00 00 00 [ 494 474 484 [ 185 474 266
MorphyNet | 69.5 884 778 | 69.1 98.1 81.1 | 549 986 705 | 639 933 759
Soanish UniMorph - - - 1930 998 963 | - - - [ 321 998 486
P MorphyNet | 883 992 934 | 970 995 982 | 819 992 89.7 | 89.7 993 943
Swedish UniMorph | 15.1 984 262 | 590.7 848 70.1 | 34.1 948 502 | 27.1 920 419
MorphyNet | 368 994 537 | 780 98.1 869 | 38.1 99.6 55.1 | 446 991 615
Russian UniMorph | 00 00 00 | 00 00 00 | 528 974 685 | 108 974 194
MorphyNet | 565 951 709 | 677 929 783 | 645 990 78.1 | 615 952 747

seen from Table 4, MorphyNet contains about 47%
more entries over the 11 languages where it over-
laps with UniMorph. In terms of precision, the two
resources are comparable, except for Finnish (ad-
jectives) and Swedish (adjectives and verbs) where
MorphyNet appears to be significantly more pre-
cise.

UDer (Kyjdnek et al., 2020) is a collection of
individual monolingual resources of derivational
morphology. Most of them have been carefully
evaluated against their own datasets and offer high
quality. We evaluated MorphyNet derivational
data against UDer over the nine languages covered
by both resources: French (Hathout and Namer,
2014), Portuguese (de Paiva et al., 2014), Czech
(Vidra et al., 2019), German (Zeller et al., 2013),
Russian (Vodolazsky, 2020), Italian (Talamo et al.,
2016), Finnish (Lindén and Carlson, 2010; Lindén
et al., 2012), Latin (Litta et al., 2016), and En-
glish (Habash and Dorr, 2003). Statistics and re-
sults are shown in Table 6. First of all, the over-
lap between MorphyNet and UDer is small, which
is visible from our recall values relative to UDer
that vary between 0.6% (Czech) and 59.5% (Ital-
ian). Among the languages evaluated, six were
better covered by MorphyNet and the remaining
three (Czech, German, and Russian) by UDer. The
agreement between the two resources, computed
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as Cohen’s Kappa, was 0.85 overall, varying be-
tween 0.74 (Finnish) and 0.97 (Portuguese). If we
consider UDer as gold standard, we obtain preci-
sion figures between 87% and 99%.

Manual evaluation was carried out by language
experts over sample data from five languages: En-
glish, Italian, French, Hungarian, and Mongolian.
The sample consisted of 1,000 randomly selected
entries per language, half of them inflectional and
the other half derivational. The experts were asked
to validate the correctness of source—target word
pairs, of morphemes, as well as inflectional fea-
tures and parts of speech (the latter for deriva-
tions). Table 7 shows detailed results. The over-
all precision is 98.9%, per-language values varying
between 98.2% (Hungarian) and 99.5% (English).
The good results are proof both of the high qual-
ity of Wiktionary data and of the general correct-
ness of the data extraction and enrichment logic of
MorphyNet. A manual checking of the incorrect
entries revealed that most of them were due to the
failure of extraction rules due to occasional devia-
tions in Wiktionary from its own conventions.

6 Conclusions and Future Work

We consider the resource released and described
here as an initial work-in-progress version that we
plan to extend and improve. We are currently



Table 6: Derivational morphology evaluation of MorphyNet against Universal Derivations (UDer)

# Language | MorphyNet | Univeral Derivations (UDer) | UDer N MorphyNet | Recall Precision | Kappa
1 French 37,203 | Démonette 13,272 2,558 18.5 95.5 091
2 Portuguese 15,974 | NomLex-PT 3,420 1,235 35.8 98.9 0.97
3 Czech 9,660 | Derinet 804,011 5,347 0.6 94.1 0.88
4 German 23,867 | DerivBase 35,528 5,878 15.6 93.5 0.87
5 Russian 36,922 | DerivBase. RU 118,374 6,370 12.3 88.1 0.76
6 Italian 42,149 | DerlvaTario 1,548 958 59.5 90.7 0.81
7  Finnish 37,199 | FinnWordnet 8,337 2,664 30.6 87.0 0.74
8 Latin 9,191 | WFL 2,792 4,037 140 93.7 0.87
9  English 200,365 | CatVar 16,185 7,397 45.7 919 0.83
Total [ 412530 | 003,467 | 36444 | 2538 926 | 0.85
Table 7: Manual validation of language experts on MorphyNet
| Inflectional morphology | Derivational morphology |
# Language [ word pair features  morphemes| trg words POS  morphemes|  Total
1 English 99.2 100.0 99.0 100.0 99.0 100.0 99.5
2 French 99.8 98.0 100.0 100.0 96.8 100.0 99.1
3 Hungarian 97.0 95.0 100.0 98.6 99.1 99.2 98.2
4  Italian 100.0 100.0 994 98.0 974 99.0 99.0
5 Mongolian 98.2 100.0 99.2 98.4 98.1 98.6 98.8
Average. [ 98.8 98.6 99.5 [ 99.0 98.1 994 [ 98.9
working on increasing the coverage to 20 lan- References
guages. We also plan to extend MorphyNet data D At 4 Marcell Federi
with additional features and the semantic cate- uyeu aman ar.1' arcello f,: erico.
2018. Compositional representation of

gories of words (e.g. animate or inanimate object,
action) inferred from derivations. We are planning
to conduct a more in-depth study of our evaluation
results, especially with respect to UDer where it
is not yet clear whether the occasional lower pre-
cision figures (87% for Finnish, 88% for Russian)
are due to mistakes in MorphyNet, in the UDer re-
sources, or are caused by other factors.

A major piece of ongoing work concerns the
representation of MorphyNet derivational data as
a lexico-semantic graph, as it is done in word-
nets (Miller, 1998; Giunchiglia et al., 2017) where
derivationally related word senses are intercon-
nected by associative relationships. This effort,
justifying the -Net in the name of our resource, will
allow us to address completeness issues in existing
wordnets by extending them by morphological re-
lations and derived words.

We are happy to offer the MorphyNet extraction
logic to be reused on a community basis. As ex-
tending the tool with new Wiktionary extraction
rules is straightforward, we hope that the availabil-
ity of the tool will allow language coverage to grow
even further. We also hope that the MorphyNet
data and the extraction logic can serve existing

high-quality projects such as UniMorph and UDer.
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Abstract

In this work, we analyze the robustness of neu-
ral machine translation systems towards gram-
matical perturbations in the source. In par-
ticular, we focus on morphological inflection
related perturbations. While this has been
recently studied for English—French transla-
tion (MORPHEUS) (Tan et al., 2020), it is
unclear how this extends to Any—English
translation systems. We propose MORPHEUS-
MULTILINGUAL that utilizes UniMorph dic-
tionaries to identify morphological perturba-
tions to source that adversely affect the trans-
lation models. Along with an analysis of state-
of-the-art pretrained MT systems, we train and
analyze systems for 11 language pairs using
the multilingual TED corpus (Qi et al., 2018).
We also compare this to actual errors of non-
native speakers using Grammatical Error Cor-
rection datasets. Finally, we present a qualita-
tive and quantitative analysis of the robustness
of Any—English translation systems. Code
for our work is publicly available.!

1 Introduction

Multilingual machine translation is common-
place, with high-quality commercial systems avail-
able in over 100 languages (Johnson et al.,
2017). However, translation from and into low-
resource languages remains a challenge (Arivazha-
gan et al., 2019). Additionally, translation from
morphologically-rich languages to English (and
vice-versa) presents new challenges due to the wide
differences in morphosyntactic phenomenon of the
source and target languages. In this work, we study
the effect of noisy inputs to neural machine trans-
lation (NMT) systems. A concrete practical appli-
cation for this is the translation of text from non-
native speakers. While the brittleness of NMT sys-
* Equal contribution.

'https://github.com/muralil996/
morpheus_multilingual
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tems to input noise is well-studied (Belinkov and
Bisk, 2018), most prior work has focused on trans-
lation from English (English— X)) (Anastasopoulos
etal., 2019; Alam and Anastasopoulos, 2020).

With over 800 million second-language (L2)
speakers for English, it is imperative that the trans-
lation models should be robust to any potential er-
rors in the source English text. A recent work (Tan
et al., 2020) has shown that English—X translation
systems are not robust to inflectional perturbations
in the source. Inspired by this work, we aim to
quantify the impact of inflectional perturbations
for X—English translation systems. We hypothe-
size that inflectional perturbations to source tokens
shouldn’t adversely affect the translation quality.
However, morphologically-rich languages tend to
have free word order as compared to English, and
small perturbations in the word inflections can lead
to significant changes to the overall meaning of the
sentence. This is a challenge to our analysis.

We build upon Tan et al. (2020) to induce in-
flectional perturbations to source tokens using the
unimorph_inflect tool (Anastasopoulos and
Neubig, 2019) along with UniMorph dictionaries
(McCarthy et al., 2020) (§2). We then present a
comprehensive evaluation of the robustness of MT
systems for languages from different language fam-
ilies (§3). To understand the impact of size of par-
allel corpora available for training, we experiment
on a spectrum of high, medium and low-resource
languages. Furthermore, to understand the impact
in real settings, we run our adversarial perturbation
algorithm on learners’ text from Grammatical Error
Correction datasets for German and Russian (§3.3).

2 Methodology

To evaluate the robustness of X—English NMT sys-
tems, we generate inflectional perturbations to the
tokens in source language text. In our methodology,

Proceedings of the Seventeenth SIGMORPHON Workshop on Computational Research

in Phonetics, Phonology, and Morphology,pages 49—59

August 5, 2021. €



we aim to identify adversarial examples that lead
to maximum degradation in the translation quality.
We build upon the recently proposed MORPHEUS
toolkit (Tan et al., 2020), that evaluated the robust-
ness of NMT systems translating from English—X.
For a given source English text, MORPHEUS works
by greedily looking for inflectional perturbations
by sequentially iterating through the tokens in input
text. For each token, it identifies inflectional edits
that lead to maximum drop in BLEU score.

We extend this approach to test X—English
translation systems. Since their toolkit? is limited
to perturbations in English only, in this work we de-
velop our own inflectional methodology that relies
on UniMorph (McCarthy et al., 2020).

2.1 Reinflection

UniMorph project® provides morphological data
for numerous languages under a universal schema.
The project supports over 100 languages and pro-
vides morphological inflection dictionaries for upto
three part-of-speech tags, nouns (N), adjectives
(ADJ) and verbs (V). While some UniMorph dic-
tionaries include a large number of types (or
paradigms) (German (=15k), Russian (/28k)),
many dictionaries are relatively small (Turkish
(~3.5k), Estonian (<1k)). This puts a limit on
the number of tokens we can perturb via UniMorph
dictionary look-up. To overcome this limitation, we
use the unimorph_inflect toolkit* that takes
as input the lemma and the morphosyntactic de-
scription (MSD) and returns a reinflected word
form. This tool was trained using UniMorph dictio-
naries and generalizes to unseen types. An illustra-
tion of our inflectional perturbation methodology
is described in Table 1.

2.2 MORPHEUS-MULTILINGUAL

Given an input sentence, our proposed method,
MORPHEUS-MULTILINGUAL, identifies adversar-
ial inflectional perturbations to the input tokens
that leads to maximum degradation in performance
of the machine translation system. We first iter-
ate through the sentence to extract all possible in-
flectional forms for each of the constituent tokens.
Since, we are relying on UniMorph dictionaries, we
are limited to perturbing only nouns, adjectives and

Zhttps://github.com/salesforce/morpheus
3https://unimorph.github.io/
*https://github.com/antonisa/unimorph_inflect

50

verbs.> Now, to construct a perturbed sentence, we
iterate through each token and uniformly sample
one inflectional form from the candidate inflections.
We repeat this process N (=50) times and compile
our pool of perturbed sentences.’

To identify the adversarial sentence, we compute
the chrF score (Popovi¢, 2017) using the sacrebleu
toolkit (Post, 2018) and select the sentence that re-
sults in the maximum drop in chrF score (if any). In
our preliminary experiments, we found chrF to be
more reliable than BLEU (Papineni et al., 2002) for
identifying adversarial candidates. While BLEU
uses word n-grams to compare the translation out-
put with the reference, chrF uses character n-grams
instead; which helps with matching morphological
variants of words.

The original MORPHEUS toolkit follows a
slightly different algorithm to identify adversaries.
Similar to our approach, they first extract all pos-
sible inflectional forms for each of the constituent
tokens. Then, they sequentially iterate through the
tokens in the sentence, and for each token, they
select an inflectional form that results in the worst
BLEU score. Once an adversarial form is identi-
fied, they directly replace the form in the original
sentence and continue to the next token. While a
similar approach is possible in our setup, we found
their algorithm to be computationally expensive as
it prevents from performing efficient batching.

It is important to note that neither MORPHEUS-
MULTILINGUAL nor the original MORPHEUS ex-
haustively searches over all possible sentences, due
to memory and time constraints. However, our
approach in MORPHEUS-MULTILINGUAL can be
efficiently implemented and reduces the inference
time by almost a factor of 20. We experiment on
11 different language pairs, therefore, the run time
and computational costs are critical to our experi-
ments.

3 Experiments

In this section, we present a comprehensive eval-
uation of the robustness of X—English machine
translation systems. Since it is natural for NMT
models to be more robust when trained on large
amounts of parallel data, we experiment with two

>Some dictionaries might contain fewer POS tags, for
example, in German we are restricted to just nouns and verbs.

N is a hyperparameter, and in our preliminary experi-
ments, we find N = 50 to be sufficiently high to generate
many uniquely perturbed sentences and also keep the process
computationally tractable.



PRON VERB PART PUNCT ADV  NOUN VERB AUX

Sie wissen nicht s wann Ré&uber kommen  konnen
you-NOM.3PL  knowledge-PRS.3PL  not-NEG when  robber-NOM.PL come-NFIN  can-PRS.3PL
(*) Sie wissten nicht , wann Réauber kommen  kénnen

(*) Sie wissen nicht , wann Réiuber kommen  konne

(*) Sie wisse nicht s wann Réauber kommen  konnte

Table 1: Example inflectional perturbations on a German text.

sets of translation systems. First, we use state-of-
the-art pre-trained models for Russian—English
and German—English from fairseq (Ott et al.,
2019).7 Secondly, we use the multilingual TED
corpus (Qi et al., 2018) to train transformer-based
translation systems from scratch.® Using the TED
corpus allows us to expand our evaluation to a
larger pool of language pairs.

3.1 WMT19 Pretrained Models

We evaluate the robustness of best-performing
systems from WMT19 news translation shared
task (Barrault et al., 2019), specifically for
Russian—English and German—English (Ott et al.,
2019). We follow the original work and use new-
stest2018 as our test set for adversarial evaluation.
Using the procedure described in §2.2, we create
adversarial versions of newstest2018 for both the
language pairs. In Table 2, we present the base-
line and adversarial results using BLEU and chrF
metrics. For both the language pairs, we notice
significant drops on both metrics. Before diving
further into the qualitative analysis of these MT
systems, we first present a broader evaluation on
MT systems trained on multilingual TED corpus.

lg | Baseline |  Adversarial
| BLEU chrF | BLEU chrF NR
rus | 3833 0.63 | 1850 047 0.81
deu | 4840 0.70 | 3343 0.59 1.00
Table 2: Baseline & Adversarial results on new-

stest2018 using fairseq’s pre-trained models. NR
denotes Target-Source Noise Ratio (2).

"Due to resource constraints, we only experiment with the
single models and leave the evaluation of ensemble models
for future work.

8For the selected languages, we train an MT model with
‘transformer_iwslt_de_en’ architecture from fairseq. We
use a sentence-piece vocab size of 8000, and train up to 80
epochs with Adam optimizer (see A.2 in Appendix for more
details)
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3.2 TED corpus

The multilingual TED corpus (Qi et al., 2018) pro-
vides parallel data for over 50 language pairs, but
in our experiments we only use a subset of these
language pairs. We selected our test language pairs
(X—English) to maximize the diversity in language
families, as well as the resources available for train-
ing MT systems. Since we rely on UniMorph
and unimorph_inflect for generating pertur-
bations, we only select languages that have rea-
sonably high accuracy in unimorph_inflect
(>80%). Table 3 presents an overview of the cho-
sen source languages, along with the information
on language family and training resources.

We also quantify the morphological richness for
the languages listed in Table 3. As we are not
aware of any standard metric to gauge morphologi-
cal richness of a language, we use the reinflection
dictionaries to define this metric. We compute the
morphological richness using the Type-Token Ra-
tio (TTR) as follows,

Ntypes (lg) _ Nparadigms (lg)
Niokens (lg) Ntorms (lg)

In Table 3, we report the TTR;, scores mea-
sured on UniMorph dictionaries as well as on the
UniMorph-style dictionaries constructed from TED
dev splits using unimorph_inflect tool. Note
that, TTRy,, as defined here, slightly differs from
the widely known Type-Token ration used for mea-
suring lexical diversity (or richness) of a corpus.

We run MORPHEUS-MULTILINGUAL to gener-
ate adversarial sentences for the validation splits of
the TED corpus. We term a sentence adversarial if
it leads to the maximum drop in chrF score. Note
that, it is possible to have perturbed sentences that
may not lead to any drop in chrF scores. In Figure
1, we plot the fraction of perturbed sentences along
with adversarial fraction for each of the source lan-
guages. We see considerable perturbations for most
languages, with the exception of Swedish, Lithua-
nian, Ukrainian, and Estonian.

TTR,, = ey



lIg  Family Resource TTR
heb Semetic High (0.044, 0.191)
rus Slavic High (0.080, 0.107)
tur Turkic High (0.016, 0.048)
deu Germanic High (0.210, 0.321)
ukr Slavic High (0.103, 0.143)
ces Slavic High (0.071, 0.082)
swe Germanic Medium  (0.156, 0.281)
1it Baltic Medium  (0.051, 0.084)
slv Slavic Low (0.109, 0.087)
kat Kartvelian Low (0.057, —)
est Uralic Low (0.026, 0.056)

Table 3: List of language chosen from multilingual
TED corpus. For each language, the table presents the
language family, resource level as the Type-Token ratio
(TTRy,). We measure the ratio using the types and to-
kens present in the reinflection dictionaries (UniMorph,
lexicon from TED dev)

% all edits

100 A
% adversarial edits

80

60 4

% validation set

40 A

20 A

heb rus tur deu ukr ces swe lit slv kat est

Figure 1: Perturbation statistics for selected TED lan-
guages

In preparing our adversarial set, we retain the
original source sentence if we fail to create any per-
turbation or if none of the identified perturbations
lead to a drop in chrF score. This is to make sure the
adversarial set has the same number of sentences
as the original validation set. In Table 4, we present
the baseline and adversarial MT results. We notice
a considerable drop in performance for Hebrew,
Russian, Turkish and Georgian. As expected, the %
drops are correlated to the perturbations statistics
from Figure 1.

3.3 Translating Learner’s Text

In the previous sections (§3.1, §3.2), we have seen
the impact of noisy inputs to MT systems. While,
these results indicate a need for improving the ro-
bustness of MT systems, the above-constructed ad-
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i :X—eng
lUngram&ical]% —‘ English text I

(Only morph
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Figure 2: Schematic for preliminary evaluation on
learners’ language text. This is similar to the methodol-
ogy used in Anastasopoulos (2019).

versarial sets are however synthetic. In this section,
we evaluate the impact of morphological inflection
related errors directly on learners’ text.

To this end, we utilize two grammatical er-
ror correction (GEC) datasets, German Falko-
MERLIN-GEC (Boyd, 2018), Russian RULEC-
GEC (Rozovskaya and Roth, 2019). Both of these
datasets contain labeled error types relating to word
morphology. Evaluating the robustness on these
datasets will give us a better understanding of the
performance on actual text produced by second
language (L2) speakers.

Unfortunately, we don’t have gold English trans-
lations for the grammatically incorrect (or cor-
rected) text from GEC datasets. While there is a re-
lated prior work (Anastasopoulos et al., 2019) that
annotated Spanish translations for English GEC
data, we are not aware of any prior work that pro-
vide gold English translations for grammatically
incorrect data in non-English languages. There-
fore, we propose a pseudo-evaluation methodol-
ogy that allows for measuring robustness of MT
systems. A schematic overview of our methodol-
ogy is presented in Figure 2. We take the ungram-
matical text and use the gold GEC annotations to
correct all errors except for the morphology re-
lated errors. We now have ungrammatical text that
only contains morphology related errors and it is
similar to the perturbed outputs from MORPHEUS-
MULTILINGUAL. Since, we don’t have gold trans-
lations for the input Russian/German sentences,
we use the machine translation output of the fully
grammatical text as reference and the translation
output of partially-corrected text as hypothesis. In
Table 5, we present the results on both Russian and
German learners’ text.

Overall, we find that the pre-trained MT models
from fairseq are quite robust to noise in learn-
ers’ text. We manually inspected some examples,
and found the MT systems to sufficiently robust
to morphological perturbations and changes in the
output translation (if any) are mostly warranted.



X—English Code # train ‘ Baseline ‘ Adversarial
| BLEU  chrF |  BLEU chrF NR
Hebrew heb 211K | 40.06 0.5898 | 33.94 (-15%) 0.5354 (-9%) 1.56
Russian rus 208K | 25.64 0.4784 | 11.70 (-54%) 0.3475(-27%) 1.03
Turkish tur 182K | 27.77 0.5006 | 18.90 (-32%) 0.4087 (-18%) 1.43
German deu 168K | 34.15 0.5606 | 31.29 (-8%) 0.5373 (-4%) 1.82
Ukrainian ukr 108K | 25.83 0.4726 | 25.66 (-1%) 04702 (-1%) 2.96
Czech ces 103K | 29.35 0.5147 | 26.58 (-9%) 0.4889 (-5%) 2.11
Swedish swe 56K | 36.93 0.5654 | 36.84 (-0%) 0.5646 (-0%) 3.48
Lithuanian lit 41K | 18.88 0.3959 | 18.82 (-0%) 0.3948 (-0%) 3.42
Slovenian slv 19K | 11.53 0.3259 | 10.48 (-9%) 0.3100 (-5%) 3.23
Georgian kat 13K 5.83 0.2462 | 4.92(-16%) 0.2146 (-13%) 2.49
Estonian est 10K 6.68 0.2606 | 6.53 (-2%) 0.2546 (-2%) 4.72
Table 4: Results on multilingual TED corpus (Qi et al., 2018)

Dataset f-BLEU f-chrF compare the impact of each perturbation type (POS,

X dim) on the overall performance of MT model. Ad-
Russian GEC 83.77 91.56 ditionally, as seen in Figure 1, all inflectional per-

Y g > p

German GEC  89.60 93.95

Table 5: Translation results on Russian and German
GEC corpora. An oracle (aka. fully robust) MT system
would give a perfect score. We adopt the faux-BLEU
terminology from Anastasopoulos (2019). f-BLEU is
identical to BLEU, except that it is computed against a
pseudo-reference instead of true reference.

Viewing these results in combination with results
on TED corpus, we believe that X—English are
robust to morphological perturbations at source as
long as they are trained on sufficiently large parallel
corpus.

4 Analysis

To better understand what makes a given MT sys-
tem to be robust to morphology related grammati-
cal perturbations in source, we present a thorough
analysis of our results and also highlight a few lim-
itations of our adversarial methodology.

Adversarial Dimensions: To quantify the im-
pact of each inflectional perturbation, we perform
a fine-grained analysis on the adversarial sentences
obtained from multilingual TED corpus. For each
perturbed token in the adversarial sentence, we
identify the part-of-speech (POS) and the feature
dimension(s) (dim) perturbed in the token. We uni-
formly distribute the % drop in sentence-level chrF
score to each (POS, dim) perturbation in the ad-
versarial sentence. This allows us to quantitatively
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turbations need not cause a drop in chrF (or BLEU)
scores. The adversarial sentences only capture the
worst case drop in chrF. Therefore, to analyze the
overall impact of the each perturbation (POS, dim),
we also compute the impact score on the entire set
of perturbed sentences explored by MORPHEUS-
MULTILINGUAL.

Table 8 (in Appendix) presents the results for
all the TED languages. First, the trends for adver-
sarial perturbations is quite similar to all explored
perturbations. This indicates that the adversarial
impact of a perturbation is not determined by just
the perturbation type (POS, dim) but is lexically
dependent.

Evaluation Metrics: In the results presented in
§3, we reported the performance using BLEU and
chrF metrics (following prior work (Tan et al.,
2020)). We noticed significant drops on these met-
rics, even for high-resource languages like Rus-
sian, Turkish and Hebrew, including the state-of-
the-art fairseq models. To better understand
these drops, we inspected the output translations of
adversarial source sentences. We found a number
of cases where the new translation is semantically
valid but both the metrics incorrectly score them
low (see S2 in Table 6). This is a limitation of using
surface level metrics like BLEU/chrF.
Additionally, we require the new translation to
be as close as possible to the original translation,
but this can be a strict requirement on many occa-
sions. For instance, if we changed a noun in the
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Figure 3: Correlation between Noise Ratio (NR) and
# train. The results indicate that, larger the training
data, the models are more robust towards source pertur-
bations (NR~1).

source from its singular to plural form, it is natural
to expect a robust translation system to reflect that
change in the output translation. To account for this
behavior, we compute Target-Source Noise Ratio
(NR) metric from Anastasopoulos (2019). NR is
computed as follows,

100 — BLEU(t, t)
~ 100 — BLEU(s, 3)

NR(s,t,5,t) 2)
The ideal NR is ~1, where a change in the source
(s — §) results in a proportional change in the tar-
get (t — t). For the adversarial experiments on
TED corpus, we compute the NR metric for each
language pair and the results are presented in Ta-
ble 4. Interestingly, while Russian sees a major
drop in BLEU/chrF score, the noise ratio is close
to 1. This indicates that the Russian MT is actu-
ally quite robust to morphological perturbations.
Furthermore, in Figure 3, we present a correlation
analysis between the size of parallel corpus avail-
able for training vs noise ratio metric. We see a
very strong negative correlation, indicating that
high-resource MT systems (e.g., heb, rus, tur)
are quite robust to inflectional perturbations, inspite
of the large drops in BLEU/chrF scores. Addition-
ally, we noticed that morphological richness of the
source language (measured via TTR in Table 3)
doesn’t play any significant role in the MT perfor-
mance under adversarial settings (e.g., rus, tur
vs deu). The scatter plot between TTR and NR for
TED translation task is presented in Figure 4.

Morphological Richness: To analyze the im-
pact of morphological richness of source, we look
deeper into the Slavic language family. We ex-
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Figure 4: Correlation between Target-Source Noise Ra-
tio (NR) on TED machine translation and Type-Token
Ratio (TTR,) of the source language (from UniMorph).
The results indicate that the morphological richness
of the source language doesn’t necessarily correlate to
NMT robustness.

perimented with four languages within the Slavic
family, Czech, Ukranian, Russian and Slovenian.
All except Slovenian are high-resource. These
languages differ significantly in their morphologi-
cal richness (TTR) with, TTR .5 < TTRg1, <<
TTR,,s << TTRyx,.” As we have already seen in
above analysis (see Figure 4), morphological rich-
ness isn’t indicative of the noise ratio (NR), and
this behavior is also true for Slavic languages. We
now check if morphological richness determines
the drop in BLEU/chrF scores? In fact, we find
that this is also not the case. We see larger % drop
for rus as compared to s1v or ukr. We instead
notice that the % drop in BLEU/chrF is dependent
on the % edits we make to the validation set. The
% edits we were able to make follows the order,
Orus >> Oces > Os1v >>> Oukr (see Figure 1).
While NR is driven by size of training set, and %
drop in BLEU is driven by % edits to the validation
set. The % edits in turn depends on the size of
UniMorph dictionaries and not on morphological
richness of the language. Therefore, we conclude
that both the metrics, % drop in BLEU/chrF and
NR are dependent on the resource size (parallel
data and UniMorph dictionaries) and not on the
morphological richness of the language.

Semantic Change: In our adversarial attacks,
we aim to create a ungrammatical source via inflec-
tional edits and evaluate the robustness of systems
for these edits. While these adversarial attacks can
help us discover any significant biases in the transla-

*TTR), measured on lexicons from TED dev splits.
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tion systems, they can often lead to unintended con-
sequences. Consider the example Russian sentence
S1 (s) from Table 6. The sentence is grammatically
correct, with the subject Tpenep (‘Coach’) and
object urpoka (‘player’) in NOM and ACC cases
respectively. If were perturb this sentence to A-
S1 (8), the new words Tpenepa (‘Coach’), and
urpok (‘player’) are now in ACC and NOM cases
respectively. Due to case assignment phenomenon
in Russian, this perturbation (s — 5) has essen-
tially swapped the subject and object roles in the
Russian sentence. As we can see in the example,
the English translation, ¢ (A-T1) does in fact cor-
rectly capture this change. This indicates that our
attacks can sometimes lead to significant change
in the semantics of the source sentence. Handling
such cases would require deeper understanding of
each language grammar and we leave this for future
work.

Elasticity: As we have seen in discussion on
noise ratio, it is natural for MT systems to transfer
changes in source to the target. However, inspired
by (Anastasopoulos, 2019), we wanted to under-
stand how this behavior changes as we increase the
number of edits in the source sentence. For this
purpose, we first bucket all the explored perturbed
sentences based on the number of edits (or perturba-
tions) from the original source. Within each bucket,
we compute the fraction of perturbed source sen-
tences that result in same translation as the original
source. We define this fraction as the elasticity
score, i.e. whether the translation remains the same
under changes in source. Figure 5 presents the
results and we find the elasticity score dropping
quickly to zero as the # edits increase. Notably,
ukr drops quickly to zero, while rus retains rea-
sonable elasticity score for higher number of edits.
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Aggressive edits: Our algorithm doesn’t put any
restrictions on the number of tokens that can be
perturbed in a given sentence. This can lead to ag-
gressive edits, especially in languages like Russian
that are morphologically-rich and the reinflection
lexicons are sufficiently large. As we illustrate in
Figure 6, median edits per sentence in rus is 5,
significantly higher than the next language (tur
at 1). Such aggressive edits in Russian can lead
to unrealistic sentences, and far from our intended
simulation of learners’ text. We leave the idea of
thresholding # edits to future work.

Adpversarial Training: In an attempt to improve
robustness of NMT systems against morphologi-
cal perturbations, we propose training NMT mod-
els with augmenting adversarially perturbed sen-
tences. Due to computational constraints, we eval-
uate this setting only for s1v. We follow the strat-
egy outlined in Section 2 to obtain adversarial per-
turbations for TED corpus training data. We ob-
serve that the adversarially trained model performs
marginally poorer (BLEU 10.30 from 10.48 when
trained without data augmentation). We hypothe-
size that this could possibly due to small training
data, and believe that this training setting can better
benefit models with already high BLEU scores. We
leave extensive evaluation and further analysis on
adversarial training to future work.

5 Conclusion

In this work, we propose MORPHEUS-
MULTILINGUAL, a tool to analyze the robustness
of X—English NMT systems under morphological
perturbations. Using this tool, we experiment
with 11 different languages selected from diverse
language families with varied training resources.



S1 Source (s) TpeHep MOTHOCTHIO MOIEPKAJ UTPOKA.
rus T1 Target (t)  The coach fully supported the player.
A-S1 Source (§) Tpenepa MOJHOCTBIO TMOAIEPIKAT UTPOK.
A-T1  Target (f) The coach was fully supported by the player.
S2 Source (s) Dinosaurier benutzte Tarnung, um seinen Feinden auszuweichen
deu T2 Target (t)  Dinosaur used camouflage to evade its enemies (1.000)
A-S2  Source (5) Dinosaurier benutze Tarnung, um seinen Feindes auszuweichen
A-T2  Target (f) Dinosaur Use camouflage to dodge his enemy (0.512)
S3 Source (s) VY Hac BooOIIe TeTeCHbIE HAKA3AHNUSA HE PEIKOCTD.
rus T3 Target (!)  In general, corporal punishment is not uncommon. (0.885)
A-S3 Source () VYV Hac BooDIIEe TeTeCHBIX HAKA3ZAHNN HE PEeIKOCTSIX.
A-T3  Target (f) We don’t have corporal punishment at all. (0.405)
S4 Source (s) Bor resnecHble HakaszaHus - criacubo, HE HAJIO.
Fus T4 Target ()  That’s corporal punishment - thank you, you don’t have to. (0.458)
A-S4  Source (5) Bot Tenecubix HakazaHuil - cracubax, He HaJIO.
A-T4  Target () That’s why I'm here. (0.047)
S5 Source (s) Die Schielereien haben nicht aufgehort.
deu TS Target ()  The shootings have not stopped. (0.852)
A-S5  Source (5) Die SchieBlereien habe nicht aufgehort.
A-T5  Target (t) The shootings did not stop, he said. (0.513)
S6 Source (s) Bcskoe ObIBaer.
rus T6 Target (f)  Anything happens. (0.587)
A-S6  Source (5) Bcsikoe OyjieTe ObIBATS.
A-T6  Target (f) You’ll be everywhere. (0.037)
S7 Source (s) 099300 bymano.
Kat T7 Target (t) It ’s areal school. (0.821)
A-S7  Source (3) 60830amb0 bamangdo.
A-T7  Target(f) There ’s a man who ’s friend. (0.107)
S8 Source (s) Ning meie laste tuleviku varastamine saab iihel pdeval kuriteoks.
ost T8 Target (!)  And our children ’s going to be the future of our own day. (0.446)
A-S8  Source (5) Ning meie laptegs tuleviku varastamine saab iihel pdeval kuriteoks.
A-T8  Target ()  And our future is about the future of the future. (0.227)
S9 Source (s) Nad pagevad iile piiride nagu see.
ast T9 Target (t)  They like that overdights like this. (0.318)
A-S9  Source (5) Nad pagevad iile piirete nagu see.
A-T9  Target (f) They dress it as well as well. (0.141)
S10 Source (s) Moit memymika ObLT HEOOBIYAWHBIM YEJIOBEKOM TOTO BPEMEHH.
rus T10 Target (¢) My grandfather was an extraordinary man at that time. (0.802)
A-S10 Source (5) Moit memymka 0y/1é HEeOObIMAITHA T€IOBEKOB TOIMO BPEMI.
A-T10 Target (f) My grandfather is incredibly harmful. (0.335)

Table 6: Qualitative analysis. (1) semantic change, (2) issues with evaluation metrics, (3,4,5,6,7,10) good examples
for attacks, (8) poor attacks, (9) poor translation quality (s — )
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We evaluate NMT models trained on TED corpus
as well as pretrained models readily available as
part of fairseq library. We observe a wide
range of 0-50% drop in performances under
adversarial setting. We further supplement our
experiments with an analysis on GEC-learners
corpus for Russian and German. We qualitatively
and quantitatively analyze the perturbations
created by our methodology and presented its
strengths as well as limitations, outlining some
avenues for future research towards building more
robust NMT systems.
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A Appendix
A.1 UniMorph Example

An example from German UniMorph dictionary is
presented in Table 7.

Paradigm Form MSD

abspielen (‘play’) abgespielt (‘played’) V.PTCP;PST
abspielen (‘play’) abspielend (‘playing’) V.PTCP;PRS
abspielen (‘play’) abspielen (‘play’) V;NFIN

Table 7: Example inflections for German verb abspie-
len (‘play’) from the UniMorph dictionary.

A.2 MT training

For all the languages in TED corpus, we train
Any—English using the fairseq toolkit. Specif-
ically, we use the ‘transformer_iwslt_de_en’ archi-
tecture, and train the model using Adam optimizer.
We use an inverse square root learning rate sched-
uler with warm-up update steps of 4000. In the
linear warm-up phase, we use an initial learning
rate of le-7 until a configured rate of 2e-4. We use
cross entropy criterion with label smoothing of 0.1.

A.3 Dimension Analysis



Dimension ces deu est heb kat lit rus slv swe tur ukr

ADJ.Animacy - - - - - - 35 1(0.39) - - - -
ADJ.Case 43 1((,_3 1) - - - 10.67(2_59) - 4.78(()_9 1) - 5.05(5_()5) - 6.04( 1.10)
ADJ.Comparison - - - - - 7.990.46) - - - - -
ADJ.Gender 3.83(0_73) - - - - 6.81(.1_35) 5.30(1_00) - - - -
ADJ.Number 4-07(0.78) - - - 13.90(1‘52) 6.31(,2‘26) 4467«)‘94) - 5.05(5‘05) 7.92(2_23) 6.25(1.29)
ADJ.Person - - - - - - - - - 8489(243) -
N.Animacy - - - - - - 6.53(1.19 - - - -
N.Case 6.94(0_31) 6.39(1_26) ]2‘35(1_50) - ]5.38(0_93) - 665(1_20) - 4.29(1_()5) 14.39(2_37) 10~28(7_66)
N.Definiteness - - - - - - - - 8.36(1.61) - -
N.Number 5.44(0_77) 5.70(],27) 8.10(1,33) 16.22(5‘92) 1446(0.66) - 6412“‘22) - 4.30(1‘52) 13.08(2_31) 21-20(]5.96)
N.Possession - - - 12.63431 - - - - - - -
V.Aspect - - - - 14170038 - - - - - -
V.Gender - - - - - - 6.52051 - - - -
V.Mood 13-17(2.78) 1589(2‘77) - - 11.1 1(0_53) - - 2149(3_73) - - -
V.Number 8.23(2'72) 32.86(3, 12) - 13.78(4.60) 9.02(1 33) - 6423(1 A44) 21 .47(,9‘47) - - -
V.Person 6.58(2(,9) 6.22(].50) - 10.86(4_99) 12.37(1_33) - 6.10(1.29) - - - -
V.Tense - - - 17.52(7_[3) 13.09(1_05) - 6.59(1_61) - - - -
V.CVB.Tense - - - - - - 6.70(0_37) - - - 9.09(2,52)
V.MSDRAASpeCI - - - - 14439(4_68) - - - - - -

V.PTCP.Gender 10.28(2.75) - - - - - - - - - -
V.PTCP.Number 9.312:51 - - - - - - - - - -

Table 8: Fine-grained analysis of X—English translation performance w.r.t the perturbation type (POS, Morpho-
logical feature dimension). The number reported in this table indicate the average % drop in sentence level chrF for
an adversarial pertubation on a token with POS on the dimension (dim). The numbers in the parentheses indicate
average % drop for all the tested perturbations including the adversarial perturbations.
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Abstract

Neural models excel at extracting statistical
patterns from large amounts of data, but strug-
gle to learn patterns or reason about language
from only a few examples. In this paper, we
ask: Can we learn explicit rules that general-
ize well from only a few examples? We ex-
plore this question using program synthesis.
We develop a synthesis model to learn phonol-
ogy rules as programs in a domain-specific lan-
guage. We test the ability of our models to
generalize from few training examples using
our new dataset of problems from the Linguis-
tics Olympiad, a challenging set of tasks that
require strong linguistic reasoning ability. In
addition to being highly sample-efficient, our
approach generates human-readable programs,
and allows control over the generalizability of
the learnt programs.

1 Introduction

In the last few years, the application of deep neural
models has allowed rapid progress in NLP. Tasks
in phonology and morphology have been no excep-
tion to this, with neural encoder-decoder models
achieving strong results in recent shared tasks in
phonology (Gorman et al., 2020) and morphology
(Vylomova et al., 2020). However, the neural mod-
els that perform well on these tasks make use of
hundreds, if not thousands of training examples
for each language. Additionally, the patterns that
neural models identify are not interpretable. In
this paper, we explore the problem of learning in-
terpretable phonological and morphological rules
from only a small number of examples, a task that
humans are able to perform.

Consider the example of verb forms in the lan-
guage Mandar presented in Table 1. How would
a neural model tasked with filling the two blank
cells do? The data comes from a language that

*Work done while at the University of Richmond
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toV to be Ved
mappasuy  dipasuy
mattunu ditunu
? ditimbe
? dipande

Table 1: Verb forms in Mandar (McCoy, 2018)

is not represented in large-scale text datasets that
could allow the model to harness pretraining, and
the number of samples presented here is likely not
sufficient for the neural model to learn the task.

However, a human would fare much better at
this task even if they didn’t know Mandar. Identi-
fying rules and patterns in a different language
is a principal concern of a descriptive linguist
(Brown and Ogilvie, 2010). Even people who
aren’t trained in linguistics would be able to solve
such a task, as evidenced by contestants in the Lin-
guistics Olympiads', and general-audience puzzle
books (Bellos, 2020). In addition to being able to
solve the task, humans would be able to express
their solution explicitly in terms of rules, that is to
say, a program that maps inputs to outputs.

Program synthesis (Gulwani et al., 2017) is a
method that can be used to learn programs that map
an input to an output in a domain-specific language
(DSL). It has been shown to be a highly sample-
efficient technique to learn interpretable rules by
specifying the assumptions of the task in the DSL
(Gulwani, 2011).

This raises the questions (i) Can program syn-
thesis be used to learn linguistic rules from only
a few examples? (ii) If so, what kind of rules can
be learnt? (iii) What kind of operations need to ex-
plicitly be defined in the DSL to allow it to model
linguistic rules? (iv) What knowledge must be im-

"https://www.ioling.org/

Proceedings of the Seventeenth SIGMORPHON Workshop on Computational Research

in Phonetics, Phonology, and Morphology,pages 60-71
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plicitly provided with these operations to allow the
model to choose rules that generalize well?

In this work, we use program synthesis to
learn phonological rules for solving Linguistics
Olympiad problems, where only the minimal num-
ber of examples necessary to generalize are given
(Sahin et al., 2020). We present a program syn-
thesis model and a DSL for learning phonological
rules, and curate a set of Linguistics Olympiad
problems for evaluation.

We perform experiments and comparisons to
baselines, and find that program synthesis does
significantly better than our baseline approaches.
We also present some observations about the ability
of our system to find rules that generalize well, and
discuss examples of where it fails.

2 Program synthesis

Program synthesis is “the task of automatically
finding programs from the underlying program-
ming language that satisfy (user) intent expressed
in some form of constraints” (Gulwani et al., 2017).
This method allows us to specify domain-specific
assumptions as a language, and use generic synthe-
sis approches like FlashMeta (Polozov and Gul-
wani, 2015) to synthesize programs.

The ability to explicitly encode domain-specific
assumptions gives program synthesis broad appli-
cability to various tasks. In this paper, we explore
applying it to the task of learning phonological
rules. Whereas previous work on rule-learning has
focused on learning rules of a specific type (Brill,
1992; Johnson, 1984), the DSL in program synthe-
sis allows learning rules of different types, and in
different rule formalisms.

In this work, we explore learning rules similar to
rewrite rules (Chomsky and Halle, 1968) that are
used extensively to describe phonology. Sequences
of rules are learnt using a noisy disjunctive synthe-
sis algorithm NDSyn (Iyer et al., 2019) extended to
learn stateful multi-pass rules (Sarthi et al., 2021).

2.1 Phonological rules as programs

The synthesis task we solve is to learn a program in
a domain-specific language (DSL) for string trans-
duction, that is, to transform a given sequence of
input tokens ¢ € Z* to a sequence of output tokens
o € O*, where 7 is the set of input tokens, and O
is the set of output tokens. Each token is a symbol
accompanied by a feature set, a set of key-value
pairs that maps feature names to boolean values.
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We learn programs for token-level examples,
which transform an input token in its context to
output tokens. The program is a sequence of rules
which are applied to each token in an input string
to produce the output string. The rules learnt are
similar to rewrite rules, of the form

Gy P20 1 XP1P2 - Qp = T

where (i) X : Z — B is a boolean predicate that
determines input tokens to which the rule is applied
(i) ¢; : T — B is a boolean predicate applied to
the i character relative to X, and the predicates ¢
collectively determine the context in which the rule
is applied (iii) 7" : Z — O is a function that maps
an input token to a sequence of output tokens.

X and ¢ belong to a set of predicates P, and T’
is a function belonging to a set of transformation
functions 7. P and T are specified by the DSL.

We allow the model to synthesize programs that
apply multiple rules to a single token by synthesiz-
ing rules in passes and maintaining state from one
pass to the next. This allows the system to learn
stateful multi-pass rules (Sarthi et al., 2021).

2.2 Domain-specific language

The domain-specific language (DSL) is the declar-
ative language which defines the allowable string
transformation operations. The DSL is defined by
a set of operators, a grammar which determines
how they can be combined, and a semantics which
determines what each operator does. By defining
operators to capture domain-specific phenomena,
we can reduce the space of programs to be searched
to include those programs that capture distinctions
relevant to the domain. This allows us to explicitly
encode knowledge of the domain into the system.

Operators in the DSL also have a score asso-
ciated with each operator that allows for setting
domain-specific preferences for certain kinds of
programs. We can combine scores for each oper-
ator in a program to compute a ranking score that
we can use to identify the most preferred program
among candidates. The ranking score can capture
implicit preferences like shorter programs, more/-
less general programs, certain classes of transfor-
mations, etc.

The DSL defines the predicates P and set of
transformations 7 that can be applied to a partic-
ular token. The predicates and transformations in
the DSL we use, along with the description of their
semantics, can be found in Tables 2 and 3.



Predicate

IsToken(w, s,%) Is x equal to the token s? This allows us to evaluate matches with specific

tokens.

Is(w, f,)

Is f true for 2? This allows us to generalize beyond single tokens and use
features that apply to multiple tokens.

TransformationApplied(w,t,1%) Has the transformation ¢ has been applied to x in a previous pass? This

allows us to reference previous passes in learning rules for the current pass.

Not (p) Negates the predicate p.

Table 2: Predicates that are used for synthesis. The predicates are applied to a token «x that is at an offset ¢ from
the current token in the word w. The offset may be positive to refer to tokens after the current token, zero to refer
to the current token, or negative to refer to tokens before the current token.

Transformation

ReplaceBy(z, s1, S2) If x is s1, it is replaced with s2. This allows the system to learn conditional

substitutions.

ReplaceAnyBy(z, s) x is replaced with s. This allows the system to learn unconditional substitutions.

Insert(z, S) This inserts a sequence of tokens S after x at the end of the pass. It allows for the

insertion of variable-length affixes.

Delete(x) This deletes = from the word at the end of the pass.

CopyReplace(z, 1)
CopyInsert(x,1)

These are analogues of the ReplaceBy and Insert transformations where the
token which is added is the same as the token at an offset ¢ from . They allow
the system to learn phonological transformations such as assimilation and
gemination.

Identity(x) This returns = unchanged. It allows the system where a transformation applies

under certain conditions, but does not under others.

Table 3: Transformations that are used for synthesis. The transformations are applied to a token x in the word w.
The offset ¢ for the Copy transformations may be positive to refer to tokens after the current token, zero to refer to
the current token, or negative to refer to tokens before the current token.

output := Map(disjunction, input_tokens)
disjunction := Else(rule, disjunction)
rule := transformation

| IfThen(predicate, rule);

Figure 1: IfThen-Else statements in the DSL

Sequences of rules are learnt as disjunctions of
IfThen operators, and are applied to each token
of the input using a Map operator (Figure 1). The
conjunction of predicates X and ¢ that define the
context are learnt by nesting IfThen operators.

A transformation produces an token that is
tagged with the transformation that is applied. This
allows for maintaining state across passes.

The operators in our DSL are quite generic and
can be applied to other string transformations as
well. In addition to designing our DSL for string
transformation tasks, we allow for phonological
information to be specified as features, which are a
set of key-value pairs that map attributes to boolean
values. While we restrict our investigation to fea-
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tures based only on the symbols in the input, more
complex features based on meaning and linguistic
categories can be provided to a system that works
on learning rules for more complex domains like
morphology or syntax. We leave this investigation
for future work.

2.3 Synthesis algorithm

We use an extension (Sarthi et al., 2021) of the
NDSyn algorithm (Iyer et al., 2019) that can syn-
thesize stateful multi-pass rules. Iyer et al. (2019)
describe an algorithm for selecting disjunctions
of rules, and use the FlashMeta algorithm as the
rule synthesis component. Sarthi et al. (2021) ex-
tend the approach proposed by Iyer et al. (2019)
for disjunctive synthesis to the task of grapheme-
to-phoneme (G2P) conversion in Hindi and Tamil.
They propose the idea of learning transformations
on token aligned examples, and use language-
specific predicates and transformations to learn
rules for G2P conversion. We use a similar ap-
proach, and use a different set of predicates and



multi-pass

a Candidates A
m #1. IfThen(IsToken(w,”$",1),
IfThen(Is(w,"voice”,0),
examples Insert(x,"2"))) Rul
k —k #2. IfThen(IsToken(w,”t",0), ules
Words * > x IfThen(IsToken(w,"$",1),
align Insert(x,”s"))) Else (#1,
exglnﬁ:}es ket — keets 9 t i tb FM #3. IfThen(IsToken(w,"$",1), Elie(“'
_ S Insert(x,"s")), Else (#5)
dog — dogz d—d #4. IfThen(IsToken(w,"g",@), )
IfThen(IsToken(w,"$",1), )
2= Insert(x,”z")))
g—9g #5. IfThen(
sz Not (IsToken(w,"$",1)),
o =" J Identity(x)) Preram

Figure 2: An illustration of the synthesis algorithm. FM is FlashMeta, which synthesizes rules which are com-
bined into a disjunction of rules by NDSyn. Here, rule #1 is chosen over #4 since it uses the more general concept
of the voice feature as opposed to a specific token, and thus has a higher ranking score.

transformations that are language-agnostic. Fig-
ure 2 sketches the working of the algorithm.

The NDSyn algorithm is an algorithm for learn-
ing disjunctions of rules, of the form shown in
Figure 1. Given a set of examples, it first gen-
erates a set of candidate rules using the Flash-
Meta synthesis algorithm (Polozov and Gulwani,
2015). This algorithm searches for a program in the
DSL that satisfies a set of examples by recursively
breaking down the search problem into smaller sub-
problems. Given an operator, and the input-output
constraints it must satisfy, it infers constraints on
each of the arguments to the operator, allowing it to
recursively search for programs that satisfy these
constraints on each of the arguments. For exam-
ple, given the Is predicate and a set of examples
where the predicate is true or false, the algorithm
infers constraints on the arguments the token s and
offset ¢ such that the set of examples is satisfied.
The working of FlashMeta is illustrated with an
example in Figure 3. We use the implementation of
the FlashMeta algorithm available as part of the
PROSE? framework.

From the set of candidate rules, NDSyn selects
a subset of rules with a high ranking score that
correctly answers the most examples as well incor-
rectly answers the least®. Additional details about
the algorithm are provided in Appendix A.

The synthesis of multi-pass rules proceeds in
passes. In each pass, a set of token-aligned exam-
ples is provided as input to the NDSyn algorithm.
The resulting rules are then applied to all the exam-

2https://www.microsoft.com/en—u.Js/research/
group/prose/

3 A rule will not produce any answer to examples that don’t
satisfy the context constraints of the rule.

ples, and those that are not solved are passed as the
set of examples to NDSyn in the next pass. This
proceeds until all the examples are solved, or for a
maximum number of passes.

3 Dataset

To test the ability of our program synthesis system
to learn linguistic rules from only a few examples,
we require a task with a small number of training
examples, and a number of test examples which
measure how well the model generalises to unseen
data. Additionally, to ensure a fair evaluation, the
test examples should be chosen such that the sam-
ples in the training data provide sufficient evidence
to correctly solve the test examples.

To this end, we use problems from the Linguis-
tics Olympiad. The Linguistics Olympiad is an
umbrella term describing contests for high school
students across the globe. Students are tasked with
solving linguistics problems—a genre of composi-
tion that presents linguistic facts and phenomena
in enigmatic form (Derzhanski and Payne, 2010).
These problems typically have 2 parts: the data
and the assignments.

The data consists of examples where the solver is
presented with the application rules to some linguis-
tic forms (words, phrases, sentences) and the forms
derived by applying the rules to these forms. The
data typically consists of 20-50 forms, the minimal
number of examples required to infer the correct
rules is presented (Sahin et al., 2020).

The assignments provide other linguistic forms,
and the solver is tasked with applying the rules
inferred from the data to these forms. The forms
in the assignments are carefully selected by the
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_—

IfThen(IsToken(w,”"a”,-1),
ReplaceBy (x,"b","d"))

IfThen(IsToken(w,"b",0),
ReplaceAnyBy (x,"d"))

IfThen(IsToken(w,"c",1),
ReplaceAnyBy (x,"d"))

[ Inverse SemanticCSrfrthen ]

predicate

abc — True

Y

' Search for rule |——| ReplaceBy(x,"b","d")
’ ReplaceAnyBy (x,"d")

IsToken(w,"a",-1)
IsToken(w,"b",0)
IsToken(w,"c",1)

Figure 3: An illustration of the search performed by the FlashMeta algorithm. The blue boxes show the spec-
ification that an operator must satisfy in terms of input-output examples, with the input token underlined in the

context of the word. The

of an operator is a function that is used to infer the specification for

each argument of the operator based on the semantics of the operator. This may be a single specification (as for
predicate) or a disjunction of specifications (as for token and offset). The algorithm then recursively searches for
programs to satisfy the specification for each argument, and combines the results of the search to obtain a program.
The search for the rule in an IfThen statement proceeds similarly to the search for a predicate. Examples of pro-
grams that are inferred from a specification are indicated with = . A dashed line between inferred specifications

indicates that the specifications are inferred jointly.

designer to test whether the solver has correctly
inferred the rules, including making generalizations
to unseen data. This allows us to see how much of
the intended solution has been learnt by the solver
by examining responses to the assignments.

The small number of training examples (data)
tests the generalization ability and sample effi-
ciency of the system, and presents a challenging
learning problem for the system. The careful se-
lection of test examples (assignment) lets us use
them to measure how well the model learns these
generalizations.

We present a dataset of 34 linguistics problems,
collected from various publicly accessible sources.
These problems are based on phonology, and some
aspects of the morphology of languages, as well
as the orthographic properties of languages. These
problems are chosen such that the underlying rules
depend only on the given word forms, and not
on inherent properties of the word like grammat-
ical gender or animacy. The problems involve
(1) inferring phonological rules in morphological
inflection (Table 4a) (2) inferring phonological
changes between multiple related languages (Ta-
ble 4b) (3) converting between the orthographic
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form of a language and the corresponding phono-
logical form (Table 4c) (4) marking the phonolog-
ical stress on a given word (Table 4d). We refer
to each of these categories of problems as mor-
phophonology, multilingual, transliteration, and
stress respectively. We further describe the dataset
in Appendix B*.

3.1 Structure of the problems

Each problem is presented in the form of a matrix
M. Each row of the matrix contains data pertaining
to a single word/linguistic form, and each column
contains the same form of different words, i.e.,
an inflectional or derivational paradigm, the word
form in a particular language, the word in a partic-
ular script, or the stress values for each phoneme in
a word. A test sample in this case is presented as a
particular cell M;; in the table that has to be filled.
The model has to use the data from other words in
the same row (M;.) and the words in the column
(M) to predict the form of the word in M;;.

In addition to the data in the table, each prob-
lem contains some additional information about the
symbols used to represent the words. This addi-

“The dataset is available here.



base form negative form Turkish  Tatar Listuguj Pronunciation Aleut Stress

joy kas joyarya’ bandir mandir g'’p'ta’q goboda:x tatul 01000

bi:law kas bika’law yelken cilkan epsaqtejg epsaxteck notyolqin 000010000

tipoyswda  ? ? osta emtogwatg 7 sawat ?

? kas wurula:la’ bilezik ? ? omteskom qalpugal 00001000
(a) Movima negation (b) Turkish and Tatar (c) Micmac orthography (d) Aleut stress

Table 4: A few examples from different types of Linguistics Olympiad problems.

that is part of the test set.

tional information is meant to aid the solver under-
stand the meaning of a symbol they may not have
seen before. We manually encode this information
in the feature set associated with each token for
synthesis. Where applicable, we also add conso-
nant/vowel distinctions in the given features, since
this is a basic distinction assumed in the solutions
to many Olympiad problems.

We use the assignments that accompany every
problem as the test set, ensuring that the correct
answer can be inferred based on the given data.

3.2 Dataset statistics

The dataset we present is highly multilingual. The
34 problems contain samples from 38 languages,
drawn from across 19 language families. There
are 15 morphophonology problems, 7 multilingual
problems, 6 stress, and 6 transliteration problems.
The set contains 1452 training words with an aver-
age of 43 words per problem, and 319 test words
with an average of 9 per problem. Each problem
has a matrix that has between 7 and 43 rows, with
an average of 23. The number of columns ranges
from 2 to 6, with most problems having 2.

4 Experiments

4.1 Baselines

Given that we model our task as string transduc-
tion, we compare with the following transduction
models used as baselines in shared tasks on G2P
conversion (Gorman et al., 2020) and morphologi-
cal reinflection (Vylomova et al., 2020).

Neural: We use LSTM-based sequence-to-
sequence models with attention as well as Trans-
former models as implemented by Wu (2020). For
each problem, we train a single neural model that
takes the source and target column numbers, and
the source word, and predicts the target word.
WFST: We use models similar to the pair n-gram
models (Novak et al., 2016), with the implementa-
tion similar to that used by Lee et al. (2020). We
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3

7 represents a cell in the table

train a model for each pair of columns in a problem.
For each test example M;;, we find the column with
the smallest index ;" such that M, is non-empty
and use M;;: as the source string to infer M;;.

Additional details of baselines are provided in
Appendix C.

4.2 Program synthesis experiments

As discussed in Section 3.1, the examples in a prob-
lem are in a matrix, and we synthesize programs
to transform entries in one column to entries in
another. Given a problem matrix M, we refer to
a program to transform an entry in column ¢ to
an entry in column j as M,; — M.;. To obtain
token-level examples, we use the Smith-Waterman
alignment algorithm (Smith et al., 1981), which
favours contiguous sequences in aligned strings.
We train three variants of our synthesis system
with different scores for the Is and IsToken op-
erators. The first one, NOFEATURE, does not use
features, or the Is predicate. The second one, TO-
KEN, assigns a higher score to IsToken and prefers
more specific rules that reference tokens. The third
one, FEATURE, assigns a higher score to Is and
prefers more general rules that reference features
instead of tokens. All other aspects of the model
remain the same across variants.
Morphophonology and multilingual problems:
For every pair of columns (s,t) in the problem
matrix M, we synthesize the program M., — M.,.
To predict the form of a test sample M;;, we find
a column £ such that the program M., — M.; has
the best ranking score, and evaluate it on M.
Transliteration problems: Given a problem ma-
trix M, we construct a new matrix M’ for each pair
of columns (s, t) such that all entries in M’ are in
the same script. We align word pairs (M;s, M;;)
using the Phonetisaurus many-to-many alignment
tool (Jiampojamarn et al., 2007), and build a sim-
ple mapping f for each source token to the target
token with which it is most frequently aligned. We
fill in M/, by applying f to each token of M;, and



Model All Morphophonology Multilingual Transliteration  Stress
EXACT CHRF EXACT CHRF EXAcT CHRF EXACT CHRF EXACT
NOFEATURE  26.8% 0.64 30.1% 0.72 42.1% 0.59 12.0% 0.51 15.4%
TOKEN 32.7% 0.63 37.5% 0.68 45.3% 0.60 16.4% 0.52 22.2%
FEATURE 30.9% 0.51 38.6% 0.56 39.9% 0.42 9.5% 049  23.0%
LSTM 8.2% 0.44 9.2% 0.49 5.7% 0.45 2.1% 0.31 15.0%
Transformer 5.4% 0.42 2.3% 0.39 9.2% 0.50 1.7% 0.42 12.6%
WEST 20.9% 0.56 16.3% 0.47 38.7% 0.63 29.7% 0.71 2.8%

Table 5: Metrics for all problems, and for problems of each type. The CHFF score for stress problems is not
calculated, and not used to determine the overall CHRF score.

M/, = M;;. We then find a program M/, — M.
Stress problems: For these problems, we do not
perform any alignment, since the training pairs are
already token aligned. The synthesis system learns
to transform the source string to the sequence of
stress values.

4.3 Metrics

We calculate two metrics: exact match accuracy,
and CHRF score (Popovié, 2015). The exact match
accuracy measures the fraction of examples the
synthesis system gets fully correct.

#{correctly predicted test samples}

EXACT =
#{test samples}

The CHRF score is calculated only at the token
level, and measures the n-gram overlaps between
the predicted answer and the true answer, and al-
lows us to measure partially correct answers. We
do not calculate the CHRF score for stress problems
as n-gram overlap is not a meaningful measure of
performance for these problems.

4.4 Results

Table 5 summarizes the results of our experiments.
We report the average of each metric across prob-
lems for all problems and by category.

We find that neural models that don’t have spe-
cific inductive biases for the kind of tasks we
present here are not able to perform well with this
amount of data. The synthesis models do better
than the WEFST baseline overall, and on all types
of problems except transliteration. This could be
due to the simple map computed from alignments
before program synthesis causing errors that the
rule learning process cannot correct.

5 Analysis

We examine two aspects of the program synthesis
models we propose. The first is the way it uses the
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explicit knowledge in the DSL and implicit knowl-
edge provided as the ranking score to generalize.
We then consider specific examples of problems,
and show examples of where our models succeed
and fail in learning different types of patterns.

Model 100% >75% > 50%
NOFEATURE 3 5 7
TOKEN 3 6 10
FEATURE 3 6 11
WFST 1 2 7

Table 6: Number of problems where the model
achieves different thresholds of the EXACT score.

5.1 Features aid generalization

Since the test examples are chosen to test specific
rules, solving more test examples correctly is in-
dicative of the number of rules inferred correctly.
In Table 6, we see that providing the model with
features allows it to infer more general rules, solv-
ing a greater fraction of more problems. We see
that allowing the model to use features increases
its performance, and having it prefer more general
rules involving features lets it do even better.

5.2 Correct programs are short

In Figure 4 we see that the number of rules in a
problem® tends to be higher when the model gets
the problem wrong, than when it gets it right. This
indicates that when the model finds many specific
rules, it overfits to the training data, and fails to
generalize well. This holds true for all the variants,
as seen in the downward slope of the lines.

We also find that allowing and encouraging a
model to use features leads to shorter programs.
The average length of a program synthesized by

5To account for some problems having more columns than

others (and hence more rules), we find the average number of
rules for each pair of columns.
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Figure 4: Number of rules plotted against EXACT score

NOFEATURES is 30.5 rules, while it is 25.8 for
TOKEN, and 20.7 for FEATURE. This suggests that
explicit access to features, and implicit preference
for them leads to fewer, more general rules.

5.3 Using features

Some problems provide additional information
about certain sounds. For example, a prob-
lem based on the alternation retroflexes in
Warlpiri words (Laughren, 2011) explicitly identi-
fies retroflex sounds in the problem statement. In
this case, a program produced by our FEATURE
system is able to use these features, and isolate the
focus of the problem by learning rules such as

IfThen(Not (Is(w, 0)),

Identity(x))

"retroflex"”,

The system learns a concise solution, and is able
to generalize using features rather than learning
separate rules for individual sounds.

In the case of inflecting a Mandar verb (McCoy,
2018), the FEATURE system uses a feature to find
a more general rule than is the case. To capture the
rule that the prefix di- changes to mas- when the
root starts with s, the model synthesizes
M,

"s"))

However, since s is the only fricative in the data,
this rule is equivalent to a rule specific to s. This
rule also covers examples where the root starts with
s, and causes the model to miss the more general
rule of a voiceless sound at the beginning of the root
to be copied to the end of the prefix. It identifies
this rule only for roots starting with p as
p", 1),

w, 1))
The TOKEN system does not synthesize these

IfThen(Is(w, "fricative”,

ReplaceBy(x, "i

IfThen(IsToken(w, "
CopyReplace(x,
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rules based on features, and instead chooses rules
specific to each initial character in the root.

Since the DSL allows for substituting one token
with one other, or inserting multiple tokens, the
system has to use multiple rules to substitute one
token with multiple tokens. In the case of Mandar,
we see one way it does this, by performing multiple
substitutions (to transform di- to mas- it replaces d
and i with a and s respectively, and then inserts m).

5.4 Multi-pass rules

In a problem on Somali verb forms (Somers, 2016),
we see a different way of handling multi-token
substitutions by using multi-pass rules to create a
complex rule using simpler elements. The problem
requires being able to convert verbs from 1st person
to 3rd person singular. The solution includes a rule
where a single token (I) is replaced with (sh). The
learned program uses two passes to capture this
rule through sequential application of two rules:
first ReplaceBy(x, "1"”, "h"), followed by
IfThen(TransformationApplied(w,

"{ReplaceBy, h}", 1),
Insert(x, "s"))

5.5 Selecting spans of the input

In a problem involving reduplication in Tarangan
(Warner, 2019), all variants fail to capture any syn-
thesis rules. Reduplication in Tarangan involves
copying one or two syllables in the source word
to produce the target word. However, the DSL we
use does not have any predicates or transformations
that allow the system to reference a span of mul-
tiple tokens (which would form a syllable) in the
input. Therefore, it fails to model reduplication.

5.6 Global constraints

Since we provide the synthesis model with token-
level examples, it does not have access to word-
level information. This results in poor performance
on stress problems, as stress depends on the entire
word. Consider the example of Chickasaw stress
(Vaduguru, 2019). It correctly learns the rule

IfThen(Is(w, "long",
ReplaceAnyBy (x,

0),

1))

that stresses any long vowel in the word. How-
ever, since it cannot check if the word has a long
vowel that has already been stressed, it is not able
to correctly model the case when the word doesn’t
have a long vowel. This results in some samples be-
ing marked with stress at two locations, one where



the rule for long vowels applies, and one where the
rule for words without long vowels applies.

6 Related work

Gildea and Jurafsky (1996) also study the problem
of learning phonological rules from data, and ex-
plicitly controlling generalization behaviour. We
pursue a similar goal, but in a few-shot setting.

Barke et al. (2019) and Ellis et al. (2015) study
program synthesis applied to linguistic rule learn-
ing. They make much stronger assumptions about
the data (the existence of an underlying form, and
the availability of additional information like IPA
features). We take a different approach, and study
program synthesis models that can work only on
the tokens in the word (like NOFEATURE), and also
explore the effect of providing features in these
cases. We also test our approach on a more varied
set of problems that involves aspects of morphol-
ogy, transliteration, multilinguality, and stress.

Sahin et al. (2020) also present a set of Linguis-
tics Olympiad problems as a test of the metalin-
guistic reasoning abilities of NLP models. While
problems in their set involve finding phonological
rules, they also require the knowledge of syntax
and semantics that are out of the scope of our study.
We present a set of problems that only requires
reasoning about surface word forms, and without
requiring the meanings.

7 Conclusion

In this paper, we explore the problem of learning
linguistic rules from only a few training examples.
We approach this using program synthesis, and
demonstrate that it is a powerful and flexible tech-
nique for learning phonology rules in Olympiad
problems. These problems are designed to be chal-
lenging tasks that require learning rules from a
minimal number of examples. These problems also
allow us to specifically test for generalization.

We compare our approach to various baselines,
and find that it is capable of learning phonologi-
cal rules that generalize much better than existing
approaches. We show that using the DSL, we can
explicitly control the structure of rules, and using
the ranking score, we can provide the model with
implicit preferences for certain kinds of rules.

Having demonstrated the potential of program
synthesis as a learning technique that can work with
very little data and provide human-readable models,
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we hope to apply it to learning more complex types
of lingusitic rules in the future.

In addition to being a way to learn rules from
data, the ability to explicity control the general-
ization behaviour of the model allows for the use
of program synthesis to understand the kinds of
learning biases and operations that are required to
model various linguistic processes. We leave this
exploration to future work.
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A NDSyn algorithm

We use the NDSyn algorithm to learn disjunctions
of rules. We apply NDSyn in multiple passes to
allow the model to learn multi-pass rules.

At each pass, the algorithm learns rules to per-
form token-level transformations that are applied
to each element of the input sequence. The token-
level examples are passed to NDSyn, which learns
the if-then-else statements that constitute a set of
rules. This is done by first generating a set of can-
didate rules by randomly sampling a token-level
example and synthesizing a set of rules that satisfy
the example. Then, rules are selected to cover the
token-level examples.

Rules that satisfy a randomly sampled example
are learnt using the FlashMeta program synthesis
algorithm (Polozov and Gulwani, 2015). The syn-
thesis task is given by the DSL operator P and the
specification of constraints X that the synthesized
program must satisfy. In our application, this speci-
fication is in the form of token-level examples, and
the DSL operators are the predicates and transfor-
mations defined in the paper. The algorithm recur-
sively decomposes the synthesis problem (P, X)
into smaller tasks (P;, X;) for each argument P,
to the operator. A is inferred using the inverse
semantics of the operator P;, which is encoded as
a witness function. The inverse semantics provides
the possible values for the arguments of an opera-
tor, given the output of the operator. We refer the
reader to the paper by Polozov and Gulwani (2015)
for a full description of the synthesis algorithm.

After the candidates are generated, they are
ranked according to a ranking score of each pro-
gram. The ranking score for an operator in a pro-
gram is computed as a function of the scores of
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its arguments. The arguments may be other op-
erators, offsets, or other constants (like tokens or
features). The score for an operator in the argu-
ment is computed recursively. The score for an
offset favours smaller numbers and local rules by
decreasing the score for larger offsets. The score
for other constants is chosen to be a small negative
constant. The scores for the arguments are added
up, along with a small negative penalty to favour
shorter programs, to obtain the final score for the
operator.

This ranking score selects for programs that are
shorter, and favours either choosing more gen-
eral by giving the Is predicate a higher score
(FEATURE) or more specific rules by giving the
IsToken predicate a higher score (TOKEN). The
top k programs according to the ranking function
are chosen as candidates for the next step.

To choose the final set of rules from the candi-
dates generated using the FlashMeta algorithm,
we use a set covering algorithm that chooses the
rules that correctly answer the most number of ex-
amples while also incorrectly answering the least.
These rules are applied to each example, and the
output tokens are tagged with the transformation
that is applied. These outputs are then the input to
the next pass of the algorithm.

B Dataset

We select problems from various Linguistics
Olympiads to create our dataset. We include pub-
licly available problems that have appeared in
Olympiads before. We choose problems that only
involve rules based on the symbols in the data, and
not based on knowledge of notions such as gender,
tense, case, or semantic role. These problems are
based on the phonology of a particular language,
and include aspects of morphology and orthogra-
phy, and maybe also the phonology of a different
language. In some cases where a single Olympiad
problem involves multiple components that can be
solved independent of each other, we include them
as separate problems in our dataset.

We put the data and assignments in a matrix, as
described in Section 3.1 . We separate tokens in a
word by a space while transcribing the problems
from their source PDFs. We do not separate diacrit-
ics as different tokens, and include them as part of
the same token. For each token in the Roman script,
we add the boolean features vowel and consonant,
and manually tag the tokens according to whether



they are a vowel or consonant.

We store the problems in JSON files with details
about the languages, the families to which the lan-
guages belong, the data matrix, the notes used to
create the features, and the feature sets for each
token.

C Baselines

C.1 Neural

Following Sahin et al. (2020), we use small neural
models for sequence-to-sequence tasks. We train a
single neural model for each task, and provide the
column numbers as tags in addition to the source
sequence. We find that the single model approach
works better than training a model for each pair of
columns.
LSTM: We use LSTM models with soft attention
(Luong et al., 2015), with embeddings of size 64,
hidden layers of size 128, a 2-layer encoder and a
single layer decoder. We apply a dropout of 0.3 for
all layers. We train the model for 100 epochs using
the Adam optimizer with a learning rate of 1073,
learning rate reduction on plateau, and a batch size
of 2. We clip the gradient norm to 5.
Transformer: We use Transformer models
(Vaswani et al., 2017) with embeddings of size
128, hidden layers of size 256, a 2-layer encoder
and a 2-layer decoder. We apply a dropout of 0.3
for all layers. We train the model for 2000 steps
using the Adam optimizer with a learning rate of
10~3, warmup of 400 steps, learning rate reduction
on plateau, and a batch size of 2. We use a label
smoothing value of 0.1, and clip the gradient norm
to 1.

We use the implementations provided at https:
//github.com/shijie-wu/neural-transducer/ for all
neural models.

C.2 WFST

We use the implementation the WFST models avail-
able at https://github.com/sigmorphon/2020/tree/
master/task1/baselines/fst for the WFST models.
We train a model for each pair of columns. We
report the results for models of order 5, which were
found to perform the best on the test data (highest
EXACT score) among models of order 3 to 9.
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Abstract

We describe the second SIGMORPHON
shared task on unsupervised morphology: the
goal of the SIGMORPHON 2021 Shared Task
on Unsupervised Morphological Paradigm
Clustering is to cluster word types from a raw
text corpus into paradigms. To this end, we re-
lease corpora for 5 development and 9 test lan-
guages, as well as gold partial paradigms for
evaluation. We receive 14 submissions from 4
teams that follow different strategies, and the
best performing system is based on adaptor
grammars. Results vary significantly across
languages. However, all systems are outper-
formed by a supervised lemmatizer, implying
that there is still room for improvement.

1 Introduction

In recent years, most research in the area of compu-
tational morphology has focused on the application
of supervised machine learning methods to word
inflection: generating the inflected forms of a word,
often a lemma, in order to express certain grammat-
ical properties. For example, a supervised inflec-
tion system for Spanish might be provided with a
lemma disfrutar (English: to enjoy) and morpho-
logical features such as indicative, present tense &
I°" person singular, and generate the corresponding
inflected form disfruto as output.

However, a supervised machine learning setup
is quite different from a human first language (L1)
acquisition setting. Young children must learn to
segment a continuous speech signal into discrete
words and perform unsupervised classification, de-
coding, and eventually, inference with incomplete
feedback on this noisy input. The task of unsu-
pervised paradigm clustering aims to replicate one
of the steps in this process—namely, the grouping
of word forms belonging to the same lexeme into
inflectional paradigms. In this unsupervised task, a
system does not know about lemmas. Furthermore,
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disfrutamos

...disfruta de la vida lo mas que puedas!
Si disfrutamos de la vida, ...

-5

disfruta

Figure 1: Unsupervised morphological paradigm clus-
tering consists of clustering word forms from raw text
into paradigms.

neither does it know (a) the features for which a
lemma typically inflects, nor (b) the number of dis-
tinct inflected forms which constitute the paradigm.

A successful unsupervised paradigm cluster-
ing system leverages common patterns in the lan-
guage’s inflectional morphology while simultane-
ously ignoring regular circumstantial similarities
along with derivational patterns. For example, an
accurate unsupervised system must recognize that
disfrutamos (English: we enjoy) and disfruta (En-
glish: he/she/it enjoys) are inflected variants of the
same paradigm, but that the orthographically sim-
ilar disparamos (English: we shoot), belongs to a
separate paradigm. Likewise, a successful system
for English will recognize that walk and walked
belong to the same verbal paradigm but walker
is a derived form belonging to a distinct nominal
paradigm. Such fine-grained distinctions are diffi-
cult to learn in an unsupervised manner.

This paper describes the SIGMORPHON 2021
Shared Task on Unsupervised Morphological
Paradigm Clustering. Participants are asked to sub-
mit systems which cluster words from the Bible
into inflectional paradigms.! Participants are not
allowed to use any external resources. Four teams
submit at least one system for the shared task and

'Bible translations for five development and nine test lan-
guages were obtained from the Johns Hopkins University
Bible Corpus introduced by McCarthy et al. (2020b).
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all teams also submit a system description paper.

The shared task systems can be grouped into
two broad categories: similarity-based systems
experiment with different combinations of ortho-
graphic and embedding-based similarity metrics for
word forms combined with clustering methods like
k-means or agglomerative clustering. Grammar-
based methods instead learn grammars or rules
from the data and either apply these to clustering
directly, or first segment words into stems and af-
fixes and then cluster forms which share a stem into
paradigms. Our official baseline, described in Sec-
tion 2.3, is based on grouping together word forms
sharing a common substring of length > k, where
k is a hyperparameter. Grammar-based systems ob-
tain higher average F1 scores (see Section 2.2 for
details on evaluation) across the nine test languages
than the baseline. The Edinburgh system has the
best overall performance: it outperforms the base-
line by 34.61% F1 and the second best system by
1.84% F1.

The rest of the paper is organized as follows:
Section 2 describes the task of unsupervised mor-
phological paradigm clustering in detail, including
the official baseline and all provided datasets. Sec-
tion 3 gives an overview of the participating sys-
tems. Section 4 describes the official results, and
5 presents an analysis. Finally, Section 6 contains
a discussion of where the task can move in future
iterations and concludes the paper.

2 Task Description

Unsupervised morphological paradigm clustering
consists of, given a raw text corpus, grouping words
from that corpus into their paradigms without any
additional information. Recent work in unsuper-
vised morphology has attempted to induce full
paradigms from corpora with only a subset of all
types. Kann et al. (2020) and Erdmann et al. (2020)
explore initial approaches to this task, which is
called unsupervised morphological paradigm com-
pletion, but find it to be challenging. Building
upon the SIGMORPHON 2020 Shared Task on Un-
supervised Morphological Paradigm Completion
(Kann et al., 2020), our shared task is focused on a
subset of the overall problem: sorting words into
paradigms. This can be seen as an initial step to
paradigm completion, as unobserved types do not
need to be induced, and the inflectional categories
of paradigm slots do not need to be considered.
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2.1 Data

Languages The SIGMORPHON 2021 Shared
Task on Unsupervised Morphological Paradigm
Clustering features 5 development languages: Mal-
tese, Persian, Portuguese, Russian, and Swedish.
The final evaluation is done on 9 test languages:
Basque, Bulgarian, English, Finnish, German, Kan-
nada, Navajo, Spanish, and Turkish.

Our languages span 4 writing systems, and repre-
sent fusional, agglutinative, templatic, and polysyn-
thetic morphologies. The languages in the develop-
ment set are mostly suffixing, except for Maltese,
which is a templatic language. And while most of
the test languages are also predominantly suffix-
ing, Navajo employs prefixes and Basque uses both
prefixes and suffixes.

Text Corpora We provide corpora from the
Johns Hopkins University Bible Corpus (JHUBC)
(McCarthy et al., 2020b) for all development and
test languages. This is the only resource that sys-
tems are allowed to use.

Gold Partial Paradigms Along with the Bibles,
we also release a set of gold partial paradigms for
the development languages to be used for system
development. Gold data sets are also compiled for
the test languages, but these test sets are withheld
until the completion of the shared task.

In order to produce gold partial paradigms, we
first take the set of all paradigms II for each lan-
guage from UniMorph (McCarthy et al., 2020a).
We then obtain gold partial paradigms II 4
[T X, where X is the set of types attested in the
Bible corpus. Finally, we sample up to 1000 of the
resulting gold partial paradigms for each language,
resulting in the set II5 according to the following
steps:

1. Group gold paradigms in II » by size, result-
ing in the set &, where gi € G is the group of
paradigms with £ forms in it.

2. Continually loop over all g, € G and ran-
domly sample one paradigm from gj, until we
have 1000 paradigms.

Because not every token in the Bible corpora is in
UniMorph, we can only evaluate on the subset of
paradigms that exist in the UniMorph database. In
practice, this means that for several languages, we
are not able to sample 1000 paradigms, cf. Tables
1 and 2. Notably, for Basque, we can only provide
12 paradigms.



Maltese Persian Portuguese Russian Swedish
# Lines 7761 7931 31167 31102 31168
# Tokens 193257 227584 828861 727630 871707
# Types 16017 11877 31446 46202 25913
TTR .083 .052 .038 .063 .03
# Paradigms 76 64 1000 1000 1000
# Forms in paradigms 572 446 11430 6216 3596
Largest paradigm size 14 20 47 17 9

Table 1: Statistics for the development Bible corpora and the dev gold partial paradigms. TTR is the type-token
ratio in the corpus. The statistics for the paradigms reflect only those words in our partial paradigms, not the full

paradigms from Unimorph.

English | Navajo | Spanish | Finnish | Bulgarian | Basque | Kannada | German | Turkish
# Lines 7728 5058 7337 31087 31101 7958 7863 31102 30182
# Tokens 236465 | 104631 | 251581 | 685699 | 801657 | 195459 | 193213 | 826119 | 616418
# Types 7144 18799 9755 54635 37048 18376 28561 22584 59458
TTR .03 .18 .039 .08 .046 .094 .148 .027 .096
# Paradigms 1000 88 990 1000 1000 12 92 1000 1000
# Forms in paradigms | 2475 214 5154 8509 5086 63 933 3628 9204
Largest paradigm size 7 13 34 31 27 25 44 15 49

Table 2: Statistics for the test Bible corpora and the test gold partial paradigms.

P1
dependemos
dependem
dependera
v dependesse
depende
dependemos dependiam
dependem / desfrutarem
dependeréa
dependesse
depende 0.5
dependiam P2
dependesse
depende
desonrares

Figure 2: An example matching of predicted paradigms
in blue, and a gold paradigm in green. Words in red do
not exist in the gold set, and thus cannot be evaluated.

2.2 Evaluation

As our task is entirely unsupervised, evaluation
is not straightforward: as in Kann et al. (2020),
our evaluation requires a mapping from predicted
paradigms to gold paradigms. Because our set of
gold partial paradigms does not cover all words in
the corpus, in practice we only evaluate against a
subset of the clusters predicted by systems.

For these reasons, we want an evaluation that
assesses the best matching paradigms, ignoring pre-
dicted forms that do not occur in the gold set, but
still punishing for spurious predictions that are in
the gold set. For example, Figure 2 shows two can-
didate matches for a gold partial paradigm. Each
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one contains a word that does not exist in the set of
gold paradigms, and thus cannot be judged — these
words are ignored and do not affect evaluation. In
this example, the predicted P1 is a better match,
resulting in a perfect F1 score. However, our eval-
uation punishes systems for predicting a second
paradigm, P2, with words from G1, reducing the
overall precision score of this submission.

Building upon BMAcc (Jin et al., 2020), we
use best-match F1 score for evaluation. We define
a paradigm as a set of word forms f € 7. Du-
plicate forms within 7 (syncretism) are discarded.
Given a set of gold partial paradigms 79 € Ilz, a
set of predicted paradigms 7P € Ilp, a gold vo-
cabulary 39 = |J 7Y, and a predicted vocabulary
P = (P, it works according to the following
steps:

1. Redefine each predicted paradigm, remov-
ing the words that we cannot evaluate 7 =
P (X9, to form a set of pruned paradigms

T,

Build a complete Bipartite graph over II), and
I, where the edge weight between 77 and
p P’ .

/
m; is the number of true positives ITI N ;

. Compute the maximum-weight full matching
using Karp (1980), in order to find the optimal
alignment between I}, and Il

. Assign all predicted words > and all gold
words X9 a label corresponding to the gold
paradigm, according to the matching found in



3. Any unmatched w? " € Y7 is assigned a
label corresponding to a spurious paradigm.

5. Compute the F1 score between the sets of
labeled words in X7 and %9

2.3 Baseline System

We provide a straightforward baseline that con-
structs paradigms based on substring overlap be-
tween words. We construct paradigms out of words
that share a substring of length > k. Since words
can share multiple substrings, it is possible that
multiple identical, redundant paradigms are cre-
ated. We reduce these to a single paradigm. Words
that do not belong to a cluster are assigned a sin-
gleton paradigm, that is, a paradigm that consists
of only that word.

We tune £ on the development sets and find that
k = 5 works best on average. This means that a
word of less than 5 characters can only ever be in
one, singleton, paradigm.

3 Submitted Systems

The  Boulder-Perkoff-Daniels-Palmer  team
(Boulder-PDP; Perkoff et al., 2021) participates
with four submissions, resulting from experiments
with two different systems. Both systems apply
k-means clustering on vector representations of
input words. They differ in the type of vector
representations used: either orthographic or
semantic representations. Semantic skip-gram
representations are generated using word2vec
(Mikolov et al., 2013). For the orthographic
representations, each word is encoded into a vector
of fixed dimensionality equaling the word length
|Wimaz| for the longest word wy,q, in the input
corpus. They associate each character ¢ € ¥ in the
alphabet of the input corpus with a real number
r € [0,1] and assign v; := r if the ith character
of the input word w is ¢. If |w| < |wpas|, the
remaining entries are assigned to 0.

The number of clusters is a hyperparameter of
the k-means clustering algorithm. In order to set
this hyperparameter, Perkoff et al. (2021) experi-
ment with a graph-based method. The word types
in the corpus form the nodes of a graph, where the
neighborhood of a word w consists of all words
sharing a maximal substring with w. The graph is
split into highly connected subgraphs (HCS) con-
taining n nodes, where the number of edges that
need to be cut in order to split the graph into two
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disconnected components is > n/2 (Hartuv and
Shamir, 2000). The number of HCSs is then taken
to be the cluster number. In practice, however,
the graph-clustering step proves to be prohibitively
slow and results for test languages are submitted
using fixed numbers of clusters of size 500, 1000,
1500 and 1900. In experiments on the dev lan-
guages, they find that the orthographic representa-
tions outperform the semantic representations for
all languages, and thus submit four systems utiliz-
ing orthographic representations.

The Boulder-Gerlach-Wiemerslage-Kann team
(Boulder-GWK; Gerlach et al., 2021) submits
two systems based on an unsupervised lemmati-
zation system originally proposed by Rosa and
Zabokrtsky (2019). Their approach is based on ag-
glomerative hierarchical clustering of word types,
where the distance between word types is computed
as a combination of a string distance metric and
the cosine distance of fastText embeddings (Bo-
janowski et al., 2017). Their choice of fastText
embeddings is due to the limited size of the shared
task datasets. Two variants of edit distance are com-
pared to quantify string distance: (1) Jaro-Winkler
edit distance (Winkler, 1990) resembles regular
edit distance of strings but emphasizes similarity
at the start of strings which is likely to bias the
system toward languages expressing inflection via
suffixation. (2) A weighted variant of edit distance,
where costs for insertions, deletions and substitu-
tions are derived from a character-based language
model trained on the shared task data.

The CU-UBC (Yang et al., 2021) team provides
systems that built upon the official shared task base-
line — given the pseudo-paradigms found by the
baseline, they extract inflection rules of multiple
types. Comparing pairs of words in each paradigm,
they learn both continuous and discontinuous char-
acter sequences that transform the first word into
the second, following work on supervised inflec-
tional morphology, such as Durrett and DeNero
(2013); Hulden et al. (2014). Rules are sorted by
frequency to separate genuine inflectional patterns
from noise. Starting from a random seed word,
paradigms are constructed by iteratively applying
the most frequent rules. Generated paradigms are
further tested for paradigm coherence using met-
rics such as graph degree calculation and fastText
embedding similarity.

The Edinburgh team (McCurdy et al., 2021)
submits a system based on adaptor grammars (John-



English Navajo Spanish Finnish Bulgarian Basque Kannada German Turkish|Average
Rec| 2893 3271 2390 1843 20.55 28.57  25.19 2550 1570 | 24.39
Boulder-PDP-1 [Prec| 29.27 34.15 24.68 18.81 20.75 29.51  35.18 25.64 1590 | 25.99
F1 | 29.10 3341 2429 18.62 20.65 29.03  29.36 2557  15.80 | 25.09
Rec| 36.57 3692 2852 2338 26.37 30.16  25.83 3321  19.53 | 28.94
Boulder-PDP-2 |Prec| 37.00 38.54 2945 23.86 26.63 31.15  36.08 3340  19.79 | 30.65
F1 | 36.78 37.71 2898 23.62 26.50 30.65  30.11 3331  19.66 | 29.70
Rec| 42.79 37.85 2941 26.01 28.73 2698 2594 38.18  21.38 | 30.81
Boulder-PDP-3 |Prec| 43.30 39.51 30.37 26.55 29.01 27.87  36.23 3839  21.66 | 32.54
F1 | 43.04 38.66 29.88 2627 28.87 2742  30.23 3828  21.52 | 31.58
Rec| 4545 40.19 30.64 26.60 29.79 28.57  24.54 39.86  21.65 | 31.92
Boulder-PDP-4 |Prec| 4599 4195 31.63 27.15 30.08 29.51  34.28 40.08 2193 | 33.62
F1 | 45772 41.05 31.13 26.87 29.93 29.03  28.61 3997  21.79 | 32.68
Rec| 28.81 10.75 1927 22.02 30.02 19.05 18.54 3192 20.63 | 22.33
Boulder-GWK-2|Prec| 6633 6571 6993 67.36 71.69 3529 6245 78.56  64.09 | 64.60
F1 | 40.17 1847 30.21 33.19 42.32 2474 28.60 4539  31.22 | 3270
Rec| 2453 11.21 1830 22.69 31.18 2540  16.93 3098  21.16 | 22.49
Boulder-GWK-1|Prec| 56.47 68.57 6641 69.41 74.46 47.06  57.04 76.26  65.74 | 64.60
F1 | 3420 19.28 28.69 34.20 43.96 3299  26.12 4406 32.02 | 32.83
Rec| 76.69 59.81 72.18 76.73 73.02 2540  38.48 77.62 6582 | 62.86
Baseline Prec| 38.76 23.02 2656 17.86 26.50 18.60 17.22 2535 15.60 | 23.28
F1 | 51.49 3325 3883 2897 38.89 2148  23.79 3822 2523 | 3335
Rec| 66.95 5093 60.52 4596 65.08 17.46  30.33 66.57 4325 | 49.67
CU-UBC-5 |Prec| 9040 68.55 72.70 56.47 76.85 5238  61.26 7440  54.05 | 67.45
F1 | 7693 5845 66.05 50.68 70.48 26.19  40.57 70.26  48.05 | 56.41
Rec| 63.76 51.867 63.62 48.75 63.84 17.46  33.12 65.05 4581 | 50.36
CU-UBC-6 |Prec| 8599 69.375 7649 59.67 75.99 5238 64.24 7239  57.52 | 68.23
F1 | 7323 5936 69.46 53.66 69.39 26.19  43.71 68.52  51.00 | 57.17
Rec| 60.36 53.74 64.05 5151 58.18 2222 3537 5932 4774 | 50.28
CU-UBC-7 |Prec| 8142 7233 7698 62.58 69.23 66.67  69.77 66.13  60.17 | 69.47
F1 | 6933 61.66 69.92 56.51 63.23 33.33 4694 62.54  53.24 | 57.41
Rec| 83.39 47.66 7648 52.06 73.14 2540  36.33 7428  46.50 | 57.25
CU-UBC-3 |Prec| 84.38 49.76 7897 53.14 73.87 26.23  50.75 74.70  47.10 | 59.88
F1 | 8389 48.69 77.71 52.60 73.50 25.81 4235 7449  46.80 | 58.42
Rec| 80.69 47.66 7835 57.29 73.77 28.57  40.73 74.06 5093 | 59.12
CU-UBC-4 |Rec| 81.64 49.76 80.89 58.48 74.50 29.51  56.89 7447 5159 | 61.97
F1 | 81.16 48.69 79.60 57.88 74.14 29.03  47.47 7427  51.26 | 60.39
Rec| 7596 47.66 7573  65.35 69.07 28.57  49.52 65.08 60.58 | 59.73
CU-UBC-1 |Prec| 76.86 49.76 78.19 66.71 69.92 29.51 69.16 65.44 6136 | 62.99
F1 | 76.41 48.69 7694 66.03 69.50 29.03  57.71 6526 6097 | 61.17
Rec| 88.16 41.59 8190 72.68 76.58 28.57  50.91 7398 6737 | 64.64
CU-UBC-2 |Prec| 89.21 4341 84.56 74.18 77.34 29.51  71.11 7439 6824 | 67.99
F1 | 88.68 4248 8321 73.42 76.96 29.03  59.34 74.18  67.80 | 66.12
Rec| 89.54 4159 8238 59.58 80.22 31.75  58.95 7897 7282 | 66.20
Edinburgh |Prec| 90.75 43.41 85.06 60.84 83.30 3279 8234 7941 73775 | 70.18
F1 | 90.14 4248 83.70 60.20 81.73 3226  68.71 79.19 7328 | 67.96
Rec| 95.31 - 85.49  86.21 84.74 65.08 - 79.19  86.80 | 83.26
stanza Prec| 93.87 - 85.84 8591 82.79 50.62 - 71.57  86.87 | 79.64
F1 | 94.59 - 85.66  86.06 83.75 56.94 - 75.19  86.84 | 81.29

Table 3: Results on all test languages for all systems in %; the official shared task metric is best-match F1. To
provide a more complete picture, we also show precision and recall. stanza is a supervised system.

son et al., 2007) modeling word structure. Their
work draws on parallels between the unsupervised
paradigm clustering task and unsupervised mor-
phological segmentation. Their grammars segment
word forms in the shared task corpora into a se-
quence of zero or more prefixes and a single stem
followed by zero or more suffixes.

Based on the segmented words from the raw text
data, they then determine whether the language
uses prefixes or suffixes for inflection. The final
stem for words in a predominantly suffixing lan-
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guage then consists of the prefixes and stem identi-
fied by the adaptor grammar. For a predominantly
prefixing language, the final stem instead contains
all suffixes of the word form. The team notes that
this approach is unsuitable for languages which
extensively make use of both prefixes and suffixes,
such as Basque.

Finally, they group all words which share the
same stem into paradigms. However, because
sampling from an adaptor grammar is a non-
deterministic process — i.e., the system may return



multiple possible segmentations for a single word
form — they construct preliminary clusters by in-
cluding all forms which might share a given stem.
Then they select the cluster that maximizes a score
based on frequency of occurrence of the induced
segment in all segmentations.

4 Results and Discussion

The official results obtained by all submitted sys-
tems on the test sets are shown in Table 3.

The Edinburgh system performs best overall
with an average best-match F1 of 67.96%. In
general, grammar-based systems attain the best re-
sults, with all of the CU-UBC systems and the
Edinburgh system outperforming the baseline by at
least 23.06% F1. The Boulder-GWK and Boulder-
PDP systems, both of which perform clustering
over word representations, approach but do not ex-
ceed baseline performance. Perkoff et al. (2021)
found that clustering over word2vec embeddings
performs poorly on the development languages,
and their scores on the test set reflect clusters found
with vectors based purely on orthography. The
Boulder-GWK systems contain incomplete results,
and partial evidence suggests that their cluster-
ing method, which combines both fastText embed-
dings trained on the provided bible corpora, and
edit distance, can indeed outperform the baseline.
However, it likely cannot outperform the grammar-
based submissions.

For comparison, we also evaluate a supervised
lemmatizer from the Stanza toolkit (Qi et al., 2020).
The Stanza lemmatizer is a neural network model
trained on Universal Dependencies (UD) treebanks
(Nivre et al., 2020), which first tags for parts of
speech, and then uses these tags to generate lemmas
for a given word. Because there is no UD corpus in
the current version for Navajo nor Kannada, we do
not have scores for those languages. Stanza’s accu-
racy on our task is far lower than that reported for
lemmatization on UD data. We note, however, that
1) our data is from a different domain, 2) Biblical
language in particular can differ strongly from con-
temporary text, and 3) we evaluate on only a partial
set of types in the corpus, which could represent a
particularly challenging set of paradigms for some
languages. The Stanza lemmatizer outperforms all
systems for all languages, except for German. This
is unsurprising as it is a supervised system, though
it is interesting that the German score falls short of
that of the Edinburgh system.
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naaghd neiikai naahkai

naashd nijighd nideeshaat

naayd ninddaah nanind
nindjidaah | nizhdoogaat

Table 4: A paradigm from our gold set for Navajo.

Overgeneralization/Underspecification When
acquiring language, children often overgeneralize
morphological analogies to new, ungrammatical
forms. For example, the past tense of the English
verb fo know might be expressed as knowed, rather
than the irregular knew. The same behavior can
also be observed in learning algorithms at some
point during the learning process (Kirov and
Cotterell, 2018). This is reflected to some extent in
Table 3 by trade-offs between precision and recall.
A low precision, but high recall indicates that a
system is overgeneralizing: some surface forms
are erroneously assigned to too many paradigms.
In effect, these systems are hypothesizing that
a substring is productive, and thus proposing a
paradigmatic relationship between two words. For
example, the English words approach and approve
share the stem appro- with unproductive segments
as suffixes. The baseline tends to overgeneralize
due to its creation of large paradigms via a naive
grouping of words by shared n-grams.

On the other hand, several systems seem to un-
derspecify, indicated by their low recall. A low
recall, but high precision indicates that a system
does not attribute inflected forms to a paradigm
that the form does in fact belong to. This can be
caused by suppletion in systems based purely on
orthography, for example, generating the paradigm
with go and goes, but attributing went to a separate
paradigm. Underspecification is apparent in the
CU-UBC submissions that relied on discontinuous
rules (CU-UBC 5, 6, and 7). This is likely because
they filtered these systems down to far fewer rules
than their prefix/suffix systems, in order to avoid
severe overgeneralization that can result from spuri-
ous morphemes based on discontinuous substrings.
Similarly, the Boulder-GWK systems both have
reasonable precision, but very low recalls. They
report that this is due to the fact that they ignore
any words with less than a certain frequency in the
corpus due to time constraints, thus creating small
paradigms and ignoring many words completely.

Language and Typology In general, we find that
Basque and Navajo are the two most difficult test
languages. Both languages have relatively small
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Figure 3: Singleton paradigm counts for the best performing system on all test languages. Languages for which
we have more than 100 paradigms on the left, and those for which we have less than 100 paradigms on the right.
Predicted singleton paradigms are in red and blue, gold singleton paradigms are in grey.
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Figure 4: The F1 score across paradigm sizes for the best performing system on all test languages. From left to
right, the graphs represent the groups of languages in increasing order of how well systems typically performed on
them. F1 scores are interpolated for paradigm sizes that do not exist in a given language.

corpora, and are typlogically agglutinative — that ~ pus may cause difficulties for their algorithm that
is, they express inflection via the concatenation of ~ builds clusters based on affix frequency. Notably,
potentially many morpheme segments, which can ~ the CU-UBC-7 system, which learns discontinu-
result in a large number of unique surface forms.  ous rules rather than rules that model strictly con-
Both languages thus have relatively high type-token  catenative morphology, performs best on Navajo
ratios (TTR) — especially Navajo, which has the by a large margin when compared to the best per-
highest TTR, cf. Table 2. It is also important to ~ forming system, which relies on strictly concate-
note that both Basque and Navajo have compara-  native grammars. It also performs best on Basque,
tively small sets of paradigms against which we  though by a smaller margin. Another difficulty in
evaluate. This leaves the possibility that the subset ~ Navajo morphology is that it exhibits verbal stem
of paradigms in the gold set are particularly chal-  alternation for expressing mood, tense, and aspect,
lenging. However, the differences between system  which creates challenges for systems that rely on
scores indicates that these two languages do offer ~ rewrite rules or string similarity, based on continu-

challenges related to their morphology. ous substrings. For instance, our evaluation algo-
Navajo is a predominantly prefixing language  rithm aligns a singleton predicted paradigm to the

— the only one in the development and test sets —  gold paradigm in Table 4 for nearly all systems.

and Basque also inflects using prefixes, though to On Basque, most systems perform poorly. Mc-

a lesser extent. The top two performing systems  Curdy et al. (2021), the best performing system
both obtain low scores for Navajo. The CU-UBC-2  overall, obtains a low score for Basque, which may
system considers only suffix rules, which results  be due to their system assuming that a language
in it being the lowest performing CU-UBC system inflects either via prefixation or suffixation, but not
on Navajo. The Edinburgh submission should be  both, as Basque does. Other systems, however,
able to identify prefixes and consider the suffix to  attain similarly low scores for Basque.

be part of the stem in Navajo. However, the large The next tier of difficulty seems to comprise
number of types, for a relatively small Navajo cor-  Finnish, Kannada, and Turkish, on which most sys-
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tems obtain low scores. All of those languages
are suffixing, but also have an agglutinative mor-
phology. The largest paradigm of each of these 3
languages are all in the top 4 largest paradigms in
Table 2. This implies that large paradigm sizes and
large numbers of distinct inflectional morphemes —
two properties often assumed to correlate with ag-
glutinative morphology —, coupled with sparse cor-
pora to learn from, offer challenges for paradigm
clustering. Though agglutinative morphology, hav-
ing relatively unchanged morphemes across words,
might be simpler for automatic segmentation sys-
tems than morphology characterized as fusional,
our sparse data sets are likely to complicate this.

Finally, systems obtain the best results for En-
glish, followed by Spanish, and then Bulgarian.
These three languages are also strongly suffixing,
but typically express inflection with a single mor-
pheme. German appears to be a bit of an outlier,
generally exhibiting scores that lie somewhere be-
tween the highest scoring languages, and the more
difficult agglutinative languages. McCurdy et al.
(2021) hypothesize that this may be due to non-
concatenative morphology from German verbal cir-
cumfixes. This hypothesis could explain why the
Boulder-GWK system performs better on German
than other languages: it incorporates semantic in-
formation. However, the CU-UBC systems that
use discontinuous rules (systems 5, 6, and 7), and
thus should better model circumfixation, do not
produce higher German scores than the continuous
rules, including the suffix-only system.

S Analysis: Partial Paradigm Sizes

The effect of the size of the gold partial paradigms
on F1 score for the best system is illustrated in
Figure 4. For Basque and Navajo, the F1 score
tends to drop as paradigm size increases. We see
the same trend for Finnish, Kannada, and German,
with a few exceptions, but this trend does not exist
for all languages. English resembles something
like a bell shape, other than the low scoring outlier
for the largest paradigms of size 7. Interestingly,
Spanish and Turkish attain both very high and very
low scores for larger paradigms.

An artifact of a sparse corpus is that many sin-
gleton paradigms arise. For theoretically larger
paradigms, only a single inflected form might oc-
cur in such a small corpus. Of course, this also hap-
pens naturally for certain word classes. However,
nouns, verbs, and occasionally adjectives typically
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form paradigms comprising several inflected forms.
Figure 3 demonstrates that the best system tends to
overgenerate singleton paradigms. We see this to
some extent for all agglutinative languages, which
may be due to the high number of typically long,
unique forms. This is especially true for Navajo,
which has a small corpus and extremely high type—
token ratio. On the other hand, for the languages
for which the highest scores are obtained, Span-
ish and English, the system does not overgenerate
singleton paradigms. Of the large number of sin-
gleton paradigms predicted for both languages, the
vast majority are correct. For other systems not
pictured in the figure, singleton paradigms are typi-
cally undergenerated for Spanish and English. In
the case of English, this could be due to words
that share a derivational relationship. For example,
the word accomplishment might be assigned to the
paradigm for the verb accomplish, when, in fact,
their relationship is not inflectional.

6 Conclusion and Future Shared Tasks

We presented the SIGMORPHON 2021 Shared
Task on Unsupervised Morphological Paradigm
Clustering. Submissions roughly fell into two cat-
egories: similarity-based methods and grammar-
based methods, with the latter proving more
successful at the task of clustering inflectional
paradigms. The best systems significantly im-
proved over the provided n-gram baseline, roughly
doubling the F1 score — mostly through much im-
proved precision. A comparison against a super-
vised lemmatizer demonstrated that we have not yet
reached the ceiling for paradigm clustering: many
words are still either incorrectly left in singleton
paradigms or incorrectly clustered with circum-
stantially (and often derivationally) related words.
Regardless of the ground still to be covered, the
submitted results were a successful first step in au-
tomatically inducing the morphology of a language
without access to expert-annotated data.
Unsupervised morphological paradigm cluster-
ing is only the first step in a morphological learn-
ing process that more closely models human L1
acquisition. We envision future tasks expanding
on this task to include other important aspects of
morphological acquisition. Paradigm slot catego-
rization is a natural next step. To correctly cate-
gorize paradigm slots, cross-paradigmatic similari-
ties must be considered, for example, the German
words liest and schreibt are both 3 person singular



present indicative inflections of two different verbs.
This can occasionally be identified via string simi-
larity, but more often requires syntactic information.
Syncretism (the collapsing of multiple paradigm
slots into a single representation) further compli-
cates the task. A similar subtask involves lemma
identification, where a canonical form (Cotterell
et al., 2016b) is identified within the paradigm.

Likewise, another important task involves fill-
ing unrealized slots in paradigms by generating the
correct surface form, which can be approached sim-
ilarly to previous SIGMORPHON shared tasks on
inflection (Cotterell et al., 2016a, 2017, 2018; Mc-
Carthy et al., 2019; Vylomova et al., 2020), but will
likely be based on noisy information from the slot
categorization — all previous tasks have assumed
that the morphosyntactic information provided to
an inflector is correct. Currently, investigations into
the robustness of these systems to noise are sparse.

Another direction for this task is the expansion
to more under-resourced languages. The submit-
ted results demonstrate that the task becomes par-
ticularly difficult when the provided raw text is
small, but under-documented languages are often
the ones most in need of morphological corpora.
The JHUBC contains Bible data for more than 1500
languages, which can potentially be augmented by
other raw text corpora because morphology is rel-
atively stable across domains. Future tasks may
enable the construction of inflectional paradigms
in languages that require them to construct further
computational tools.
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Abstract

This work describes the Edinburgh submis-
sion to the SIGMORPHON 2021 Shared Task
2 on unsupervised morphological paradigm
clustering. Given raw text input, the task
was to assign each token to a cluster with
other tokens from the same paradigm. We
use Adaptor Grammar segmentations com-
bined with frequency-based heuristics to pre-
dict paradigm clusters. Our system achieved
the highest average F1 score across 9 test lan-
guages, placing first out of 15 submissions.

1 Introduction

While the task of supervised morphological inflec-
tion has seen dramatic gains in accuracy over recent
years (e.g. Cotterell et al., 2016, 2017, 2018; Vy-
lomova et al., 2020), unsupervised morphological
analysis remains an open challenge. This is evident
in the results of the 2020 SIGMORPHON Shared
Task 2 on Unsupervised Morphological Paradigm
Completion, in which no submission consistently
outperformed the baseline (Kann et al., 2020; Jin
et al., 2020).

The 2021 Shared Task 2 (Wiemerslage et al.,
2021) focuses on a subproblem from the 2020
task: given raw text input, cluster tokens together
based on membership in the same morphologi-
cal paradigm. For example, given the sentence
“My dog met some other dogs”, a successful sys-
tem would assign “dog” and “dogs” to the same
paradigm because they are two inflected forms of
the same lemma “dog”, while each other word
would occupy its own cluster. Furthermore, a
successful system needs to cluster typologically
diverse, morphologically rich languages such as
Finnish and Navajo, with inflectional paradigms
which are much larger than English paradigms.
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2 Adaptor Grammars

Our approach is based upon Adaptor Grammars, a
framework which achieves state-of-the-art results
on the related task of unsupervised morphological
segmentation (Eskander et al., 2020).

2.1 Model

Adaptor Grammars (AGs; Johnson et al., 2007b)
are a class of nonparametric Bayesian probabilistic
models which learn structured representations, or
parses, of natural language input strings. An AG
has two components: a Probabilistic Context-Free
Grammar (PCFG) and one or more adaptors. The
PCFG is a 5-tuple (N, W, R, S, ) which specifies
a base distribution over parse trees. Parse trees are
generated top-down by expanding non-terminals
N (including the start symbol S € ) to non-
terminals NV (excluding .S) and terminals W, using
the set of allowed expansion rules 2 with expan-
sion probability 6, for each rule r € R. PCFGs
have very strong independence assumptions; the
adaptor component relaxes these assumptions by al-
lowing certain nonterminals to adapt to a particular
corpus, meaning they can cache and re-use subtrees
with probabilities conditioned on that corpus.

An AG extends a PCFG by specifying a set of
adapted nonterminals A C N and a vector of adap-
tors C'. For each adapted nonterminal X € A, the
adaptor C'yx stores all subtrees previously emitted
with the root node X. When a new tree rooted in
X is sampled, the adaptor C'x either generates a
new tree from the PCFG base distribution or re-
turns a previously emitted subtree from its cache.
The adaptor distribution is generally based on a
Pitman-Yor Process (PYP; Pitman and Yor, 1997),
under which the probability of C,, returning a par-
ticular subtree o is roughly proportional to the
number of times X has previously expanded to
o. This leads to a “rich-get-richer” effect as more
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Word — Stem Word | Segmentation
Stem — CTH.I‘S walked walk-ed
Suffix — Chars jumping | jump-ing
Chars — Char walking walk-ing
Chars — Char Chars jump jump

(b) Toy corpus with target seg-

(a) Example grammar. i
Adapted nonterminals are mentations
underlined.
Word Word
Stem  Suffix Stem  Suffix
walk ed jump ing

(c) Example target morphological analyses, showing only the

top 2 levels of structure

Figure 1: A possible morphological analysis (lc)
learned by the grammar in (1a) over the corpus shown
in (1b) (from Johnson et al., 2007b)

frequently sampled subtrees gain higher probability
within the conditional adapted distribution. Given
an AG specification, MCMC sampling can be used
to infer values for the PCFG rule probabilities 6
(Johnson et al., 2007a) and PYP hyperparameters
(Johnson and Goldwater, 2009).

2.2 AGs for Morphological Analysis

The probabilistic parses generated by adaptor gram-
mars can be used to segment sequences. In cases
where the grammar specifies word structures, the
segmentations may reflect morphological analy-
ses. For example, an AG trained with the simple
grammar shown in Table 1a may learn to cache
“jump” and “walk” as Stem subtrees, and “ing” and
“ed” as Suffix subtrees, ideally producing the tar-
get segmentations shown in Figure 1c. In prac-
tice, researchers have successfully applied AGs to
the task of unsupervised morphological segmenta-
tion (Sirts and Goldwater, 2013; Eskander et al.,
2016). Eskander et al. (2020) found that a language-
independent AG framework achieved state-of-the-
art results on 12 typologically distinct languages.

3 System description

3.1 Overview

The task of unsupervised paradigm clustering is
closely related to morphological segmentation, but
we are not aware of previous applications of AGs
to the current task. To use AGs for paradigm clus-
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tering, we need a method to group words together
based on their AG segmentations. The example
segmentations shown in Figure 1 suggest a very
simple approach to paradigm clustering: assign all
forms with the same stem to the same cluster. For
example, “walked” and “walking” would correctly
cluster together with the shared stem “walk”. Our
system builds upon this intuition.

As a preliminary step, we select grammars to
sample from, looking only at the development lan-
guages. We build simple clusters and heuristically
select grammars which show relatively high per-
formance, as described in Section 3.2. In this case
we select two grammars. Once the grammars have
been selected, we discard the simple clusters in
favor of a more sophisticated strategy.

We implement' a procedure to generate clusters
for both development and test languages. First,
we sample 3 separate AG parses for each corpus
and each grammar, resulting in 6 segmentations for
each word. We then use frequency-based metrics
over the segmentations to identify the language’s
adfix direction, i.e. whether it is predominantly
prefixing or suffixing, as described in Section 3.3.
Finally, we iterate over the entire vocabulary and
apply frequency-based scores to generate paradigm
clusters, as described in Section 3.4 .

3.2 Grammar selection

An adaptor grammar builds upon an initial PCFG
specification, and many such grammars can be ap-
plied to model word structure. As a first step, we
evaluate various grammar specifications on the de-
velopment languages and select the grammars for
our final model.

To train the adaptor grammar representations,
we use MorphAGram (Eskander et al., 2020), a
framework which extends the adaptor grammar im-
plementation of Johnson et al. (2007b). Eskan-
der et al. (2020) evaluated nine different PCFG
grammar specifications on the task of unsupervised
word segmentation. Each grammar specifies the
range of possible word structures which can be
learned under that model. We evaluated six of their
nine proposed grammars on the development lan-
guages (Maltese, Persian, Portuguese, Russian, and
Swedish). Following their procedure, we extracted
a vocabulary V' of word types as AG inputs.”

"https://github.com/kmccurdy/
paradigm-clusters

2 Although AGs can also model token frequencies (Gold-
water et al., 2006), which could conceivably improve perfor-



To evaluate grammar performance, we follow
the intuition in Section 3.1 and group by AG-
segmented stems. Grouping by stem can be more
difficult for complex words. For example, an AG
with a more complex grammar might segment the
plural noun “actionables” into “action-able-s”, with
“action” as the stem (see also the example in Fig-
ure 2a); however, the target paradigm for cluster-
ing includes only “actionable” and ““actionables”,
not “action” and “actions”. To address this issue
for our clustering task, we make the further sim-
plifying (but linguistically motivated; e.g. Stump,
2005, 56) assumption that inflectional morphology
is generally realized on a word’s periphery, so a
segmentation like “action-able-s” implies the stem
“actionable” (in a suffixing language like English,
where the prefix is included in the stem). As all
of the development languages were predominantly
suffixing (with the partial exception of Maltese,
which includes root-and-pattern morphology), we
simply grouped together words with the same AG-
segmented Prefix + Stem.

We selected two grammars with the following de-
sirable attributes: 1) they reliably showed good per-
formance on the development set, relative to other
grammars; and 2) they specified very similar struc-
tures, making it easier to combine their outputs in
later steps. Both grammars model words as a tripar-
tite Prefix-Stem-Suffix sequence. Both grammars
also use a SubMorph level of representation, which
has been shown to aid word segmentation (Sirts
and Goldwater, 2013), although we only consider
segments from the level directly above SubMorphs
in clustering. The full grammar specifications are
included in Appendix A.

* Simple+SM: Each word comprises one op-
tional prefix, one stem, and one optional suf-
fix. Each of these levels can comprise one or
more SubMorphs.

PrStSu+SM Each word comprises zero or
more prefixes, one stem, and zero or more suf-
fixes. Each of these levels can comprise one
or more SubMorphs. Eskander et al. (2020)
found that this grammar showed the highest
performance in unsupervised segmentation
across the languages they evaluated.

Sampling from an adaptor grammar is a non-
deterministic process, so the same set of initial

mance on this task, we did not explore this option.
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Figure 2: Two example parses of the word “appor-
tioned” from our two distinct grammar specifications,
learned on the English test data.

parameters applied to the same data can predict dif-
ferent segmentation outputs. Given this variability,
we run the AG sampler three times for each of our
two selected grammars, yielding 6 parses of the
lexicon for each language. The number of gram-
mar runs was heuristically selected and not tuned
in any way, so adding more runs for each grammar
might improve performance (for example, Sirts and
Goldwater, 2013, use 5 samples per grammar). We
then combine the resulting segmentations using the
following procedure.

3.3 Adfix direction

The first step is to determine the adfix direction
for each language, i.e. whether the language uses
predominantly prefixing or suffixing inflection. We
heuristically select the adfix direction using the
following automatic procedure.

First, we count the frequency of each peripheral
segment across all 6 parses of the lexicon. A pe-
ripheral segment is a substring at the start or end
of a word, which has been parsed as a segment
above the SubMorph level in some AG sample. For
instance, in the parse shown in Figure 2a, “app-”
would be the initial peripheral segment, and “-ed”
would be the final peripheral segment. By contrast,
for the parse shown in Figure 2b,“ap-"" would be
the initial peripheral segment, and “-ioned” would
be the final peripheral segment.

Next, we rank the segmented adfixes by their
frequency, and select the top /N for consideration,
where IV is some heuristically chosen quantity. In
light of the generally Zipfian properties of linguistic



distributions, we chose to scale IV logarithmically
with the vocabulary size, so N = log(|V]).

Finally, we select the majority label (i.e. “prefix
or “suffix”) of the N most frequent segments as the
adfix direction. This simple approach has obvious
limitations — to name just one, it neglects the re-
ality of nonconcatenative morphology, such as the
root-and-pattern inflection of many Maltese verbs.
Nonetheless, it appears to capture some key distinc-
tions: this method correctly identified Navajo as a
prefixing language, and all other development and
test languages as predominantly suffixing.

E]

3.4 Creating paradigm clusters

Once we have inferred the adfix direction for a lan-
guage, we use a greedy iterative procedure over
words to identify and score potential clusters. Our
scoring metric is frequency-based, motivated by
the observation that inflectional morphology (such
as the “-s” in “actionables”) tends to be more fre-
quent across word types relative to derivational
morphology (such as the “-able” in “actionables”).
Yarowsky and Wicentowski (2000) have demon-
strated the value of frequency metrics in aligning
inflected forms from the same lemma.

We start with no assigned clusters and iterate
through the vocabulary in alphabetical order.? For
each word w which has not yet been assigned to
a cluster, we identify the most likely cluster using
the following procedure.

Find possible stems Identify each possible stem
s from all of the segmentations for w, where the
“stem” comprises the entire substring up to a pe-
ripheral adfix. For example, based on the two
parses shown in Figure 2, “apportion” and “ap-
port” would constitute possible stems for the word
“apportioned”. The word w in its entirety is also
considered as a possible stem.

Find possible cluster members For each stem
s, identify other words in the corpus which might
share that stem, forming a potential cluster c;. A
word potentially shares a stem if it shares the same
substring from the non-adfixing-direction — so a
stem is a shared prefix substring in a suffixing lan-
guage like English, and vice-versa for a prefixing
language like Navajo. For each word w; that is
identified this way, the rest of the string outside
of the possible stem s is a possible adfix a;. In

3The method is relatively insensitive to order, except re-
versed alphabetical order, which is worse for most languages.
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the example from Figure 2, if “apportions” were
also in the corpus, it would be added to the cluster
for the stem “apportion”, with “-s” as the adfix a;.
Similarly, it would also be considered in the cluster
for the stem “apport”, with adfix “-ions”.

Score cluster members For each word w; in cg,

calculate a score x;:.

T = mlog(Ai) (D
where A; is the normalized overall frequency of
the ¢th adfix a; (suffix or prefix) per 10,000 types
in the corpus of 6 segmentations, and A}’ is the
proportion of segmentations of the ith word w;
which contain the adfix a;. For example, if “ap-
portioned” were in consideration for a hypothetical
cluster based on the stem “apportion”, A; would be
the normalized corpus frequency of “-ed”, and A}’
would be .5 (assuming only the two segmentations
shown in Figure 2). For a cluster with the stem
“apport”, A; would be the normalized frequency of
“-ioned”, and A}’ would still be .5.

Intuitively, when evaluating a single word, Eq. 1
assumes that adfixes which appear frequently in the
segmented corpus overall are more likely to be in-
flectional, so words with more frequent adfixes are
more likely paradigm members (the log(A;) term).
For instance, the high frequency of the “-s” suffix
in English will increase the score of any word with
an “-s” suffix in its segmentation (e.g. “apportion-
s”). Eq. 1 also assumes that, for all segmentations
of this particular word w;, adfixes which appear
in a higher proportion of segmentations are more
reliable (the \/Aiz“ term), so the more times some
AG samples the “apportion-s” segmentation, the
higher the score for “apportions” membership in
the “apportion”-stem paradigm. The square root
transform was selected based on development set
performance, and has not been tuned extensively.

Filter and score clusters For each possible stem
cluster cg, filter out words whose score x; is below
the score threshold hyperparameter ¢, to create a
new cluster ¢,. Calculate the cluster score x5 by
taking the average of z; for only those words in ¢,
i.e. only words with score z; > t. The value for ¢
is selected via grid search on the development set.
We found that setting ¢ = 2 maximized F1 across
the development languages as a whole.

Select cluster Select the potential cluster ¢, with
the highest score, and assign w to that cluster, along
with each word wj in .



Language Precision Recall F1
Maltese .30 .30 .30
Persian .54 .52 .53
Portuguese .92 91 91
Russian .83 .82 .82
Swedish .85 81 .83
Mean .69 .67 .68

Table 1: Performance on development languages

Language Precision Recall F1
Basque .33 32 32
Bulgarian .83 .80 .82
English 91 .90 .90
Finnish .61 .60 .60
German 79 .79 .79
Kannada .82 .59 .69
Navajo 43 42 42
Spanish .85 .82 .84
Turkish 74 73 73
Mean 70 .66 .68

Table 2: Performance on test languages

4 Results and Discussion

Performance was evaluated using the script pro-
vided by the shared task organizers. Table 1 shows
the results for the development languages, and Ta-
ble 2 shows the results for the test languages. While
the average F1 score ends up being quite similar
for both development and test languages, it’s clear
within both groups that there are large differences
in performance across different languages.

4.1 Error analysis and ways to improve

Noncontiguous stems The clustering method de-
scribed in Section 3.4 makes an unjustifiably strong
assumption that stems are contiguous substrings,
which effectively eliminates its ability to represent
nonconcatenative morphology. This limitation con-
tributes to the low score on Maltese, a Semitic lan-
guage which includes root-and-pattern morphology
for certain verbs. The model further assumes that
the left or right edge of a word — the side opposite
from the adfix direction — is contiguous with the
stem. This leads to errors on German, as most verbs
have a circumfixing past participle form “ge- + -t”
or “ge- + -en”. For example, the model correctly

assigns “dndern”, “dnderten”, and “4ndert” to the
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same cluster, but incorrectly assigns “gedndert” to
a separate cluster. We estimate that roughly 30%
of the model’s incorrect German predictions stem
from this issue. This limitation also contributed to
our model’s poor performance on Basque, which,
like Maltese, uses both prefixing and suffixing in-
flection to express polypersonal agreement.*

One obvious way to improve this issue would
be to use an extension of the AG framework which
can represent nonconcatenative morphology. Botha
and Blunsom (2013) present such an extension,
replacing the PCFG with a Probabilistic Simple
Range Concatenating Grammar. They report suc-
cessful results for unsupervised segmentation on
Hebrew and Arabic. On the other hand, it’s unclear
whether such a nonconcatenative-focused approach
could also adequately represent concatenative mor-
phology. Fullwood and O’Donnell (2013) explore
a similar framework, using Pitman-Yor processes
to sample separate lexica of roots, templates, and
“residue” segments; they find that their model works
well for Arabic, but much less well for English. In
addition, Eskander et al. (2020) report state-of-the-
art morphological segmentation for Arabic using
the PrStSu+SM grammar which we also use here.
Their findings suggest that, rather than changing
the AG framework, we might attempt a more intel-
ligent clustering method based on noncontiguous
segmented subsequences rather than contiguous
substrings.

Irregular morphology The strong assumption
of contiguous substrings as stems also hinders ac-
curate clustering of irregular forms of any kind,
from predictable stem alternations (such as um-
laut in German and Swedish, or theme vowels in
Portuguese and Spanish) to more challenging sup-
pletive forms such as English “go”-“went”. The
latter likely requires additional input from seman-
tic representations, but semiregular alternations in
forms could also be handled in principle by a more
intelligent clustering process. On this point, we
note that some small but significant fraction of AG
parses of Portuguese verbs grouped verbal theme
vowels and inflections together (e.g. parsing “apre-
sentada” as “apresent-ada’ rather than “apresenta-
da”, “apresentarem” as “apresent-arem’ rather than
“apresenta-rem”, and so on), and these parses were
crucial to our model’s relatively high performance
on Portuguese.

“We thank an anonymous reviewer for bringing this to our
attention.



Derivation vs. inflection Another issue is that
the parses sampled by AGs do not distinguish be-
tween inflectional and derivational morphology.
This is apparent in Figure 2, where both grammars
parse “apportioned” with “-ioned” as the suffix. We
seek to address this issue with frequency-based met-
rics in our clustering method, but frequent deriva-
tional adfixes often score high enough to be as-
signed a wrong paradigm cluster. For example,
in English our model correctly clusters “allow”,
“allows”, and “allowed” together, but it also incor-
rectly assigns “allowance” to the same cluster.

A straightforward way to handle this within our
existing approach would be to allow language-
specific variation of the score threshold t. As we
had no method for unsupervised estimation of ¢
for unfamiliar languages, we did not pursue this;
however, a researcher who had minimal familiarity
with the language in question might be able to se-
lect a more sensible value for ¢ based on inspecting
the clusters. Beyond that, the distinction between
inflectional and derivational morphology is an in-
triguing and contested issue within linguistics (e.g.
Stump, 2005), and the question of how to model it
computationally requires much more attention.

4.2 Things that didn’t work

We attempted a number of unsupervised ap-
proaches beyond AG segmentations, with the goal
of incorporating them during the clustering pro-
cess; however, we could not consistently improve
performance with any of them. It seems likely to
us that these methods could still be used to improve
AG-segmentation-based clusters, but we could not
find immediately obvious ways to do this.

FastText As the AG framework only models
word structure based on form, we hoped to use the
distributional representations learned by FastText
(Bojanowski et al., 2017) to incorporate semantic
and syntactic information into our model’s clus-
ters. We tried several different approaches without
success. 1) We trained a skipgram model with a
context window of 5 words, a setting often used
for semantic applications, in hopes that words from
the same paradigm might have similar semantic
representations. Agglomerative clustering on these
representations alone yielded much worse clusters
than the AG method, and we could not find a way
to combine them successfully with the AG clusters.
2) Erdmann et al. (2020) trained a skipgram model
with a context window of 1 word and a minimum
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subword length of 2 characters, and used it to clus-
ter words from the same cell rather than the same
paradigm (e.g. clustering together English verbs
in the third person singular such as “walks” and
“jumps’). We attempted to follow this procedure,
but it proved too difficult, as paradigm cell informa-
tion was not explicitly included in the development
data for this shared task. 3) We used the method
described by Bojanowski et al. (2017) to identify
important subwords within a word, in hopes of
combining them with AG segmentations. However,
the identified subwords did not consistently align
with stem-adfix segementations as we had hoped,
and did not seem to provide any additional benefit.

Brown clustering Part of speech tags could pro-
vide latent structure as a higher-order grouping for
paradigm clusters — for example, verbs would be
expected to have paradigms more similar to other
verbs than to nouns. Brown clusters (Brown et al.,
1992) have been used for unsupervised induction
of word classes approximating part of speech tags.
We used a spectral clustering algorithm (Stratos
et al., 2014) to learn Brown clusters, but they did
not reliably correspond to part of speech categories
on our development language data.

5 Conclusion

The Adaptor Grammar framework has previously
been applied to unsupervised morphological seg-
mentation. In this paper, we demonstrate that AG
segmentations can be used for the related task of
unsupervised paradigm clustering with successful
results, as shown by our system’s performance in
the 2021 SIGMORPHON Shared Task.

We note that there is still considerable room for
improvement in our clustering procedure. Two key
directions for future development are more sophis-
ticated treatment of nonconcatenative morphology,
and incorporation of additional sources of informa-
tion beyond the word form alone.
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A PCFGs

Our system uses the following two grammar specifi-
cations, developed by Eskander et al. (2016, 2020).
Nonterminals are adapted by default. Non-adapted
nonterminals are preceded by 1, indicating an ex-
pansion probability of 1, i.e. the PCFG always ex-
pands this rule and never caches it.

A.1 Simple+SM
1 Word —--> Prefix Stem Suffix

Prefix ——>
Prefix —-—>

SubMorphs

Stem —--> SubMorphs

Suffix —-> SubMorphs $$$
Suffix —--> $$$

1 SubMorphs —--> SubMorph SubMorphs
1 SubMorphs —--> SubMorph

SubMorph --> Chars

1 Chars —--> Char

1 Chars —-> Char Chars

A.2  PrStSu+SM

1 Word --> Prefix Stem Suffix
Prefix --> °°°

Prefix —-—> PrefMorphs

1 PrefMorphs ——> PrefMorph PrefMorphs
1 PrefMorphs —--> PrefMorph

PrefMorph —--> SubMorphs

Stem ——-> SubMorphs

Suffix —-> $$3

Suffix —--> SuffMorphs $$$

1 SuffMorphs —-—> SuffMorph SuffMorphs
1 SuffMorphs —--> SuffMorph

SuffMorph --> SubMorphs

1 SubMorphs —--> SubMorph SubMorphs
1 SubMorphs --> SubMorph

SubMorph --> Chars

1 Chars —--> Char

1 Chars —--> Char Chars
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Abstract

This paper presents two different systems
for unsupervised clustering of morphological
paradigms, in the context of the SIGMOR-
PHON 2021 Shared Task 2. The goal of this
task is to correctly cluster words in a given
language by their inflectional paradigm, with-
out any previous knowledge of the language
and without supervision from labeled data of
any sort. The words in a single morphological
paradigm are different inflectional variants of
an underlying lemma, meaning that the words
share a common core meaning. They also -
usually - show a high degree of orthographi-
cal similarity. Following these intuitions, we
investigate KMeans clustering using two dif-
ferent types of word representations: one fo-
cusing on orthographical similarity and the
other focusing on semantic similarity. Addi-
tionally, we discuss the merits of randomly ini-
tialized centroids versus pre-defined centroids
for clustering. Pre-defined centroids are iden-
tified based on either a standard longest com-
mon substring algorithm or a connected graph
method built off of longest common substring.
For all development languages, the character-
based embeddings perform similarly to the
baseline, and the semantic embeddings per-
form well below the baseline. Analysis of the
systems’ errors suggests that clustering based
on orthographic representations is suitable for
a wide range of morphological mechanisms,
particularly as part of a larger system.

1 Introduction

One significant barrier to progress in morpholog-
ical analysis is the lack of available data for most
of the world’s languages. As a result, there is a
dramatic divide between high and low resource
languages when it comes to performance on au-
tomated morphological analysis (as well as many
other language-related tasks). Even for languages
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Surface Forms Morphological Features
walk bring V; 1SG; 2SG; 3PL; 1PL
walks brings V; 3SG
walking | bringing | PRES; PART
walked | brought | PAST

Table 1: Morphological paradigms for the English

verbs walk and bring.

with resources suitable for computational morpho-
logical analysis, there is no guarantee that the avail-
able data in fact covers all important aspects of the
language, leading to significant error rates on un-
seen data. This uncertainty regarding training data
makes unsupervised learning a natural modeling
choice for the field of computational morphology.
The unsupervised setting takes away the need for
large quantities of labeled text in order to detect
linguistic phenomena. The SIGMORPHON 2021
shared task aims to leverage the unsupervised set-
ting in order to identify morphological paradigms,
at the same time including languages with a wide
range of morphological properties.

For a given language, the morphological
paradigms are the models that relate root forms
(or lemmas) of words to their surface forms. The
task we tackle is to cluster surface word forms into
groups that reflect the application of a morphologi-
cal paradigm to a single lemma. The lemma of the
paradigm is typically the dictionary citation form,
and the corresponding surface forms are inflected
variations of that lemma, conveying grammatical
properties such as tense, gender, or plurality. For
example, Table 1 displays partial clusters for two
English verbs: walk and bring.

In developing our system, we consider two types
of information that could reasonably play a role in
unsupervised paradigm induction. First, the words
in a single paradigm cluster are different inflec-
tional variants of an underlying lemma, meaning
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that the words share a common core meaning. They
also - usually - show a high degree of orthograph-
ical similarity. Following these intuitions, we in-
vestigate KMeans clustering using two different
types of word representations: one focusing on or-
thographical similarity and the other focusing on
semantic similarity. Intuitively, we would expect
the cluster of forms for walk to be recognizable
largely based on orthographic similarity. The par-
tially irregular cluster for bring shows greater ortho-
graphical variability in the past-tense form brought
and so might be expected to require information
beyond orthographic similarity.

System Overview. The core of our approach is
to cluster unlabelled surface word forms using
KMeans clustering; a complete architecture dia-
gram can be seen in Figure 1. After reading the
input file for a particular language to identify the
lexicon and alphabet, we transform each word into
two different types of vector representations. To
capture semantic information, we train Word2Vec
embeddings from the input data. The orthography-
based representations we learn are character embed-
dings, again trained from the input data. Details for
both representations appear in section 4.1. For the
experiments in this paper, we test each type of rep-
resentation separately, using randomly initialized
centers for the clustering. In later work, we plan to
explore the integration of both types of representa-
tions. We would also like to explore the use of pre-
defined centers for clustering. These pre-defined
centers could be provided using either a longest
common subsequence method or a graph-based al-
gorithm such as that described in section 4.3. The
final output of the system is a set of clusters, each
one representing a morphological paradigm.

2 Previous Work

The SIGMORPHON 2020 shared task set included
an open problem calling for unsupervised systems
to complete morphological paradigms. For the
2020 task, participants were provided with the
set of lemmas available for each language (Kann,
2020). In contrast, the 2021 SIGMORPHON task 2
outlines that submissions are unsupervised systems
that cluster input tokens into the appropriate mor-
phological paradigm (Nicolai et al., 2020). Given
the novelty of the task, there is a lack of previous
work done to cluster morphological paradigms in
an unsupervised manner. However, we have identi-
fied key methods from previous work in computa-
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tional morphology and unsupervised learning that
could be combined to approach this problem.

Previous work has identified the benefit of com-
bining rules based on linguistic characteristics with
machine learning techniques. Erdmann et al. (2020)
established a baseline for the Paradigm Discovery
Problem that clusters the unannotated sentences
first by a combination of string similarity and lex-
ical semantics and then uses this clustering as in-
put for a neural transducer. Erdmann and Habash
(2018) investigated the benefits of different similar-
ity models as they apply to Arabic dialects. Their
findings demonstrated that Word2Vec embeddings
significantly underperformed in comparison to the
Levenshtein distance baseline. The highest per-
forming representation was a combination of Fast-
Text and a de-lexicalized morphological analyzer.
The FastText embeddings (Bojanowski et al., 2016)
have the benefit of including sub-word information
by representing words as character n-grams. The
de-lexicalized analyzer relies on linguistic expert
knowledge of Arabic to identify the morphological
closeness of two words. In the context of the paper,
itis used to prune out word relations that do not con-
form to Arabic morphological rules. The approach
mentioned greatly benefits from the use of a mor-
phological analyzer, something that is not readily
available for low-resource languages. Soricut and
Och (2015) focused on the use of morphological
transformations as the basis for word representa-
tions. Their representation can be quite accurate
for affix-based morphology.

Our representations are based entirely off of un-
labelled data and do not require linguistic experts
to provide morphological transformation rules for
the language. Additionally, we hoped to create a
system that would be robust for languages that in-
clude non-affix based morphology. In this work we
compare Word2Vec representations to character-
based representations to represent orthography. We
have not yet evaluated additional representations
or combinations of the two.

3 Task overview

The 2021 SIGMORPHON Shared Task 2 created
a call for unsupervised systems that would cre-
ate morphological paradigm clusters. This was
intended to build upon the shared task from 2020
that focused on morphological paradigm comple-
tion. Participants were provided with tokenized
Bible data from the JHU bible corpus (McCarthy



et al., 2020) and gold standard paradigm clusters
for five development languages: Maltese, Persian,
Portuguese, Russian and Swedish. Teams could
use this data to train their systems and evaluate
against the gold standard files as well as a baseline.
The baseline provided groups together words that
share a substring of length n and then removes any
duplicate clusters. The resulting systems were then
used to cluster tokenized data from a set of test
languages including: Basque, Bulgarian, English,
Finnish, German, Kannada, Navajo, Spanish, and
Turkish.

4 System Architecture

The overall architecture of our system includes
several distinct pieces as demonstrated in Figure
1. For a given language, we read the corpus text
provided and generate a lexicon of unique words.
The lexicon is then fed to an embedding layer and
an optional lemma identification layer. The em-
bedding layer generates a vector representation of
each word based on either a character level embed-
ding or a Word2Vec embedding. When used, the
lemma identification layer generates a set of prede-
fined lemmas from the lexicon based on either the
standard longest common substring or a connected
graph formed from the longest common substring.
Result word embeddings along with the optional
set of predefined lemmas are used as input to a
KMeans clustering algorithm. In the event prede-
fined lemmas are not provided, the system defaults
to using a randomly initialized set of centroids. Oth-
erwise, the initial centroids for the clusters are the
result of finding the appropriate word embedding
for the lemmas identified. Once a cluster has been
created, the output cluster predictions are formatted
into a paradigm dictionary which can be written to
a file for evaluation.

4.1 Word Representations

We create two different types of word represen-
tations, aiming to capture information that may
reflect the relatedness of words within a paradigm.

Character Based Embeddings. To capture or-
thographic information, we generate a character-
based word embedding for the language. For each
language we do the following:

1. Generate a lexicon of all the words in the de-
velopment corpus and an alphabet of unique
characters in the language.
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2. Identify the maximum word length of the lex-
icon.

3. Create a dictionary of the alphabet where each
character corresponds to a float value between
0 (non-inclusive) and 1 (inclusive).

4. For each word:

(a) Initialize an array of zeros the same size
as the maximum length word.

(b) Map each character in the word, in order,
to its respective float value based on our
alphabet dictionary. Leave the remaining
values as zero.

This representation focuses purely on the charac-
ters of the language. For the time being, it does
not take into account the relationship between or-
thographic characters in any of the languages but
future work could attempt to create smarter numer-
ical representations based on these relationships.

Word Embeddings with Word2Vec. To incor-
porate semantic and syntactic information, we use
the Word2Vec embeddings. Specifically, we train a
Word2Vec model for each language with the Gen-
sim skip-gram representations (Rehtifek and Sojka,
2010).

4.2 (Optional) Lemma Identification

LCS Graph Formation One of the challenges
of using clustering-based methods on this prob-
lem is determining the number of morphological
paradigms expected to be present and then finding
suitable lemmas for each to serve as centers for
clustering. One potential approach to find lemmas
is to first arrange the words into a network graph
based on the longest common substring relation-
ships between them. Specifically, for each attested
word W in a language’s data, the longest common
substring (LCS) is calculated between W and every
other attested word in the language. Graph edges
are then constructed between W and the word (or
words if there are multiple with the same length
LCS) that have the longest LCS with W. This pro-
cess is repeated for every word in the given lan-
guage’s corpus. This results in a large graph that
appears to capture many of the morphological de-
pendencies within the language.

Next, we split the graph into highly connected
subgraphs (HCSs). HCS are defined as graphs
in which the number of edges that would need
to be cut to split the graph into two disconnected
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Figure 1: Overall Statistical Clustering Architecture diagram. There are two possible word embedding algorithms
represented in the diagram (left side of split). The optional lemma identification layer also includes two possible

methods (right side).

subgraphs is greater than one half of the num-
ber of nodes. This is helpful because in the LCS
graphs generated, morphologically related forms
tend to be connected relatively densely to each
other and only weakly connect to forms from other
paradigms. Additionally, the use of a threshold
based algorithm like HCS, unlike other clustering
methods, would allow lemmas to be extracted with-
out having to prespecify the expected number of
lemmas beforehand. Unfortunately, during testing
the HCS graph analysis proved computationally
taxing and was unable to be completed in time for
evaluation, though qualitative analysis of the gen-
erated LCS graphs suggests the technique may still
be useful with better computational power. We will
explore this method further in future work.

4.3 Clustering

The word representations described in section 4.1
are used as input to a clustering algorithm. We use
the KMeans algorithm as defined by the sklearn im-
plementation (Pedregosa et al., 2011). The KMeans
approach is one of the pioneering algorithms in un-
supervised learning (MacQueen et al., 1967). Input
values are grouped by continuously shifting clus-
ters and their centers while attempting to minimize
the variance of each cluster. This indicates that the
cluster that a particular word is assigned to should

93

be as close (as defined by Euclidean distance) to
the cluster’s center, or the lemma word, as possible.

Clustering with Randomly Initiated Centers.
For comparison, we evaluate the effectiveness of
using randomly initialized centers for our clusters.
In the context of this task, this means that the first
set of centers fed to the algorithm do not necessarily
correspond to any valid word in the given language,
or perhaps any language. Another obstacle for this
approach in an unsupervised setting is defining the
number of clusters to use. Identifying this requires
human interference with hyper-parameters that are
not going to be cross-linguistically relevant. The
size of the input bible corpus and the inflectional
morphology of the language both directly impact
the number of clusters, or the number of lemmas,
that are relevant. We used a range of cluster sizes
for the development languages from 100 to 6000 to
evaluate which ones provided the highest accuracy.
For the test languages, we chose to submit results
for clusters of size 500, 1000, 1500, and 1900 to
assess performance variability based on number of
lemmas.

Extension: Initializing with Non-Random Cen-
ters. The use of non-random centers would have
multiple benefits in the context of this task. This
approach would incorporate linguistic information



Language BL KMW2V KMCE
Maltese 0.29 0.19 0.25
Persian 0.30 0.18 0.36
Portuguese 0.34 0.06 0.24
Russian 0.36 0.11 0.34
Swedish 0.44 0.18 0.45

Table 2: F1 Scores for each of the model types on all
development languages. The best F1 scores are in bold.
BL is Baseline, KMW2V is KMeans with Word2Vec
embeddings, and KMCE is KMeans with Character
Embeddings.

Language BL 500 1000 1500 1900
Basque 0.21 029 031 0.27 0.29
Bulgarian 0.39 0.21 0.27 029 0.30
English 052 029 037 043 045
Finnish 029 0.19 024 0.26 0.27
German 038 026 033 038 040
Kannada 024 029 030 030 0.29
Navajo 033 033 038 039 041
Spanish 039 024 029 030 0.31
Turkish 0.25 0.16 020 022 022
Table 3: F1 Scores for the baseline (BL) and the

KMCE models on the test languages. The best F1
scores are in bold. Test languages were evaluated on
KMCE models with clusters of size 500, 1000, 1500,
and 1900.

to inform the initial set of centers. This could lead
to quicker convergence of a model due to more
intelligently picked centers. It could also prevent
the model from being skewed towards less than
ideal center values. Additionally, with pre-defined
centers we can remove the need to arbitrarily define
the number of clusters.

In the scope of this task, we were unable to ex-
periment with pre-defined center values but we
have proposed two potential methods for doing
so: using longest common substrings and picking
highly connected nodes from an LCS graph for-
mation. The longest common substring approach
would mimic the lemma identification approach de-
scribed above (4.2). Both of these systems are rep-
resented as an optional lemma identification layer
on the right hand side of Figure 1. The output of
each one would be a set of words to use as centers.
Each word would be converted to the appropriate
word representation and then fed as an input to the
KMeans clustering.
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5 Results

Table 2 shows results to date. We compare the
two representation methods on the development
languages. The KMeans clusterings for the devel-
opment languages were generated based on optimal
cluster values starting with size 100 and increas-
ing to a cluster size of 6000, or until the accuracy
no longer improved from an increase in cluster
size. For the Word2Vec embeddings we used clus-
terings of size 110 for Maltese, 130 for Persian,
1490 for Portuguese, 1490 for Russian, and 1490
for Swedish. With the character embeddings, we
had 540 clusters for Maltese, 110 clusters for Per-
sian, 2200 clusters for Portuguese, 4000 clusters
for Russian, and 5400 clusters for Swedish. The F1
scores provided are based on comparing the appro-
priate model’s predictions to the gold paradigms for
this task using the evaluation function defined in
the SIGMORPHON 2021 Task 2 github repository.
The KMCE models clearly and consistently out-
perform the KMW2V models, for all development
languages.

For test languages, we run clustering only with
the better-performing character-based representa-
tions. The performance on test languages was
evaluated with clusters of size 500, 1000, 1500,
and 1900. These results are in Table 3. We found
that our algorithm outperformed the baseline for
Basque, German, Kannada, and Navajo. For both
Basque and Kannada, the largest clustering did
not have the highest result suggesting that the cor-
pora provided for these languages contain a smaller
number of morphological paradigms. In the case of
Bulgarian, English, Spanish, and Finnish, we note
that the KMCE model performance increases with
each increase in cluster size. This suggests that the
model accuracy would continue increasing if we
ran the model for these languages with a higher
number of clusters. Additional discussion of the er-
ror analysis appears in section 6, and fo the results
in section 7.

6 Error Analysis

We have evaluated the results from the Word2Vec
representations and our character-based embedding
and compared them to the gold standard paradigms
provided by the task organizers. We have found
that, overall, the character-based version is more
robust on regular verb forms than the Word2Vec
version, and that neither is effective on irregular
forms. Additionally, we explore some of the nu-



anced errors with the character based embeddings
and how they could be addressed for future work.

6.1 Regular Verb Forms

Our results are consistent with our initial expec-
tation that an orthographic word representation
would perform better on regular verb forms than the
Word2Vec representation, since it weights close-
ness based on the characters of the word. The char-
acter embedding correctly groups many surface
forms together based on regular English morpho-
logical paradigms, or those that follow the pattern
of -ed for past tense, -s for third person singular
present, - @ for first, second and third person plural
present. However, there were sometimes words
missing from the paradigm. For example, the sys-
tem generated the paradigm {stumble, stumbles,
stumbling}. This should have included stumbled,
but instead that is in a paradigm with thaddaeus.
In contrast, the Word2 Vec representation separates
all four surface forms into different morphological
paradigms. For Spanish paradigms, we see that the
character embeddings perform well for matching
some of the regular surface forms together, but can-
not handle longer suffixes. For example, aprendas,
aprendan and aprenden are grouped together while
leaving out longer surface forms like aprendere-
mos. Similarly, hablaste, hablaras, hablaran and
hablara are grouped in the same morphological
paradigm, but hablar, hablan, hablar, hables and
hablen are part of a separate grouping. We discuss
the issue of errors related to word length in detail
below.

6.2 Irregular Verb Forms

Because it focuses on semantic relatedness, we ex-
pected the Word2Vec representation to be more ac-
curate in grouping together irregular surface forms
from the same paradigm. For example, we have
the paradigm for go: {go, goes, going, went}. In
fact, Word2Vec created a morphological paradigm
for go, one for {upstairs, carry, goes, favour},
{going, reply, robbed, dared, gaius, failed, god-
less}, and one for went. The orthographical rep-
resentation also produced some undesired results,
with a paradigm for { eyes, goat, goes, gone, gong,
else, eloi, noah, none, sons, long} and {gains,
noisy, lasea, lysias, gates, lying, fatal, often, notes,
loses, latin, latest, going}. The other surface forms
of went and go also ended up in separate morpho-
logical paradigms. These results suggest that nei-
ther representation is currently robust enough to
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handle irregular verb forms.

6.3 Character Distance Errors

In some cases, the character representations result
in strange cluster formations due to the usage of
Euclidean distance in the sklearn KMeans library.
Since each character in the language’s alphabet
was mapped arbitrarily to a numeric value, the
closeness of a pair of characters does not reflect a
morphological relationship between those symbols.
However, characters that are assigned to numeri-
cal values that are closer to one another will be
classified as closer by the Euclidean distance algo-
rithm. It would be possible to learn more about the
language specific character relations by training
a recurrent network with a focus on the charac-
ter sequence alignments. This network could then
be used as an encoder to generate character level
embeddings.

6.4 Non-Affix Based Morphology

For verb forms in English that do not use a regu-
lar affixation paradigm, we find that some surface
forms are paired together in the correct clusters,
but those clusters often contain additional unre-
lated words. Consider the following group: {drank,
drinks, drink, drunk, breaks, break, branch}. In
this cluster, we see that drank, drinks, drink and
drunk were all correctly identified as being related.
The algorithm also matched break and breaks to-
gether. This suggests that character representations
have the potential to identify morphological trans-
formations that occur at different points in the word,
as opposed to just prefixes or suffixes. However, the
result is a combination of what should be three dis-
tinct morphological paradigms, including a unique
paradigm for branch. In Navajo, jidooleet and
dadooleet are correctly put in the same paradigm.
However, this paradigm also includes jidooleetgo
and dadooleetgo, which are not morphologically
related. We also see the tendency of over-grouping
in Basque, where bitzate, nitzan, and ditzan are all
grouped together along with over ten other unre-
lated forms. This could potentially be addressed by
increasing the number of clusters to favor smaller
clusters. Adding semantic features to the word em-
beddings such as part of speech or limited context
windows may also help filter out words that are not
relevant to a particular paradigm.



6.5 Word Length

Another type of cluster error has to do with word
length. The word representation vectors were sized
based on the largest word present in a given lan-
guage’s corpus. If a word is under the maximum
length, the remaining vector gets filled in with ze-
ros. This means that words that are similar in
length are more likely to be paired together for
a cluster. The gold data created the morphological
paradigm {crowd, crowds, crowding}, while ours
created two separate clusterings: {crowd, crowds}
and {brawling, proposal, crowding}. This is also
present in the clustering of certain words in Navajo.
Our algorithm grouped nizaad, and bizaad together,
but some of the longer forms in this paradigm were
excluded such as danihizaad and nihizaad. In fu-
ture work, we would attempt to mitigate this by
using subword distances or cosine similarity as
the basis for distance metrics in a clustering algo-
rithm. This could prevent inaccurate groupings due
to large affix lengths.

7 Discussion, Conclusions, Future Work

Overall, these results demonstrate an improvement
over the baseline in several languages, namely Per-
sian, Swedish, Basque, Germany, Kannada, and
Navajo, when using KMeans clustering over char-
acter embeddings. This suggests that embedding-
based clustering systems merit further exploration
as a potential approach to unsupervised problems in
morphology. The fact that the character embedding
system outperformed the W2V one and the fact that
performance was strongest on words with regular
inflectional paradigms suggests that this approach
might be best suited to synthetic and agglutinating
languages in which morphology is encoded fairly
simply within the orthography of the word. Lan-
guages that rely heavily on more complex morpho-
logical processes, particularly non-concatenative
morphology, would likely require an extension of
this system that integrates more sources of non-
orthographic information, or a different approach
all together.

One obvious avenue for building on this research
is to find more efficient and more effective methods
for the initial process of lemma identification. De-
veloping a set of lemmas would allow a pre-defined
set of centers to be fed into the clustering algo-
rithm rather than using randomly defined centers,
which would likely improve performance. This
could be done by leveraging an initial rule based
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analysis or through the threshold-based graph clus-
tering technique discussed above. Other potential
variations on that approach, once the problem of
computational limits has been solved, include us-
ing longest common sequences rather than longest
common substrings, and weighting graph edges by
the length of the LCS between the two words. The
former would potentially help accommodate forms
of non-concatenative morphology, while the latter
would potentially include more information about
morphological relationships than an unweighted
graph does. Future research should also explore
how other sources of linguistic information could
be leveraged for this task. This could include
other forms of semantic information outside of the
context-based semantics used by W2V, as well as
things like the orthographic-phonetic correspon-
dences in a given language.

Finally, we would like to explore filtering of the
output clusters according to language-specific prop-
erties in order to improve the overall results.This
would involve adding additional layers to our sys-
tem architecture that take place after a distance-
based clustering. One such layer could prune un-
likely clusters based off of a morphological trans-
formations, such as the method used by Soricut and
Och (2015). Future unsupervised systems for clus-
tering morphological paradigms should consider
the benefits of hierarchical models that leverage dif-
ferent algorithm types to gain the most information
possible.
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Abstract

This paper describes the submission of
the CU-UBC team for the SIGMORPHON
2021 Shared Task 2: Unsupervised morpho-
logical paradigm clustering. Our system
generates paradigms using morphological
transformation rules which are discovered
from raw data. We experiment with two
methods for discovering rules. Our first
approach generates prefix and suffix trans-
formations between similar strings. Sec-
ondly, we experiment with more general
rules which can apply transformations in-
side the input strings in addition to prefix
and suffix transformations. We find that
the best overall performance is delivered
by prefix and suffix rules but more gen-
eral transformation rules perform better
for languages with templatic morphology
and very high morpheme-to-word ratios.

1 Introduction

Supervised sequence-to-sequence models for
word inflection have delivered impressive re-
sults in the past few years and a number of
shared tasks on supervised learning of morphol-
ogy have helped to raise the state of the art of
this task (Cotterell et al., 2016, 2017, 2018; Mc-
Carthy et al., 2019; Vylomova et al., 2020). In
contrast, unsupervised approaches to morphol-
ogy have received far less attention in recent
years. Nevertheless, the question of whether
the morphological system of a language can be
discovered from raw text data alone is certainly
an interesting one.

This paper describes the submission of the
CU-UBC team for the SIGMORPHON 2021
Shared Task 2: Unsupervised morphologi-
cal paradigm clustering (Wiemerslage et al.,
2021).! The objective of this task is to group

!github.com/changbingY/Sigmorph-2021-task2

Garrett Nicolai®
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the distinct inflected forms of lexemes occur-
ring in a corpus into morphological paradigms.
Figure 1 illustrates the task.

Our system generates paradigms using mor-
phological transformation rules which are dis-
covered from raw data. As an example, con-
sider the rule ed — ing, which maps an En-
glish past tense verb form like walked into the
present participle walking. In this paper, we
use regular expressions of symbol-pairs (that
is, regular relations) in the well-known Xerox
formalism (Beesley and Karttunen, 2003) to
denote rules: for example, 7+ e:i d:n 0:g.
These rule can be applied using composition
of regular relations:

[Wwalked] .o. [?+e:id:n 0:g]
will result in an output formw a 1 k i n g.
We cluster forms into the same paradigm if
we can find morphological transformation rules
which map one of the forms into the other. Our
approach is illustrated in Figure 2.

We experiment with two methods for discov-
ering rules, described in Section 3.3. Our first
approach is inspired by work on morphology
discovery by Soricut and Och (2015), who gen-
erate prefix and suffiz transformations between
similar strings. This idea closely parallels our
approach for extracting rules. Unlike Soricut
and Och (2015), however, we do not utilize
word embeddings when extracting rules due to
the very small size of the shared task datasets.
In addition to prefix and suffix rules, we also
experiment with more general discontinuous
transformation rules which can apply trans-
formations to infixes as well as prefixes and
suffixes. For example, the rule

7+ 1:0 7?7+ e:i 7+ 0:t

would transform the input form gidem (‘to
bite’ in Maltese) to gdimt. Our results
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Data:

the cat meowed
the cats are meowing
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Figure 1: The unsupervised paradigm clustering
task.

demonstrate that prefix and suffix rules deliver
stronger performance for most languages in the
shared task dataset but our more general trans-
formations rules are beneficial for templatic
languages like Maltese and languages with a
high morpheme-to-word ratio like Basque.

2 Related Work

The unsupervised paradigm clustering task is
closely related to the 2020 SIGMORPHON
shared task on unsupervised morphological
paradigm completion (Kann et al., 2020). How-
ever, paradigm clustering systems do not infer
missing forms in paradigms. Our system re-
sembles the baseline system for the paradigm
completion task (Jin et al., 2020) which also
extracts transformation rules, however, in the
form of edit trees (Chrupala et al., 2008).

Several approaches to unsupervised or mini-
mally supervised morphology learning, which
share characteristics with our system, have
been proposed. Our rules are essentially iden-
tical to the FST rules used by Beemer et al.
(2020) for the task of supervised morpholog-
ical inflection. Likewise, Durrett and DeN-
ero (2013) and Ahlberg et al. (2015) both ex-
tract inflectional rules after aligning forms from
known paradigms. Yarowsky and Wicentowski
(2000) also generate rules for morphological
transformations but their system for minimally
supervised morphological analysis requires ad-
ditional information in the form of a list of
morphemes as input.

Erdmann et al. (2020) present a task called
the paradigm discovery problem which is quite
similar to the unsupervised paradigm clustering
task. In their formulation of the task, inflected
forms are clustered into paradigms and corre-
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sponding forms in distinct paradigms (like all
plural forms of English nouns) are clustered
into cells. Their benchmark system is based on
splitting every form into a (potentially discon-
tinuous) base and exponent, where the base is
the longest common subsequence of the forms
in a paradigm and the exponent is the residual
of the form. They then maximize the base in
each paradigm while minimizing the exponents
of individual forms.

3 Methods

This section describes how we extract rules
from the dataset and apply them to paradigm
clustering. We also describe methods for fil-
tering out extraneous forms from generated
paradigms.

3.1 Baseline

As a baseline, we use the character n-gram
clustering method provided by the shared task
organizers (Wiemerslage et al., 2021). Here
all forms sharing a given substring of length
n are clustered into a paradigm. Duplicate
paradigms are removed. The hyperparameter
n can be tuned on validation data if such data is
available (we use n = 5 in all our experiments).

3.2 Transformation rules

Our approach builds on the baseline paradigms
discovered in the previous step. We start by ex-
tracting transformation rules between all word
forms in a single baseline paradigm. For each
pair of strings like dog and dogs belonging to a
paradigm, we generate a rule like 7+ 0:s which
translates the first form into the second one.
From a paradigm of size n, we can therefore ex-
tract n? —n rules—one for each ordered pair of
distinct word forms. Preliminary experiments
showed that large baseline paradigms tended
to generate many incorrect rules which did not
represent genuine morphological transforma-
tions. We, therefore, limited rule-discovery to
paradigms spanning maximally 20 forms.
After generating transformation rules, we
compute rule-frequency over all baseline
paradigms and discard rare rules which are
unlikely to represent genuine morphological
transformations (the minimum threshold for
rule frequency is a hyperparameter). The re-
maining rules are then applied iteratively to
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Figure 2: A schematic representation of our approach. We start by generating preliminary paradigms
using the baseline method. We then extract transformation rules for each word pair in our paradigms
noting how many times each unique rule occurred. For example, here both (dog, dogs) and (cat, cats)
result in a rule ?* 0:s which therefore has count 2. Subsequently, we discard rare rules like h:0 0:0 t:0
?* which are unlikely to represent genuine morphological transformations. We then use the remaining
rules to reconstruct our morphological paradigms as explained in Section 3.3.

our datasets to construct paradigms. We exper-
iment with two rule types which are described
below.

3.2.1 Prefix and Suffix Rules

Our first approach to rule-discovery is based on
identifying a contiguous word stem shared by
both forms. The stem is defined as the longest
common substring of the forms. We split both
forms into a prefix, stem and suffix. The mor-
phological transformation is then defined as a
joint substitution of a prefix and suffix. For ex-
ample, given the German forms acker+n and
ge+acker+t (German ‘to plow’), we would
generate a rule:

O0:g O:e 7+ n:t

As mentioned above, these rules are extracted
from paradigms generated by the baseline sys-
tem.

We also experiment with a more restricted
form of these rules in which only suffix trans-
formations are allowed. While this limits the
possible transformations, it will also result in
fewer incorrect rules and may, therefore, de-
liver better performance for languages which
are predominantly suffixing.

3.2.2 Discontinuous rules

Even though prefix and suffix transformations
are adequate for representing morphological
transformations in many languages, they fail to
derive the appropriate generalizations for lan-
guages with templatic morphology like Maltese
(which was included among the development
languages). For example, it is impossible to
identify a contiguous stem-like unit spanning
more than a single character for the Maltese
forms gidem ‘to bite’ and gdimt. We need

a rule which can apply transformations inside
the input string:
7?7+ i:0 ?+ e:i 7+ 0:t

Like prefix and suffix rules, discontinuous
rules are generated from baseline paradigms.
Unlike prefix and suffix rules, however, discon-
tinuous rules require a character-level align-
ment between the input and output string.
To this end, we start by generating a dataset
consisting of all string pairs like (dog, dogs)
and (hotdog, dog), where both strings belong
to the the same paradigm. We then apply
a character-level aligner based on the itera-
tive Markov chain Monte Carlo method to this
dataset.? Using this method, we can jointly
align all string pairs in the baseline paradigms.
This is beneficial because the MCMC aligner
will prefer common substitutions, deletions
and insertions over rare ones.> which enforces
consistency of the alignment over the entire
dataset. This in turn can help us find linguis-
tically motivated transformation rules.

Character-level alignment results in pairs:

INPUT: d o g 0
OUTPUT: d o g s
INPUT: h o t d o g
OUTPUT: 0 0 0 d o g

Each symbol pair in the alignment represents
one of the following types: (1) an identity pair
x:x, (2) an insertion 0:x, (3) a deletion x:0,
or (4) a substitution x:y. In order to convert
a pair of aligned strings into a transformation

2This aligner was initially used for the baseline sys-
tem in the 2016 iteration of the SIGMORPHON shared
task (Cotterell et al., 2016).

3This is a consequence of the fact that the algorithm
iteratively maximizes the likelihood of the alignment for
each example given all other examples in the dataset.
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rule, we simply replace all contiguous sequences
of identity pairs with 7+. For the alignments
above, we get the rules: 7+ 0:s and h:0 0:0
t:0 7+,

3.3 Iterative Application of Rules

After extracting a set of rules from baseline
paradigms, we discard the baseline paradigms.
We then construct new paradigms using our
We start by picking a random word
form w from the dataset. We then form the
paradigm P for w as the set of all forms in
our dataset which can be derived from w by
applying our rules iteratively. For example,
given the form eats and the rules:

rules.

7?7+ s:0and 7+ 0:i O:n O:g

the paradigm of eats would contain both eat
(generated by the first rule) and eating (gen-
erated by the second rule from eats) provided
that both of these forms are present in our orig-
inal dataset. All forms in P are removed from
the dataset and we then repeat the process for
another randomly sampled form in the remain-
ing dataset. This continues until the dataset is
exhausted. The procedure is sensitive to the or-
der in which we sample forms from the dataset
but exploring the optimal way to sample forms
falls beyond the scope of the present work.

For prefix and suffix rules, we limit rule ap-
plication to a single iteration because this de-
livered better results in practice. Applying
rules iteratively tended to result in very large
paradigms. For discontinuous rules, we do ap-
ply rules iteratively.

3.4 Filtering Paradigms

According to our preliminary experiments,
many large paradigms generated by transfor-
mation rules contained word forms which were
morphologically unrelated to the other forms
in the paradigm. To counteract this, we ex-
perimented with three strategies for filtering
out individual extraneous forms from generated
paradigms: the degree test, the rule-frequency
test and the embedding-similarity test. Forms
which fail all of our three tests are removed
from the paradigm.?

4These filtering strategies are applied to paradigms
containing > 20 forms. This threshold was determined
based on examining the output clusters for the devel-
opment languages.
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Figure 3: Given the candidate paradigm {walk,
wall, walking, walked, walks}, we can form a
graph where two word forms are connected if a
rule like 7+ 0:e 0:d derives one of the forms like
walked from the other one walk. We experiment
with filtering out forms which have low degree in
this graph since those are more likely to be spurious
additions resulting from rules like 7+ 1:k in the ex-
ample, which do not capture genuine morphologi-
cal regularities. In this example, wall might be fil-
tered out because it has low degree one compared
to all other forms which have degree three.

If we first generate all paradigms and then fil-
ter out extraneous forms, we will be left with a
number of forms which have not been assigned
to a paradigm. In order to circumvent this
problem, we apply filtering immediately after
generating each individual paradigm. Forms
which are filtered out from the paradigm are
placed back into the original dataset. They
can then be included in paradigms which are
generated later in the process.

Degree test Our morphological transforma-
tion rules induce dependencies and therefore
a graph structure between the forms in a
paradigm as demonstrated in Figure 3. Within
each paradigm, we calculate the degree of a
word in the following way: For each attested
word w in the generated paradigm, its degree
is the number of forms w’ in the paradigm for
which we can find a transformation rule map-
ping w — w’. We increment the degree if there
is at least one edge between words w and w’
in the paradigm (the number of distinct rules
mapping form w to w’ is irrelevant here as long
as there is at least one). If the degree of a word
is less than a third of the paradigm size, the
word fails the degree test.

Rule-Frequency test Some rules like 7+
e:i d:n 0:g for English represent genuine in-
flectional transformations and will therefore



occur often in our datasets. Others, like the
rule 7* 1:k in Figure 3, instead result from co-
incidence, and will usually have low frequency.
We can, therefore, use rule frequency as a cri-
terion when identifying extraneous forms in
generated paradigms. We examine the cumula-
tive frequency of all rules applying to the form
in our paradigm. If this frequency is lower
than the median cumulative frequency in the
paradigm, the form fails the rule-frequency test.

Embedding-similarity test If a word fails
to pass the degree and the rule frequency tests,
we will measure the semantic similarity of the
given form with other forms in the paradigm.
To this end, we trained FastText embeddings
(Bojanowski et al., 2017) and calculated co-
sine similarity between embedding vectors as a
measure of semantic relatedness.® We start by
selecting two reference words in the paradigm
which have high degree (at least 50% of the
maximal degree) and whose cumulative rule fre-
quency is above the paradigm’s median value.
We then compute their cosine similarity as a
reference point r. For all other words in the
paradigm, we then compare their cosine simi-
larity 7’ to one of the reference forms. Forms
fail the embedding-similarity test if v < 0.5
andr —r1r" > 0.3.

4 Experiments and Results

In this section, we describe experiments on the
shared task development and test languages.

4.1 Data and Resources

The shared task uses two data resources. Cor-
pus data for the four development languages
(Maltese, Persian, Russian and Swedish) and
nine test languages (Basque Bulgarian, English,
Finnish, German, Kannada, Navajo, Spanish
and Turkish) are sourced from the Johns Hop-
kins Bible Corpus (McCarthy et al., 2020b).
For most of the languages, complete Bibles
were provided but for some of them, we only
had access to a subset (see Wiemerslage et al.
(2021) for details). Gold standard paradigms
were automatically generated using the Uni-
morph 3.0 database (McCarthy et al., 2020a).

5We train 300-dimensional embeddings with context
window 3 and use character n-grams of size 3-6.

4.2 Experiments on validation
languages

Since our transformation rules are generated
from paradigms discovered by the baseline sys-
tem, which contain incorrect items, it is to be
expected that some incorrect rules are gener-
ated. We filter out infrequent rules, as they are
less likely to represent genuine morphological
transformations. For prefix and suffix rules
(i.e., PS), we experimented with including the
top 2000 (PS-2000), 5000 (PS-5000), and all
rules (PS-all), as measured by rule-frequency.
Additionally, we present experiments using a
system which relies exclusively on suffix trans-
formations including all of them regardless of
frequency (S-all). For discontinuous rules (D),
we used lower thresholds because our prelimi-
nary experiments indicated that incorrect gen-
eralizations were a more severe problem for
this rule type. We selected the 200 (D-200),
300 (D-300), and 500 (D-500) most frequent
rules, respectively. Results with regard to best-
match F1 score (see Wiemerslage et al. (2021)
for details) are shown in Table 1.

According to the results, all of our systems
outperform the baseline system by at least
25.53% as measured using the mean best match
F1 score. Plain suffix rules (S-all) provide
the best performance with a mean F1 score
of 65.41%, followed by other affixal systems
(PS-2000, PS-5000 and PS-all). On average,
discontinuous rules (D-200, D-300 and D-500)
are slightly less-successful, but they deliver
the best performance for Maltese. Table 1
demonstrates that simply increasing the num-
ber of rules does not always contribute to bet-
ter performance—the optimal threshold varies
between languages.

As explained in Section 3.4, we aim to fil-
ter out extraneous forms from overly-large
paradigms. We applied this approach to discon-
tinuous rules with a 500 threshold. Results are
shown in Table 2. As the table shows, a filtering
strategy can offer very limited improvements.
Most of the languages do not benefit from this
approach and even for languages which do, the
gain is miniscule. Due to their very limited
effect, we did not apply filtering strategies to
test languages.

102



Maltese Persian Portuguese Russian Swedish Mean
Baseline 29.07 30.04 34.15 36.30 43.62 34.64
PS-2000 35.41 50.17 65.53 81.20 81.14 62.69
PS-5000 36.81 50.40 71.33 81.96 79.82 64.06
PS-all 40.67 53.15 76.63 75.39 72.46 63.66
S-all 30.32 52.69 82.67 80.65 80.74 65.41
D-200 42.99 54.65 66.86 70.38 68.76 60.73
D-300 42.99 53.64 69.38 72.33 67.14 61.10
D-500 45.05 51.82 66.37 75.26 62.30 60.16
Table 1: F1 Scores for each of the model types on all development languages. The best F1 scores are in
bold.
Maltese Persian Portuguese Russian Swedish Mean
Baseline 29.07 30.04 34.15 36.30 43.62 34.64
D-500 45.05 51.82 66.37 75.26 62.30 60.16
Filter 45.05 51.82 66.45 75.26 62.30 60.18

Table 2: F1 score for Discontinuous rules systems and Filtering systems across five validation languages.

4.3 Experiments on Test Languages

Results for the test languages are presented in
Table 3. We find that all of our systems sur-
passed the baseline results by at least 23.06% in
F1 score. The prefix and suffix system using all
of the suffix rules displays the best performance
with an F1 score of 66.12%. Among the discon-
tinuous systems, the system with a threshold of
500 has the best results. On average, the affixal
systems outperform the discontinuous ones. In
particular, these methods perform best on lan-
guages which are known to be predominantly
suffixing, such as English, Spanish, and Finnish.
Contrarily, discontinuous rules deliver the best
performance for Navajo—a strongly prefixing
language. Discontinuous rules also result in
the best performance for Basque, which has a
very high morpheme-to-word ratio.

In order to better understand the behavior of
our systems, we analyzed the distribution of the
size of generated paradigms for prefix and suffix
systems as well as discontinuous systems. Re-
sults for selected systems are shown in Figure 4.
We conducted this experiment for the overall
best system (S-all), as well as the best discontin-
uous system (D-500). Both systems follow the
same overall pattern: large paradigms are rarer
than smaller ones and the frequency drops very
rapidly with increasing paradigm size. The ma-
jority of generated paradigms have sizes in the
range 1-5. Although the tendency is similar for
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suffix rules and discontinuous rules, discontin-
uous rules tend to generate more paradigms of
size 1. In contrast to the paradigms generated
by our systems, the frequency of gold standard
paradigms drops far slower as the paradigms
grow. For example, for Finnish and Kannada,
paradigms containing 10 forms are still very
common. The only language where the distri-
bution generated by our systems very closely
parallels the gold standard is Spanish. For
all other languages, our systems very clearly
over-generate small paradigms.

5 Discussion and Conclusions

Paradigm construction can suffer from two
main difficulties: overgeneralization, and un-
derspecification. In the former, paradigms are
too generous when adding new members. Con-
sider, for example, a paradigm headed by “sea”.
We would want to include the plural “seas”, but
not the unrelated words “seal”, “seals”, “un-
dersea”, etc. Contrarily, a paradigm selection
algorithm that is overly selective will result in
a large number of small paradigms - less than
ideal in a morphologically-dense language.
Considering the results described in the pre-
vious section, we note that our two best mod-
els skew towards conservatism - they prefer
smaller paradigms. This is likely an artifact of
our development cycle - we found that the base-
line preferred large paradigms, often capturing
derivational features, or even circumstantial



English Navajo Spanish Finnish Bulgarian Basque Kannada German Turkish Mean

Baseline 51.49 33.25 38.83 28.97 38.89 21.48 23.79 38.22 25.23 33.35
PS-2000 83.89 48.69 77.71 52.60 73.50 25.81 42.35 74.49 46.80 58.42
PS-5000 81.16 48.69 79.60 57.88 74.14 29.03 47.47 74.27 51.26 60.39
PS-all 76.41 48.69 76.94 66.03 69.50 29.03 57.71 65.26 60.97 61.17
S-all 88.68 42.48 83.21 73.42 76.96 29.03 59.34 74.18 67.80 66.12
D-200 76.93 58.45 66.05 50.68 70.48 26.19 40.57 70.26 48.05 56.41
D-300 73.23 59.36 69.46 53.66 69.39 26.19 43.71 68.52 51.00 57.17
D-500 69.33 61.66 69.92 56.51 63.23 33.33 46.94 62.54 53.24 57.41

Table 3: F1 Scores for each of the model types on all test languages. The best F1 scores are in bold.
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Figure 4: Paradigm size distribution across nine test languages. The x axis stands for paradigm size
ranging from 1 to 20. The y axis shows the percentage of each paradigm size accounts for among all
paradigms the system generates.
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string similarities, when clustering paradigms.
Much of our focus was thus on limiting rule ap-
plication only to those rules we could be certain
were genuine. Unfortunately, this means that
many words are excluded, residing in singleton
paradigms.

Our methods were also affected by the choice
of development languages. Of these languages,
only one (Persian) is agglutinating, and none
of the authors can read the script, so it had a
smaller impact on the evolution of our methods.
We believe that several languages —namely,
Finnish, Turkish, and Basque— could have
benefited from iterative rule application; how-
ever, the iterative process was not selected after
seeing a degradation (due to overgeneralization)
on the development languages.

It is also worth discussing two outliers in
our system selection. Our suffix-first model
performed very well on all of the development
languages except Maltese. This is not sur-
prising, given its templatic morphology. Mal-
tese inspired the creation of our discontinuous
rule set, and indeed, these rules outperformed
the suffixes for Maltese. Switching to the test
languages, we see that this model has higher
performance for Navajo and Basque —two lan-
guages that are rarely described as templatic.
We observe, however, that both languages make
heavy use of prefizing. Note in Table 2 that in-
cluding prefixes (PS-All) significantly improves
Navajo: the only language to see such a bene-
fit. Likewise, Navajo also has significant stem
alternation, which may be benefiting from dis-
continuous rule sets. Basque is trickier - it
does not improve simply from including pre-
fixal rules. Upon closer inspection, we observe
that much Basque prefixation more closely re-
sembles circumfization: the stem has a prefixal
vowel to indicate tense, which is jointly applied
with inflectional suffixes. One round of rule
application - even if it includes both suffixes
and prefixes, appears to be insufficient.

There is still plenty of ground to be covered,
with the mean F1 score below 70%. We be-
lieve that the next step lies in re-establishing
a bottom-up construction for those paradigms
that our methods currently separate into small
sub-paradigms. Our methods predict roughly
twice to 3 times as many singleton paradigms
as exist in the gold data, and there is not signifi-
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cant rule support to combine them. Possible ar-
eas for exploration include iterative rule extrac-
tion on successively more correct paradigms, or
the incorporation of a machine learning element
that can predict missing forms.

In this paper, we have presented a method for
automatically building inflectional paradigms
from raw data. Starting with an n-gram base-
line, we extract intra-paradigmatic rewrite
rules. These rules are then re-applied to the cor-
pus in a discovery process that re-establishes
known paradigms. Our methods prove very
competitive, with our best model finishing
within 2% of the best submitted system.
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Paradigm Clustering with Weighted Edit Distance
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Abstract

This paper describes our system for the
SIGMORPHON 2021 Shared Task on Un-
supervised Morphological Paradigm Cluster-
ing, which asks participants to group in-
flected forms together according their underly-
ing lemma without the aid of annotated train-
ing data. We employ agglomerative cluster-
ing to group word forms together using a met-
ric that combines an orthographic distance and
a semantic distance from word embeddings.
We experiment with two variations of an edit
distance-based model for quantifying ortho-
graphic distance, but, due to time constraints,
our systems do not outperform the baseline.
However, we also show that, with more time,
our results improve strongly.

1 Introduction

Most of the world’s languages express gram-
matical properties, such as tense or case, via
small changes to a word’s surface form. This
process is called morphological inflection, and
the canonical form of a word is known as
its lemma. A search of the WALS database
of linguistic typology shows that 80% of the
database’s languages mark verb tense and 65%
mark grammatical case through morphology
(Dryer and Haspelmath, 2013).

The English lemma do, for instance, has an
inflected form did that expresses past tense.
Though English verbs inflect to express tense,
there are generally only 4 to 5 surface varia-
tions for a given English lemma. In contrast, a
Russian verb can have up to 30 morphological
inflections per lemma, and other languages —
such as Basque — have hundreds of forms per
lemma, cf. Table 1.

Inflected forms are systematically related to
each other: in English, most noun plurals are

Basque Lemma: egin

begi begiate begidate

begie begiete begigu

begigute begik begin

beginate begio begiote

begit begite begitza
zenegizkigukeen zenegizkigukete zenegizkiguketen
zenegizkigun zenegizkigute zenegizkiguten
zenegizkio zenegizkioke zenegizkiokeen
zenegizkiokete zenegizkioketen zenegizkion
zenegizkiote zenegizkioten zenegizkit

Table 1: The paradigm of the Basque verb egin consists
of 674 inflected forms. In contrast, the paradigm of the
English verb do only consists of 5 inflected forms: do,
does, doing, did, and done.

obtained from the lemma by adding -s or -es to
the end of the noun, e.g., list/lists or kiss/kisses.
However, irregular plurals also exist, such as
ox/oxen or mouse/mice. Although irregular
forms are less frequent, they cause challenges
for the automatic generation or analysis of the
surface forms of English plural nouns.

In this work, we address the SIGMOR-
PHON 2021 Shared Task on Unsupervised
Morphological Paradigm Clustering (" Task 2”)
(Wiemerslage et al., 2021). The goal of this
shared task is to group words encountered in
naturally occurring text into morphological
paradigms. Unsupervised paradigm cluster-
ing can be helpful for state-of-the-art natural
language processing (NLP) systems, which
typically require large amounts of training
data. The ability to group words together into
paradigms is a useful first step for training a
system to induce full paradigms from a lim-
ited number of examples, a task known as (su-
pervised) morphological paradigm completion.
Building paradigms can help an NLP system
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to induce representations for rare words or to
generate words that have not been observed in
a given corpus. Lastly, unsupervised systems
have the advantage of not needing annotated
data, which can be costly in terms of time and
money, or, in the case of extinct or endangered
languages, entirely impossible.

Since 2016, the Association for Computa-
tional Linguistics’ Special Interest Group on
Computational Morphology and Phonology
(SIGMORPHON) has created shared tasks to
help spur the development of state-of-the-art
systems to explicitly handle morphological
processes in a language. These tasks have
involved morphological inflection (Cotterell
et al., 2016), lemmatization (McCarthy et al.,
2019), as well as other, related tasks. SIG-
MORPHON has increased the level of diffi-
culty of the shared tasks, largely along two
dimensions. The first dimension is the amount
of data available for models to learn, reflecting
the difficulties of analyzing low-resource lan-
guages. The second dimension is the amount
of structure provided in the input data. Initially,
SIGMORPHON shared tasks provided prede-
fined tables of lemmas, morphological tags,
and inflected forms. For the SIGMORPHON
2021 Shared Task on Unsupervised Morpho-
logical Paradigm Clustering, only raw text is
provided as input.

We propose a system that combines ortho-
graphic and semantic similarity measures to
cluster surface forms found in raw text. We
experiment with a character-level language
model for weighing substring differences be-
tween words. Due to time constraints we are
only able to cluster over a subset of each lan-
guages’ vocabulary. Despite of this, our sys-
tem’s performance is comparable to the base-
line.

2 Related Work

Unsupervised morphology has attracted a great
deal of interest historically, including a large
body of work focused on segmentation (Xu
et al., 2018; Creutz and Lagus, 2007; Poon
et al., 2009; Narasimhan et al., 2015). Re-
cently, the task of unsupervised morphologi-
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cal paradigm completion has been proposed
(Kann et al., 2020; Jin et al., 2020; Erdmann
et al., 2020), wherein the goal is to induce full
paradigms from raw text corpora.

In this year’s SIGMORPHON shared task,
we are asked to only address part of the unsu-
pervised paradigm completion task: paradigm
clustering. Intuitively, the task of segmentation
is related to paradigm clustering, but the out-
puts are different. Goldsmith (2001) produces
morphological signatures, which are similar
to approximate paradigms, based on an algo-
rithm that uses minimum description length.
However, this type of algorithm relies heavily
on purely orthographic features of the vocab-
ulary. Schone and Jurafsky (2001) hypothe-
size that approximating semantic information
can help differentiate between hypothesized
morphemes, revealing those that are produc-
tive. They propose an algorithm that combines
orthography, semantics, and syntactic distri-
butions to induce morphological relationships.
They used semantic relatedness, quantified by
latent semantic analysis, combined with the
frequencies of affixes and syntactic context
(Schone and Jurafsky, 2000).

More recently, Soricut and Och (2015) have
used SkipGram word embeddings (Mikolov
et al., 2013) to find meaningful morphemes
based on analogies: regularities exhibited by
embedding spaces allow for inferences of cer-
tain types (e.g., king is to man what queen is
to woman). Hypothesizing that these regulari-
ties also hold for morphological relations, they
represent morphemes by vector differences be-
tween semantically similar forms, e.g., the vec-
tor for the suffix s may be represented by the
difference between cats and cat.

Drawing upon these intuitions, we follow
Rosa and Zabokrtsky (2019), which combines
semantic distance using fastText embeddings
(Bojanowski et al., 2017) with an orthographic
distance between word pairs. Words are then
clustered into paradigms using agglomerative
clustering.



3 Task Description

Given a raw text corpus, the task is to
sort words into clusters that correspond to
paradigms. More formally, for the vocabulary
. of all types attested in the corpus and the
set of morphological paradigms II for which
at least one word is in Y, the goal is to out-
put clusters corresponding to 7 (% for all
my, € I1.

Data As the raw text data for this task, JHU
Bible corpora (McCarthy et al., 2020b) are pro-
vided by the organizers. This is the only data
that systems can use. The organizers further
provide development and test sets consisting of
gold clusters for a subset of words in the Bible
corpora. Each cluster is a list of words repre-
senting 7 (| X for 7 € Tge, Or T € Ty,
respectively, and 1, [I;ese © I1.

The partial morphological paradigms in
[4e, and I, are taken from the UniMorph
database (McCarthy et al., 2020a). Develop-
ment sets are only available for the develop-
ment languages, while test sets are only pro-
vided for the test languages. All test sets are
hidden from the participants until the conclu-
sion of the shared task.

Languages The development languages fea-
tured in the shared task are Maltese, Per-
sian, Portuguese, Russian, and Swedish. The
test languages are Basque, Bulgarian, English,
Finnish, German, Kannada, Navajo, Spanish,
and Turkish.

4 System Descriptions

We submit two systems based on Rosa and
Zabokrtsky (2019). The first, referred to be-
low as JW-based clustering, follows their work
very closely. The second, LM-based cluster-
ing, contains the same main components, but
approximates orthographic distances with the
help of a language model.

4.1 JW-based Clustering

We describe the system of Rosa and
Zabokrtsky (2019) in more detail here. This
system clusters over words whose distance is
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computed as a combination of orthographic
and semantic distances.

Orthographic Distance The orthographic
distance of two words is computed as their
Jaro-Winkler (JW) edit distance (Winkler,
1990). JW distance differs from the more com-
mon Levenshtein distance (Levenshtein, 1966)
in that JW distance gives more importance to
the beginnings of strings than to their ends,
which is where characters belonging to the
stem are likely to be in suffixing languages.

The JW distance is averaged with the JW
distance of a simplified variant of the string.
The simplified variant is a string that has been
lower cased, transliterated to ASCII, and had
the non-initial vowels deleted. This is done to
soften the impact of characters that are likely to
correspond with affixes. Crucially, we believe
that this biases the system towards languages
that express inflection via suffixation.

Semantic Distance We represent words in
the corpus by fastText embeddings, similar to
Erdmann and Habash (2018), who cluster fast-
Text embeddings for the same task in various
Arabic dialects. We expect fastText embed-
dings to provide better representations than,
e.g., Word2Vec (Mikolov et al., 2013), due to
the limited size of the Bible corpora. Unfortu-
nately, using fastText may also inadvertently
result in higher similarity between words be-
longing to different lemmas that contain over-
lapping subwords corresponding to affixes.

Overall Distance We compute a pairwise
distance matrix for all words in the corpus.
The distance between two words w; and w; 18
computed as:

cos(wy,wsy) + 1

(1)
where w; and w, are the embeddings of w; and
wsy, cos 18 the cosine distance, and ¢ is the JW
edit distance. The cosine distance is mapped
to [0, 1] to avoid negative distances.

Finally, agglomerative clustering is per-
formed by first assigning each word form to a
unique cluster. At each step, the two clusters

d(wl,wg) =1- (5(11)1,11)2) .



with the lowest average distance are merged
together. The merging continues while the dis-
tance between clusters stays below a threshold.
We tune this hyperparameter on the develop-
ment set, and our final threshold is 0.3.

4.2 LM-based Clustering

The JW-based clustering described above re-
lies on heuristics to obtain a good measure of
orthographic similarity. These heuristics help
to quantify orthographic similarity between
two words by relying more on the shared char-
acters in the stem than in the affix: The plu-
ral past participles gravados and louvados in
Portuguese have longer substrings in common
than the substrings by which they differ. This
is due to the affix -ados, which indicates that
the two words express the same inflectional in-
formation, even though their lemmas are differ-
ent. Similarly, the Portuguese verbs abafa and
abafdvamos differ in many characters, though
they belong to the same paradigm, as can be
observed by the shared stem abaf.

However, not all languages express inflec-
tion exclusively via suffixation, nor via con-
catenation. We thus experiment with remov-
ing the edit distance heuristics and, instead,
utilizing probabilities from a character-level
language model (LM) to distinguish between
stems and affixes. In doing so, we hope to
achieve better results for templatic languages,
such as Maltese. We hypothesize that the LM
will have a higher confidence for characters
that are part of an affix than for those that are
part of the stem. We then draw upon this hy-
pothesis and weigh edit operations between
two strings based on these confidences.

LM-weighted Edit Distance Similar to
the intuition behind Silfverberg and Hulden
(2018), we train a character-level LM on the
entire vocabulary for each Bible corpus. Un-
like their work, we do not have inflectional
tags for each word. Despite this, we hypothe-
size that the highly regular and frequent nature
of inflectional affixes will lead to higher likeli-
hoods for characters that occur in affixes than
for those in stems. We train a two-layer LSTM
(Hochreiter and Schmidhuber, 1997) with an
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embedding size of 128 and a hidden layer size
of 128. We train the model until the training
loss stops decreasing, for up to 100 epochs,
using Adam (Kingma and Ba, 2014) with a
learning rate of 0.001 and a batch size of 16.
When calculating the edit distance between
two words, the insertion, deletion, or substitu-
tion costs are computed as a function of the
LM probabilities. We expect this to give more
weights to differences in the stem than to those
in other parts of the word. Each character is
then associated with a cost given by
p(w;)

> plw;)’

JEw]

2)

cost(w;) =1

where p(w; ) is the probability of the ith char-
acter in word w as given by the LM. We then
compute the cost of an insertion or deletion
as the cost of the character being inserted or
deleted. The cost of a substitution is the aver-
age of the costs of the two involved characters.
The sum over these operations is the weighted
edit distance between two words, €(w;, ws).
Finally, we compute pairwise distances using
Equation 1, replacing 6 (wy, ws) with

e(wy, woy)

mal‘(|w1|7|w2|)'

Forward vs. Backward LM We hypoth-
esize that the direction in which the LM is
trained affects the probabilities for affixes. In-
tuitively, an LM is likely to assign higher confi-
dence to characters at the beginning of a word
than at the end. Thus, an LM trained on data in
the forward direction (LM-F) should be more
likely to assign higher probabilities to charac-
ters at the beginning of a word, such as pre-
fixes, while a model trained on reversed words
(LM-B) should assign higher probabilities to
suffixes. In practice, LM-B outperforms LM-F
on all development languages, cf. Table 2. Be-
cause of that, we employ LM-B to weigh edit
operations for all test languages.'

"This might be caused by none of the development lan-
guages being prefixing. However, in order to make a more
informed choice, a method to automatically distinguish be-

tween prefixing and suffixing languages from raw text alone
would be necessary.



Lang Baseline LMC-B LMC-F JWC
prec.  rec. F1 | prec. rec. fl prec.  rec. F1 | prec. rec. F1

Maltese 0.250 0.348 0.291 | 0.465 0.229 0.307 | 0.411 0.202 0.272 | 0.489 0.241 0.323
Persian 0.265 0.348 0.300 | 0.321 0.307 0.314 | 0.494 0.197 0.282|0.579 0.231 0.330
Portuguese | 0.218 0.794 0.341 | 0.771 0.248 0.376 | 0.494 0.159 0.241 | 0.742 0.239 0.362
Russian 0.234 0.807 0.363 | 0.802 0.282 0.417 | 0.726 0.255 0.378 | 0.792 0.278 0.412
Swedish 0.303 0.776 0.436 | 0.818 0.378 0.517 | 0.695 0.321 0.439 | 0.838 0.388 0.530
Average 0.254 0.615 0.346 | 0.635 0.289 0.386 | 0.482 0.186 0.268 | 0.688 0.275 0.391

Table 2: Precision, recall, and F1 for all development languages. LMC-R is the LM-clustering system for language
models trained from left-to-right (reverse). LMC-F are trained from left-to-right, and JWC is the JW-clustering

system. The highest F1 for each language is in bold.

Lang Baseline LMC JWC
prec. rec. F1 prec. rec. F1 prec. rec. F1

English 0.388 0.767  0.515 0.565 0.245 0.3420 | 0.663 0.288  0.402
Navajo 0.230  0.598  0.333 0.686 0.112  0.1928 0.657  0.108  0.185
Spanish 0266  0.722  0.388 0.664 0.183 02869 | 0.699  0.193  0.302
Finnish 0.179  0.767  0.290 0.694 0.227 0.342 0.674 0220  0.332
Bulgarian | 0.265 0.730  0.390 0.745 0.312 0.440 0.717 0300  0.423
Basque 0.186  0.254  0.215 0.471 0.254 0.330 0.353 0.191 0.247
Kannada 0.172  0.385 0.238 0.570 0.169 0.261 0.625 0.185  0.286
German 0254 0776 0382 | 0.7626  0.310 0.441 0.787 0319 0454
Turkish 0.156  0.658  0.252 | 0.6574  0.212 0.320 0.641 0206  0.312
Average 0.233 0.629  0.334 0.646 0.225 0.328 0.646 0223  0.327

Table 3:

Precision, recall, and F1 for all test languages.

LMC is the LM-clustering system, JWC is the JW-

clustering system. The highest F1 for each language is in bold.

5 Results and Discussion

The official scores obtained by our systems as
well as the baseline are shown in Table 3.

Both of our systems perform minimally
worse than the baseline if we consider F1 av-
eraged over languages (0.334 vs. 0.328 and
0.327). However, we believe this to be largely
due to our submissions only generating clus-
ters for a subset of the full vocabularies: due to
time constraints, we only consider words that
appear at least 5 times in the corpus. No other
words are included in the predicted clusters.
The large gap between precision and recall re-
flects this constraint: our submissions have
a high average precision (0.646 for both sys-
tems), indicating that the limited set of words
we consider are being clustered more accu-
rately than the F1 scores would suggest. The
low recall scores (0.225 and 0.223) are likely
at least partially caused by the missing words
in our predictions.?

Conversely, the baseline system has a high
recall (0.629) and a low precision (0.233). This

2We confirm this hypothesis with additional experiments
after the shared task’s completion. Those results can be found
in the appendix.

1s likely due to it simply clustering words with
shared substrings, such that a given word is
likely to appear in many predicted clusters.

Interestingly, both of our submissions have
the same average precision on the test set, de-
spite varying across languages. Notably, the
LM-based clustering system strongly outper-
forms the JW-based system on Basque with
respect to precision. However, the JW-based
system outperforms the LM-based one by a
large margin on English. One hypothesis for
the difference in results is that agglutinating in-
flection in Basque causes very long affixes,
which our LM-based system should down-
weigh in its measurement of orthographic simi-
larity. Basque is also not a strictly suffixing lan-
guage, which we expect the JW-based model to
be biased towards. On the other hand, English
has relatively little inflectional morphology,
and is strictly suffixing (in terms of inflection).
The assumptions behind the JW-based system
are more ideal for a language like English. The
JW system performs best on Maltese, which
suggests that the heuristics of that system are
sufficient for a templatic language, compared
to the LM-based system.
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6 Conclusion

We present two systems for the SIGMOR-
PHON 2021 Shared Task on Unsupervised
Morphological Paradigm Clustering. Both of
our systems perform slighly worse than the of-
ficial baseline. However, we also show that this
is due to our official submissions only making
predictions for a subset of the corpus’ vocab-
ulary, due to time constraints and that at least
one of our systems improves strongly if the
time constraints are removed.
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7 Appendix

Here we present new results which include
the entire data set for selected languages. We

see an improvement in F1 for each language.

This due to the increased recall scores from
the paradigms being more complete. Precision
scores decrease across the board. This may
be due to the languages being sensitive to the
threshold value.

Lang Subset Full

prec.  rec. F1 | prec. rec. F1
Basque 0.471 0.254 0.330 | 0.443 0.429 0.435
Bulgarian | 0.745 0.312 0.440 | 0.638 0.631 0.634
English 0.565 0.245 0.342 | 0.430 0.425 0.428
German |0.763 0.310 0.441|0.703 0.699 0.701
Maltese | 0.465 0.229 0.307 | 0.402 0.400 0.401
Navajo 0.686 0.112 0.193 | 0.449 0.430 0.435
Spanish | 0.664 0.183 0.287 | 0.579 0.560 0.569
Swedish | 0.818 0.378 0.517|0.783 0.737 0.759
Average | 0.659 0.252 0.357 | 0.553 0.539 0.545

Table 4: Post-shared task results using the full data set
for selected languages. These results use LM-B with a
threshold value of 0.3.
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Abstract

Grapheme-to-phoneme conversion is an im-
portant component in many speech technolo-
gies, but until recently there were no multi-
lingual benchmarks for this task. The second
iteration of the SIGMORPHON shared task
on multilingual grapheme-to-phoneme conver-
sion features many improvements from the
previous year’s task (Gorman et al. 2020), in-
cluding additional languages, a stronger base-
line, three subtasks varying the amount of
available resources, extensive quality assur-
ance procedures, and automated error analy-
ses. Four teams submitted a total of thirteen
systems, at best achieving relative reductions
of word error rate of 11% in the high-resource
subtask and 4% in the low-resource subtask.

1 Introduction

Many speech technologies demand mappings be-
tween written words and their pronunciations.
In open-vocabulary systems—as well as certain
resource-constrained embedded systems—it is in-
sufficient to simply list all possible pronunciations;
these mappings must generalize to rare or unseen
words as well. Therefore, the mapping must be
expressed as a mapping from a sequence of ortho-
graphic characters—graphemes— to a sequence
of sounds —phones or phonemes.!

The earliest work on grapheme-to-phoneme
conversion (G2P), as this task is known, used or-
dered rewrite rules. However, such systems are
often brittle and the linguistic expertise needed
to build, test, and maintain rule-based systems
is often in short supply. Furthermore, rule-
based systems are outperformed by modern neu-

"'We note that referring to elements of transcriptions as
phonemes implies an ontological commitment which may or
may not be justified; see Lee et al. 2020 (fn. 4) for discussion.
Therefore, we use the term phone to refer to symbols used to
transcribe pronunciations.

ral sequence-to-sequence models (e.g., Rao et al.
2015, Yao and Zweig 2015, van Esch et al. 2016).
With the possible exception of van Esch
et al. (2016), who evaluate against a proprietary
database of 20 languages and dialects, virtually
all of the prior published research on grapheme-
to-phoneme conversion evaluates only on English,
for which several free and low-cost pronunciation
dictionaries are available. The 2020 SIGMOR-
PHON Shared Task on Multilingual Grapheme-to-
Phoneme Conversion (Gorman et al. 2020) repre-
sented a first attempt to construct a multilingual
benchmark for grapheme-to-phoneme conversion.
The 2020 shared task targeted fifteen languages
and received 23 submissions from nine teams. The
second iteration of this shared task attempts to
further refine this benchmark by introducing addi-
tional languages, a much stronger baseline model,
new quality assurance procedures for the data, and
automated error analysis techniques. Furthermore,
in response to suggestions from participants in the
2020 shared task, the task has been divided into
high-, medium-, and low-resource subtasks.

2 Data

As in the previous year’s shared task, all data
was drawn from WikiPron (Lee et al. 2020), a
massively multilingual pronunciation database ex-
tracted from the online dictionary Wiktionary. De-
pending on the language and script, Wiktionary
pronunciations are either manually entered by hu-
man volunteers working from language-specific
pronunciation guidelines and/or generated from
the graphemic form via language-specific server-
side scripting.  WikiPron scrapes these pro-
nunciatons from Wiktionary, optionally applying
case-folding to the graphemic form, removing
any stress and syllable boundaries, and segment-
ing the pronunciation—encoded in the Interna-
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tional Phonetic Alphabet—using the Python li-
brary segments (Moran and Cysouw 2018). In
all, 21 WikiPron languages were selected for the
three subtasks, including seven new languages and
fourteen of the fifteen languages used in the 2020
shared task.?

In several cases, multiple scripts or dialects
are available for a given language. For instance,
WikiPron has both Latin and Cyrillic entries for
Serbo-Croatian, and three different dialects of
Vietnamese. In such case, the largest data set of the
available scripts and/or dialects is chosen. Further-
more, WikiPron distinguishes between “broad”
transcriptions delimited by forward slash (/) and
“narrow” transcriptions delimited by square brack-
ets ([ and ]).> Once again, the larger of the two
data sets is the one used for this task.

3 Quality assurance

During the previous year’s shared task we be-
came aware of several consistency issues with the
shared task data. This lead us to develop quality
assurance procedures for WikiPron and the “up-
stream” Wiktionary data. For a few languages,
we worked with Wiktionary editors who automat-
ically enforced upstream consistency via “bots”,
i.e., scripts which automatically edit Wiktionary
entries. We also improved WikiPron’s routines for
extracting pronunciation data from Wiktionary. In
some cases (e.g., Vietnamese), this required the
creation of language-specific extraction routines.

In early versions of WikiPron, users had limited
means to separate out entries for languages written
in multiple scripts. We therefore added an auto-
mated script detection system which ensures that
entries for the many languages written with multi-
ple scripts—including shared task languages Mal-
tese, Japanese, and Serbo-Croatian—are sorted ac-
cording to script.

We noticed that the WikiPron data includes
many hyper-foreign pronunciations with non-
native phones. For example, the English data in-
cludes a broad pronunciation of Bach (the sur-
name of a family of composers) as /ba:x/ with
a velar fricative /x/, a segment which is com-
mon in German but absent in modern English.
Furthermore, unexpected phones may represent

’The fifteenth language, Lithuanian, was omitted due to
unresolved quality assurance issues.

3Sorting by script, dialect, and broad vs. narrow transcrip-
tion is performed automatically during data ingestion.

simple human error. Therefore, we wished to
exclude pronunciations which include any non-
native segments. This was accomplished by creat-
ing phonelists which enumerate native phones for
a given language. Separate phonelists may be pro-
vided for broad and narrow transcriptions of the
same language. During data ingestion, if a pro-
nunciation contains any segment not present on the
phonelist, the entry was discarded. Phonelist filtra-
tion was used for all languages in the medium- and
low-resource subtasks, described below.

4 Task definition

In this task, participants were provided with a col-
lection of words and their pronunciations, and then
scored on their ability to predict the pronunciation
of a set of unseen words.

4.1 Subtasks

In the previous year’s shared task, each language’s
data consisted of 4,500 examples, sampled from
WikiPron, split randomly into 80% training exam-
ples, 10% development examples, and 10% test
examples. As part of their system development,
two teams in the 2020 shared task (Hauer et al.
2020, Yu et al. 2020) down-sampled these data to
simulate a lower-resource setting, and one partici-
pant expressed concern whether the methods used
in the shared task would generalize effectively
to high-resource scenarios like the large English
data sets traditionally used to evaluate grapheme-
to-phoneme systems. This motivated a division of
the data into three subtasks, varying the amount of
data provided, as described below.*

High-resource subtask The first subtask con-
sists of a roughly 41,000-word sample of Main-
stream American English (eng_us). Participating
teams were permitted to use any and all external
resources to develop their systems except for Wik-
tionary or WikiPron. It was anticipated partici-
pants would exploit other freely available Amer-
ican English pronunciation dictionaries.

Medium-resource subtask The second subtask
represents a medium-resource task. For each of
the ten target languages, a sample of 10,000 words
was used. Teams participating in this subtask were

*Languages were sorted into medium- vs. low-resource
subtasks according to data availability. For example, Ice-
landic was placed in the low-resource shared task simply be-
cause it has less than 10,000 pronunciations available.
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permitted to use UniMorph paradigms (Kirov et al.
2018) to lemmatize or to look up morphological
features, but were not permitted to use any other
external resources. The languages for this subtask
are listed and exemplified in Table 1.

Low-resource subtask The third subtask is de-
signed to simulate a low-resource setting and con-
sists of 1,000 words from ten languages. Teams
were were not permitted to use any external re-
sources for this subtask. The languages for this
subtask are shown in Table 2.

4.2 Data preparation

The procedures for sampling and splitting the data
are similar to those used in the previous year’s
shared task; see Gorman et al. 2020, §3. For
each of the three subtasks, the data for each lan-
guage are first randomly downsampled according
to their frequencies in the Wortschatz (Goldhahn
et al. 2012) norms. Words containing less than
two Unicode characters or less than two phone seg-
ments are excluded, as are words with multiple
pronunciations. The resulting data are randomly
split into 80% training data, 10% development
data, and 10% test data. As in the previous year’s
shared task, these splits are constrained so that in-
flectional variants of any given lemma—according
to the UniMorph (Kirov et al. 2018) paradigms—
can occur in at most one of the three shards. Train-
ing and development data was made available at
the start of the task. The test words were also
made available at the start of the task; test pro-
nunciations were withheld until the end of the task.
Some additional processing is required for certain
languages, as described below.

English The Wiktionary American English pro-
nunciations exhibit a large number of inconsisten-
cies. These pronunciations were validated by au-
tomatically comparing them with entries in the
CALLHOME American English Lexicon (Kings-
bury et al. 1997), which provides broad ARPAbet
transcriptions of Mainstream American English.
Furthermore, a script was used to standardize use
of vowel length and enforce consistent use of tie
bars with affricates (e.g., /t[/ — /tAf/). However, we
note that Gautam et al. (2021:§2.1) report several
residual quality issues with this data.

Bulgarian Bulgarian Wiktionary transcriptions
make inconsistent use of tie bars on affricates; for

example, 11 is transcribed as both /ts, ts/. Further-
more, the broad transcriptions sometimes contain
allophones of the consonants /t, d, 1/ (Ternes and
Vladimirova-Buhtz 1990); e.g., s is transcribed as
both /1, ¥. A script was used to enforce a consistent
broad transcription.

Maltese In the Latin-script Maltese data, Wik-
tionary has multiple transcriptions of digraph
gh, which in the contemporary language indi-
cates lengthening of an adjacent vowel, except
word-finally where it is read as [h] (Hoberman
2007:278f.). Rather than excluding multiple pro-
nunciations, a script was used to eliminate pronun-
ciations which contain archaic readings of this di-
graph, e.g., as pharyngealization or as [y].

Welsh WikiPron’s transcriptions of the South-
ern dialect of Welsh include the effects of vari-
able processes of monophthongization and dele-
tion (Hannahs 2013:18-25). Once again, rather
than excluding multiple pronunciations, a script
was used to select the “longer” pronunciation—
naturally, the pronunciation without variable
monophthongization or deletion —of Welsh words
with multiple pronunciations.

5 Evaluation

The primary metric for this task was word error
rate (WER), the percentage of words for which the
hypothesized transcription sequence is not iden-
tical to the gold reference transcription. As the
medium- and low-resource subtasks involve multi-
ple languages, macro-averaged WER was used for
system ranking. Participants were provided with
two evaluation scripts: one which computes WER
for a single language, and one which also com-
putes macro-averaged WER across two or more
languages. The 2020 shared task also reported an-
other metric, phone error rate (PER), but this was
found to be highly correlated with WER and there-
fore has been omitted here.

6 Baseline

The 2020 shared task included three baselines: a
WEST-based pair n-gram model, a bidirectional
LSTM encoder-decoder network, and a trans-
former. All models were tuned to minimize per-
language development-set WER using a limited-
budget grid search. Best results overall were ob-
tained by the bidirectional LSTM. Despite the
extensive GPU resources required to execute a
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Armenian (Eastern) arm_e
Bulgarian bul
Dutch dut
French fre
Georgian geo
Serbo-Croatian (Latin) hbs_latn
Hungarian hun
Japanese (Hiragana) jpn_hira
Korean kor

Vietnamese (Hanoi) vie_hanoi

Audwnpnipntt.  hamadaruthjun
060CHOBaHUAT obosnovanijog
konijn ko:nein

joindre 3WEdE
dmygbgmas moukinelad
opadati opa:dati

lobog lobog
BAZWVWLWE dzéntaicigi

2] 71ae-%] s"wegamaudzi

ngtng bin pigld?bani

Table 1: The ten languages in the medium-resource subtask with language codes and example training data pairs.

Adyghe ady

Greek gre
Icelandic ice

Italian ita
Khmer khm
Latvian lav
Maltese (Latin) mlt_latn
Romanian rum
Slovenian slv
Welsh (Southwest) wel_sw

Klamlbixbad t°af oha:n

AéyeTan lejete
madur maodvyr
marito marito
{uumi praha:
miksts mi ksts
minna minna
ierburi jerbud
oprostite oprostiite
gorff gorf

Table 2: The ten languages in the low-resource subtask with language codes and example training data pairs.

per-language grid search, the best baseline was
handily outperformed by nearly all submissions.
This led us to seek a simpler, stronger, and
less computationally-demanding baseline for this
year’s shared task.

The baseline for the 2021 shared task is a neu-
ral transducer system using an imitation learn-
ing paradigm (Makarov and Clematide 2018). A
variant of this system (Makarov and Clematide
2020) was the second-best system in the 2020
shared task.’> Alignments are computed using
ten iterations of expectation maximization, and
the imitation learning policy is trained for up to
sixty epochs (with a patience of twelve) using the
Adadelta optimizer. A beam of size of four is
used for prediction. Final predictions are produced
by a majority-vote ten-component ensemble. In-
ternal processing is performed using the decom-
posed Unicode normalization form (NFD), but pre-

5The baseline was implemented using the DyNet neural
network toolkit (Neubig et al. 2017). In contrast to the previ-
ous year’s baseline, the imitation learning system does not re-
quire a GPU for efficient training; it runs effectively on CPU
and can exploit multiple CPU cores if present. Training, en-
sembling, and evaluation for all three subtasks took roughly
72 hours of wall-clock time on a commodity desktop PC.

dictions are converted back to the composed form
(NFC). An implementation of the baseline was pro-
vided during the task and participating teams were
encouraged to adapt it for their submissions.

7 Submissions

Below we provide brief descriptions of sub-
missions to the shared task; more detailed
descriptions—as well as various exploratory anal-
yses and post-submission experiments—can be
found in the system papers later in this volume.

AZ Hammond (2021) produced a single submis-
sion to the low-resource subtask. The model is in-
spired by the previous year’s bidirectional LSTM
baseline but also employs several data augmenta-
tion strategies. First, much of the development
data is used for training rather than for validation.
Secondly, new training examples are generated us-
ing substrings of other training examples. Finally,
the AZ model is trained simultaneously on all lan-
guages, a method used in some of the previous
year’s shared task submissions (e.g., Peters and
Martins 2020, Vesik et al. 2020).
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CLUZH Clematide and Makarov (2021) pro-
duced four submissions to the medium-resource
subtask and three to the low-resource subtask. All
seven submissions are variations on the imitation
learning baseline model (section 6). They ex-
periment with processing individual IPA Unicode
characters instead of entire IPA “segments” (e.g.,
CLUZH-1, CLUZH-5, and CLUZH-6), and larger
ensembles (e.g., CLUZH-3). They also experi-
ment with input dropout, mogrifier LSTMs, and
adaptive batch sizes, among other features.

Dialpad Gautam et al. (2021) produced three
systems to the high-resource subtask.  The
Dialpad-1 submission is a large ensemble of seven
different sequence models. Dialpad-2 is a smaller
ensemble of three models. Dialpad-3 is a single
transformer model implemented as part of CMU
Sphinx. Gautam et al. also experiment with sub-
word modeling techniques.

UBC Lo and Nicolai (2021) submitted two sys-
tems for the low-resource subtask, both variations
on the baseline model. The UBC-1 submission hy-
pothesizes that, as previously reported by van Esch
etal. (2016), inserting explicit syllable boundaries
into the phone sequences enhances grapheme-to-
phoneme performance. They generate syllable
boundaries using an automated onset maximiza-
tion heuristic. The UBC-2 submission takes a dif-
ferent approach: it assigns additional language-
specific penalties for mis-predicted vowels and di-
acritic characters such as the length mark /:/.

8 Results

Multiple submissions to the high- and low-
resource subtasks outperformed the baseline; how-
ever, no submission to the medium-resource sub-
task exceeded the baseline. The best results for
each language are shown in Table 3.

8.1 Subtasks

High-resource subtask The Dialpad team sub-
mitted three systems for the high-resource subtask,
all of which outperformed the baseline. Results for
this subtask are shown in Table 4. The best sub-
mission overall, Dialpad-1, a seven-component
ensemble, achieved an impressive 4.5% absolute
(11% relative) reduction in WER over the baseline.

Medium-resource subtask The CLUZH team
submitted four systems for the medium-resource
subtask. All of of these systems are variants of the

baseline model. The results are shown in Table 5;
note that the individual language results are ex-
pressed as three-digit percentages since there are
1,000 test examples each. While several of the
CLUZH systems outperform the baseline on in-
dividual languages, including Armenian, French,
Hungarian, Japanese, Korean, and Vietnamese,
the baseline achieves the best macro-accuracy.

Low-resource subtask Three teams—AZ,
CLUZH, and UBC—submitted a total of six
systems to the low-resource subtask. Results for
this subtask are shown in Table 6; note that the re-
sults are expressed as two-digit percentages since
there are 100 test examples for each language.
Three submissions outperformed the baseline.
The best-performing submission was UBC-2, an
adaptation of the baseline which assigns higher
penalties for mis-predicted vowels and diacritic
characters. It achieved a 1.0% absolute (4%
relative) reduction in WER over the baseline.

8.2 Error analysis

Error analysis can help identify strengths and
weaknesses of existing models, suggesting future
improvements and guiding the construction of
ensemble models. Prior experience using gold
crowd-sourced data extracted from Wiktionary
suggests that a non-trivial portion of errors made
by top systems are due to errors in the gold data
itself. For example, Gorman et al. (2019) report
that a substantial portion of the prediction errors
made by the top two systems in the 2017 CoNLL—-
SIGMORPHON Shared Task on Morphological
Reinflection (Cotterell et al. 2017) are due to rar-
get errors, i.e., errors in the gold data. Therefore
we conducted an automatic error analysis for four
target languages. It was hoped that this analysis
would also help identify (and quantify) target er-
rors in the test data.

Two forms of error analysis were employed
here. First, after Makarov and Clematide (2020),
the most frequent error types in each language are
shown in Table 7. From this table it is clear that
many errors can be attributed either to the ambigu-
ity of a language’s writing system. For example, in
both Serbo-Croatian and Slovenian the most com-
mon errors involve the confusion or omission of
suprasegmental information such as pitch accent
and vowel length, neither of which are represented
in the orthography. Likewise, in French and Ital-
ian the most frequent errors confuse vowel sounds

119



Baseline WER Best submission(s) WER
eng_us 4191 Dialpad-1 3743
arm_e 7.0 CLUZH-7 64
bul 18.3 CLUZH-6 18.8
dut 14.7 CLUZH-7 14.7
fre 8.5 CLUZH-4, CLUZH-5, CLUHZ-6 7.5
geo 0.0 CLUZH-4, CLUHZ-5, CLUZH-6, CLUZH-7 0.0
hbs_latn 321 CLUZH-7 353
hun 1.8 CLUZH-6, CLUZH-7 1.0
jpn_hira 52 CLUZH-7 5.0
kor 16.3 CLUZH-4 16.2
vie_hanoi 2.5 CLUZH-5, CLUZH-7 20
ady 22 CLUZH-2,CLUZH-3, UBC-2 22
gre 21 CLUZH-1,CLUZH-3 20
ice 12 CLUZH-1, CLUZH-3 10
ita 19 UBC-1 20
khm 34 UBC-2 28
lav 55 CLUZH-2,CLUZH-3, UBC-2 49
mlt_latn 19 CLUZH-1 12
rum 10 UBC-2 10
slv 49 UBC-2 47
wel_sw 10 CLUZH-1 10

Table 3: Baseline WER, and the best submission(s) and their WER, for each language.

Baseline

Dialpad-1

Dialpad-2 Dialpad-3

41.94

eng_us

3743 41.72 41.58

Table 4: Results for the high

represented by the same graphemes.

Many errors may also be attributable to prob-
lems with the target data. For example, the two
most frequent errors for English are predicting [1]
instead of [o], and predicting [a] instead of [9].
Impressionistically, the former is due in part to
inconsistent transcription of the -ed and -es suf-
fixes, whereas the latter may reflect inconsistent
transcription of the low back merger.

The second error analysis technique used here
is an adaptation of a quality assurance technique
proposed by Jansche (2014). For each language
targeted by the error analysis, a finite-state cov-
ering grammar is constructed by manually listing
all pairs of permissible grapheme-phone mappings
for that language. Let C be the set of all such g,p
pairs. Then, the covering grammar y is the ra-
tional relation given by the closure over C, thus
y = C*. Covering grammars were constructed for

-resource (US English) subtask.

three medium-resource languages and four of the
low-resource languages. A fragment of the Bul-
garian covering grammar, showing readings of the
characters 6, ¢, and 10, is presented in Table 8.

Let G be the graphemic form of a word and let
P and P be the corresponding gold and hypothe-
sis pronunciations for that word. For error analysis
we are naturally interested in cases where P % P,
i.e., those cases where the gold and hypothesis
pronunciations do not match, since these are ex-
actly the cases which contribute to word error rate.
Then, P = 7, (G o y) is a finite-state lattice repre-
senting the set of all “possible” pronunciations of
G admitted by the covering grammar.

When P # P but P € P—that is, when

®Error analysis software was implemented using the
Pynini finite-state toolkit (Gorman 2016). See Gorman and
Sproat 2021, ch. 3, for definitions of the various finite-state
operations used here.
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Baseline

CLUZH-4 CLUZH-5 CLUZH-6 CLUZH-7

arm_e 7.0 7.1 6.6 6.6 64

bul 18.3 20.1 19.2 18.8 19.7

dut 14.7 15.0 14.9 15.6 14.7

fre 8.5 7.5 7.5 75 7.6

geo 0.0 0.0 0.0 0.0 0.0

hbs_latn 3241 384 35.6 370 353

hun 1.8 1.5 1.2 1.0 1.0

jpn_hira 52 59 53 55 5.0

kor 16.3 16.2 16.9 17.2 16.3

vie_hanoi 2.5 23 2.0 2.1 2.0

Macro-average 10.6 114 109 11.1 10.8

Table 5: Results for the medium-resource subtask.

Baseline AZ CLUZH-1 CLUZH-2 CLUZH-3 UBC-1 UBC-2
ady 22 30 24 22 22 25 22
gre 21 23 20 22 20 22 22
ice 12 22 10 12 10 13 11
ita 19 25 23 24 21 20 22
khm 34 42 32 33 32 31 28
lav 55 53 53 49 49 58 49
mlt_latn 19 19 12 16 14 19 18
rum 10 13 13 13 12 14 10
slv 49 90 50 59 55 56 47
wel sw 10 40 10 13 12 13 12
Macro-average 25.1 357 24.7 26.3 247 27.1 24.1

Table 6: Results for the low-resource subtask.

the gold pronunciation is one of the possible
pronunciations—we refer to such errors as model
deficiencies, since this condition suggests that the
system in question has failed to guess one of sev-
eral possible pronunciations of the current word.
In many cases this reflects genuine ambiguities in
the orthography itself. For example, in Italian, e
is used to write both the phonemes /e, €/ and o is
similarly read as /o, o/ (Rogers and d’Arcangeli
2004). There are few if any orthographic clues
to which mid-vowel phoneme is intended, and
all submissions incorrectly predicted that the o in
nome ‘name’ is read as [o] rather than [o]. Simi-
lar issues arise in Icelandic and French. The pre-
ceding examples both represent global ambigui-
ties, but model deficiencies may also occur when
the system has failed to disambiguate a local am-
biguity. One example of this can be found in
French: the verbal third-person plural suffix -ent

is silent whereas the non-suffixal word-final ent
is normally read as [a]. Morphological informa-
tion was not provided to the covering grammar,
but it could easily be exploited by grapheme-to-
phoneme models.

Another condition of interest is when P # P
but P ¢ P. We refer to such errors as coverage de-
ficiencies, since they arise when the gold pronun-
ciation is not one permitted by the covering gram-
mar. While coverage deficiencies may result from
actual deficiencies in the covering grammar itself,
they more often arise when a word does not fol-
low the normal orthographic principles of its lan-
guage. For instance, Italian has borrowed the En-
glish loanword weekend [wikend] ‘id.” but has not
yet adapted it to Italian orthographic principles. Fi-
nally, coverage deficiencies may indicate target er-
rors, inconsistencies in the gold data itself. For ex-
ample, in the Italian data, the tie bars used to indi-
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eng_us 1 o113 aoll2|_ we 96| _ 10 85| 1 i76
arm_e _oe 16| oe 10 | th d 6| d th 6]je_ 3
bul ced 32| ao 31|00 ¥ 30| _ o 27|0a?25
dut e 10| _ : 10} o € 9|l e o 8|z s 8
fre aa 6| _e 5|0 0 5| e cog 3| _ ot 3
geo

hbs_latn . 8| . _ 76| _ & 55 & & 538 52
hun o 6| hhi 3| [ S 2 _ 2
jpn_hira o 20 _ & 11| _ d 4 euf 3 | huf 3
kor _ 73 _ 28 A o 23| M & O9leran 6
vie_hanoi _we 3| 41 3 WOI;mO 2 ¢ o1 2| 2 2
ady _ 31 _ 3| s 3|08 _ 2]l aoa 2
gre cr 8|rrc 3]i ] 3| me _ 2|yg 2
ice 2 2 ' 2

ita oo 6|ece 5] i 3/ e 2|00 2
khm aied 3| b 31 e 21 & 2 a 2
lav S50 11 _ 4010 _ 9 & _ 7] _ 4
mlt_latn _ 5| 1 2| e a 21 b p 2|awe 2
rum 2

slv 7 _ 6 _ 6| _ 51¢é 4
wel sw 1 1 311 2| _ eo 2

Table 7: The five most frequent error types, represented by the hypothesis string, gold string, and count, for each

language; e indicates whitespace and _ the empty string.

Qo

b
6 b
6 p
o f
o fl
0 ju
10 u

Table 8: Fragment of a covering grammar for Bul-
garian; the left column contains graphemes and corre-
sponding phones are given in the right column.

cate affricates are not always present, and many ap-
parent errors are the result of gold pronunciations
which omit a tie bar.

WER and model deficiency rate (MDR) is
shown for select systems and three languages
from the medium-resource subtask in Table 9, and
Table 10 shows similar statistics for four low-
resource languages. Note that by construction, one

can obtain the coverage deficiency rate simply by
subtracting MDR from WER. By comparing WER
and MDR one can see the overwhelming majority
of errors in these seven languages are model defi-
ciencies, most naturally arising from genuine am-
biguities in orthography rather than target errors
(i.e., data inconsistencies).

To facilitate ensemble construction and further
error analysis, we release all submissions’ test set
predictions to the research community.’

9 Discussion

We once again see an enormous difference in lan-
guage difficulty. One of the languages with the
highest amount of data, English, also has one of
the highest WERs. In contrast, the baseline and all
four submissions to the medium-resource subtask
achieve perfect performance on Georgian. This
is a substantial change from the previous year’s
shared task: with a sample roughly half the size of
this year’s task, the best system (Yu et al. 2020) ob-
tained a WER of 24.89 on Georgian (Gorman et al.

"https://drive.google.com/drive/folders/
1Fer7UfHBntSk-WFHsVXQ08ac3BvREAyC
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Baseline CLUZH-5
WER MDR WER MDR
bul 18.3 17.6 19.2 19.0
fre 8.5 75 7.5 6.8
jpn_hira 52 44 53 4.5

Table 9: WER and model deficiency rate (MDR) for three languages from the medium-resource subtask.

Baseline AZ CLUZH-1 UBC-2
WER MDR WER MDR WER MDR WER MDR
ady 22 22 30 23 24 21 22 22
gre 21 18 23 19 20 17 22 21
ice 12 9 22 17 10 7 11 5
ita 19 15 25 19 23 16 22 19

Table 10: WER and model deficiency rate (MDR) for four languages from the low-resource subtask.

2020:47). This enormous improvement likely re-
flects quality assurance work on this language
but we did not anticipate reaching ceiling perfor-
mance. Insofar as the above quality assurance and
error analysis techniques prove effective and gen-
eralizable, we may soon be able to ask what makes
a language hard to pronounce (cf. Gorman et al.
2020:45f1.).

As mentioned above, the data here are a mixture
of broad and narrow transcriptions. At first glance,
this might explain some of the variation in lan-
guage difficulty; for example, it is easy to imagine
that the additional details in narrow transcriptions
make them more difficult to predict. However, for
many languages, only one of the two levels of tran-
scription is available at scale, and other languages,
divergence between broad and narrow transcrip-
tions is impressionistically quite minor. However,
this impression ought to be quantified.

While we responded to community demand for
lower- and higher-resource subtasks, only one
team submitted to the high- and medium-resource
subtasks, respectively. It was surprising that none
of the medium-resource submissions were able to
consistently outperform the baseline model across
the ten target languages. Clearly, this year’s base-
line is much stronger than the previous year’s.

Participants in the high- and medium-resource
subtasks were permitted to make use of lemmas
and morphological tags from UniMorph as addi-
tional features. However, no team made use of

®https://github.com/CUNY-CL/wikipron/
issues/138
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resources. Some prior work (e.g., Demberg et al.
2007) has found morphological tags highly useful,
and error analysis (§8.2) suggests this information
would make an impact in French.

There is a large performance gap between the
medium-resource and low-resource subtasks. For
instance, the baseline achieves a WER of 10.6 in
the medium-resource scenario and a WER of 25.1
in the low-resource scenario. It seems that cur-
rent models are unable to reach peak performance
with the 800 training examples provided in the low-
resource subtask. Further work is needed to de-
velop more efficient models and data augmenta-
tion strategies for low-resource scenarios. In our
opinion, this scenario is the most important one
for speech technology, since speech resources—
including pronunciation data—are scarce for the
vast majority of the world’s written languages.

10 Conclusions

The second iteration of the shared task on multi-
lingual grapheme-to-phoneme conversion features
many improvements on the previous year’s task,
most of all data quality. Four teams submitted
thirteen systems, achieving substantial reductions
in both absolute and relative error over the base-
line in two of three subtasks. We hope the code
and data, released under permissive licenses,” will
be used to benchmark grapheme-to-phoneme con-
version and sequence-to-sequence modeling tech-
niques more generally.

*https://github.com/sigmorphon/2021-taskl/
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Data augmentation for low-resource grapheme-to-phoneme mapping
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Abstract

In this paper we explore a very simple neural
approach to mapping orthography to phonetic
transcription in a low-resource context. The
basic idea is to start from a baseline system
and focus all efforts on data augmentation. We
will see that some techniques work, but others
do not.

1 Introduction

This paper describes a submission by our team to
the 2021 edition of the SIGMORPHON Grapheme-
to-Phoneme conversion challenge. Here we demon-
strate our efforts to improve grapheme-to-phoneme
mapping for low-resource languages in a neural
context using only data augmentation techniques.

The basic problem in the low-resource condition
was to build a system that maps from graphemes
to phonemes with very limited data. Specifically,
there were 10 languages with 800 training pairs
and 100 development pairs. Each pair was a word
in its orthographic representation and a phonetic
transcription of that word (though some multi-word
sequences were also included). Systems were then
tested on 100 additional pairs for each language.
The 10 languages are given in Table 1.

To focus our efforts, we kept to a single system,
intentionally similar to one of the simple baseline
systems from the previous year’s challenge.

We undertook and tested three data augmenta-
tion techniques.

1. move as much development data to training
data as possible

2. extract substring pairs from the training data
to use as additional training data

3. train all the languages together

In the following, we first provide additional de-
tails on our base system and then outline and test

Code Language

ady Adyghe

gre Modern Greek

ice Icelandic

ita Italian

khm Khmer

lav Latvian

mlt(_latn) Maltese (Latin script)
rum Romanian

slv Slovene

wel(_sw)  Welsh (South Wales dialect)

Table 1: Languages and codes

each of the moves above separately. We will see
that some work and some do not.

We acknowledge at the outset that we do not ex-
pect a system of this sort to “win”. Rather, we were
interested in seeing how successful a minimalist
approach might be, one that did not require major
changes in system architecture or training. This
minimalist approach entailed that the system not
require a lot of detailed manipulation and so we
started with a “canned” system. This approach also
entailed that training be something that could be
accomplished with modest resources and time. All
configurations below were run on a Lambda Labs
Tensorbook with a single GPU.! No training run
took more than 10 minutes.

2 General architecture

The general architecture of the model is inspired by
one of the 2020 baseline systems (Gorman et al.,
2020): a sequence-to-sequence neural net with a
two-level LSTM encoder and a two-level LSTM
decoder. The system we used is adapted from the
OpenNMT base (Klein et al., 2017).

There is a 200-element embedding layer in both

'RTX 3080 Max-Q.
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encoder and decoder. Each LSTM layer has 300
nodes. The systems are connected by a 5-head
attention mechanism (Luong et al., 2015). Training
proceeds in 24,000 steps and the learning rate starts
at 1.0 and decays at a rate of 0.8 every 1,000 steps
starting at step 10,000. Optimization is stochastic
gradient descent, the batch size is 64, the dropout
rate is 0.5.

We spent a fair amount of time tuning the system
to these settings for optimal performance with this
general architecture on these data. We do not detail
these efforts as this is just a normal part of working
with neural nets and not our focus here.

Precise instructions for building the docker im-
age, full configuration files, and auxiliary code files
are available at https://github.com/hammondm/
g2p2021.

3 General results

In this section, we give the general results of the full
system with all strategies in place and then in the
next sections we strip away each of our augmenta-
tion techniques to see what kind of effect each has.
In building our system, we did not have access to
the correct transcriptions for the test data provided,
so we report performance on the development data
here.

The system was subject to certain amount of
randomness because of randomization of training
data and random initial weights in the network. We
therefore report mean final accuracy scores over
multiple runs.

Our system provides accuracy scores for devel-
opment data in terms of character-level accuracy.
The general task was scored in terms of word-level
error rate, but we keep this measure for several
reasons. First, it was simply easier as this is what
the system provided as a default. Second, this is
a more granular measure that enabled us to adjust
the system more carefully. Finally, we were able
to simulate word-level accuracy in addition as de-
scribed below.

We use a Monte Carlo simulation to calculate
expected word-level accuracy based on character-
level accuracy and average transcription length for
the training data for the different languages. The
simulation works by generating 100, 000 words
with a random distribution of a specific character-
level accuracy rate and then calculating word-level
accuracy from that. Running the full system ten
times, we get the results in Table 2. Keep in mind

127

Character Word
94.84 75.6
94.78 75.3
94.46 74.0
94.84 75.5
94.71 75.0
94.59 74.5
94.90 75.8
94.53 74.2
94.53 74.2
94.71 75.0

Mean 94.69 7491

Table 2: Development accuracy for 10 runs of the full
system with all languages grouped together with esti-
mated word-level accuracy

Character Word
94.60 74.6
94.71 75.0
94.35 73.8
94.48 74.0
94.48 74.0
94.50 74.2
94.59 74.5
94.71 75.0
94.80 75.4
94.59 74.5

Mean 94.58 74.5

Table 3: Development accuracy for 10 runs of the re-
duced system with all languages grouped together with
100 development pairs with estimated word-level accu-
racy

that we are reporting accuracy rather than error rate,
so the goal is to maximize these values.

4 Using development data

The default partition for each language is 800 pairs
for training and 100 pairs for development. We
shifted this to 880 pairs for training and 20 pairs
for development. The logic of this choice was
to retain what seemed like the minimum number
of development items. Running the system ten
times without this repartitioning gives the results
in Table 3.

There is a small difference in the right direction,
but it is not significant for characters (t = —1.65,
p = 0.11, unpaired) or words (t = —1.56, p =
0.13, unpaired). It may be that with a larger sample
of runs, the difference becomes more stable.



Code Items added
ady 4
gre 223
ice 58
ita 194
khm 39
lav 100
mlt_latn 62
rum 119
slv 127
wel_sw 7

Table 4: Number of substrings added for each language

5 Using substrings

This method involves finding peripheral letters that
map unambiguously to some symbol and then find-
ing plausible splitting points within words to create
partial words that can be added to the training data.

Let’s exemplify this with Welsh. First, we iden-
tify all word-final letters that always correspond to
the same symbol in the transcription. For exam-
ple, the letter ¢ always corresponds to a word-final
[k]. Similarly, we identify word-initial characters
with the same property. For example, in these data,
the word-initial letter 7 always corresponds to [t].?
We then search for any word in training that has
the medial sequence ct where the transcription has
[kt]. We take each half of the relevant item and add
them to the training data if that pair is not already
there. For example, the word actor [aktor] fits the
pattern, so we can add the pairs ac-ak and tor-tor.
to the training data. Table 4 gives the number of
items added for each language. This strategy is
a more limited version of the “slice-and-shuffle”
approach used by Ryan and Hulden (2020) in last
year’s challenge.

Note that this procedure can make errors. If there
are generalizations about the pronunciation of let-
ters that are not local, that involve elements at a
distance, this procedure can obscure those. Another
example from Welsh makes the point. There are
exceptions, but the letter y in Welsh is pronounced
two ways. In a word-final syllable, it is pronounced
[i], e.g. gwyn [gwin] ‘white’. In a non-final sylla-
ble, it is pronounced [3], e.g. gwynion [gwonjon]
‘white ones’. Though it doesn’t happen in the train-
ing data here, the procedure above could easily

This is actually incorrect for the language as a whole.
Word-initial 7 in the digraph th corresponds to a different
sound [6].
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Character Word

95.15 76.9
94.40 73.7
95.15 76.8
94.59 74.5
94.65 74.8
95.27 77.4
94.53 74.2
94.78 75.2
95.09 76.6
94.59 74.5
Mean 94.82 75.46

Table 5: 10 runs with all languages grouped together
without substrings added for each language

result in a y in a non-final syllable ending up in a
final syllable in a substring generated as above.

Table 5 shows the results of 10 runs without
these additions and simulated word error rates for
each run.

Strikingly, adding the substrings lowered per-
formance, but the difference with the full model
is not significant for either characters (t = 1.18,
p = 0.25, unpaired) or for words (¢ 1.17,
p = 0.25, unpaired). This model without sub-
strings is the best-performing of all the models we
tried, so this is what was submitted.

6 Training together

The basic idea here was to leverage the entire set
of languages. Thus all languages were trained to-
gether. To distinguish them, each pair was prefixed
by its language code. Thus if we had orthogra-
phy O = (01, 02,...,0,) and transcription 7' =
(t1,ta,...,ty,) from language z, the net would be
trained on the pair O’ = (x,01,09,...,0,) and
T = (x,t1,ta,...,tm). The idea is that, while
the mappings and orthographies are distinct, there
are similarities in what letters encode what sounds
and in the possible sequences of sounds that can
occur in the transcriptions. This approach is very
similar to that of Peters et al. (2017), except that
we tag the orthography and the transcription with
the same langauge tag. Peters and Martins (2020)
took a similar approach in last years challenge, but
use embeddings prefixed at each time step.

In Table 6 we give the results for running each
language separately 5 times. Since there was a lot
less training data for each run, these models settled
faster, but we ran them the same number of steps



as the full models for comparison purposes.

There’s a lot of variation across runs and the
means for each language are quite different, pre-
sumably based on different levels of orthographic
transparency. The general pattern is clear that, over-
all, training together does better than training sep-
arately. Comparing run means with our baseline
system is significant (t = —6.06, p < .001, un-
paired).

This is not true in all cases however. For some
languages, individual training seems to be better
than training together. Our hypothesis is that lan-
guages that share similar orthographic systems did
better with joint training and that languages with
diverging systems suffered.

The final results show that our best system (no
substrings included, all languages together, moving
development data to training) performed reason-
ably for some languages, but did quite poorly for
others. This suggests a hybrid strategy that would
have been more successful. In addition to training
the full system here, train individual systems for
each language. For test, compare final develop-
ment results for individual languages for the jointly
trained system and the individually trained systems
and use whichever does better for each language in
testing.

7 Conclusion

To conclude, we have augmented a basic sequence-
to-sequence LSTM model with several data aug-
mentation moves. Some of these were successful:
redistributing data from development to training
and training all the languages together. Some tech-
niques were not successful though: the substring
strategy resulted in diminished performance.
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language 5 separate runs Mean
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khm 94.19 90.32 90.97 90.97 9097 9148
lav 94.00 90.67 89.33 92.00 90.67 91.33
mlt_latn  91.89 94.59 91.89 9257 9324 92.84
rum 9529 9647 9471 95.88 9529 9551
slv 94.01 94.61 04.61 94.61 94.01 94.37
wel_sw 96.30 97.04 9630 97.04 9630 96.59
Mean 9429 9423 9381 94.17 942 94.14

Table 6: 5 separate runs for each language
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Abstract

This paper documents the UBC Linguistics
team’s approach to the SIGMORPHON 2021
Grapheme-to-Phoneme Shared Task, concen-
trating on the low-resource setting. Our sys-
tems expand the baseline model with simple
modifications informed by syllable structure
and error analysis. In-depth investigation of
test-set predictions shows that our best model
rectifies a significant number of mistakes com-
pared to the baseline prediction, besting all
other submissions. Our results validate the
view that careful error analysis in conjunction
with linguistic knowledge can lead to more ef-
fective computational modeling.

1 Introduction

With speech technologies becoming ever more
prevalent, grapheme-to-phoneme (G2P) conversion
is an important part of the pipeline. G2P conver-
sion refers to mapping a sequence of orthographic
representations in some language to a sequence of
phonetic symbols, often transcribed in the Interna-
tional Phonetic Alphabet (IPA). This is often an
early step in tasks such as text-to-speech, where
the pronunciation must be determined before any
speech is produced. An example of such a G2P
conversion, in Ambharic, is illustrated below:

A“7CE — [amarin;a] ‘Ambharic’

For the second year, one of SIGMORPHON
shared tasks concentrates on G2P. This year, the
task is further broken into three subtasks of varying
data levels: high-resource ( 33K training instances),
medium-resource (8K training instances), and low-
resource (800 training instances). Our focus is on
the low-resource subtask. The language data and
associated constraints in the low-resource setting
will be summarized in Section 3.1; the reader inter-
ested in the other two subtasks is referred to Ashby
et al. (this volume) for an overview.
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In this paper, we describe our methodology and
approaches to the low-resource setting, including
insights that informed our methods. We conclude
with an extensive error analysis of the effectiveness
of our approach.

This paper is structured as follows: Section 2
overviews previous work on G2P conversion. Sec-
tion 3 gives a description of the data in the low-
resource subtask, evaluation metric, and baseline
results, along with the baseline model architecture.
Section 4 introduces our approaches as well as the
motivation behind them. We present our results in
Section 5 and associated error analyses in Section 6.
Finally, Section 7 concludes our paper.

2 Previous Work on G2P conversion

The techniques for performing G2P conversion
have long been coupled with contemporary ma-
chine learning advances. Early paradigms utilize
joint sequence models that rely on the alignment
between grapheme and phoneme, usually with
variants of the Expectation-Maximization (EM)
algorithm (Dempster et al., 1977). The result-
ing sequences of graphones (i.e., joint grapheme-
phoneme tokens) are then modeled with n-gram
models or Hidden Markov Models (e.g., Jiampoja-
marn et al., 2007; Bisani and Ney, 2008; Jiampo-
jamarn and Kondrak, 2010). A variant of this
paradigm includes weighted finite-state transducers
trained on such graphone sequences (Novak et al.,
2012, 2015).

With the rise of various neural network tech-
niques, neural-based methods have dominated the
scene ever since. For example, bidirectional long
short-term memory-based (LSTM) networks using
a connectionist temporal classification layer pro-
duce comparable results to earlier n-gram models
(Rao et al., 2015). By incorporating alignment in-
formation into the model, the ceiling set by n-gram
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models has since been broken (Yao and Zweig,
2015). Attention further improved the performance,
as attentional encoder-decoders (Toshniwal and
Livescu, 2016) learned to focus on specific input se-
quences. As attention became “all that was needed”
(Vaswani et al., 2017), transformer-based architec-
tures have begun looming large (e.g., Yolchuyeva
et al., 2019).

Recent years have also seen works that capital-
ize on multilingual data to train a single model
with grapheme-phoneme pairs from multiple lan-
guages. For example, various systems from last
year’s shared task submissions learned from a mul-
tilingual signal (e.g., EISaadany and Suter, 2020;
Peters and Martins, 2020; Vesik et al., 2020).

3 The Low-resource Subtask

This section provides relevant information concern-
ing the low-resource subtask.

3.1 Task Data

The provided data in the low-resource subtask
come from ten languages': Adyghe (ady; in the
Cyrillic script), Modern Greek (gre; in the Greek
alphabet), Icelandic (ice), Italian (ita), Khmer
(khm; in the Khmer script, which is an alphasyl-
labary system), Latvian (1at), Maltese transliter-
ated into the Latin script (m1t_latn), Romanian
(rum), Slovene (s1v), and the South Wales dialect
of Welsh (wel_sw). The data are extracted from
Wikitionary? using WikiPron (Lee et al., 2020), and
filtered and downsampled with proprietary tech-
niques, resulting in each language having 1,000
labeled grapheme-phoneme pairs, split into a train-
ing set of 800 pairs, a development set of 100 pairs,
and a blind test set of 100 pairs.

3.2 The Evaluation Metric

This year, the evaluation metric is the word er-
ror rate (WER), which is simply the percentage
of words for which the predicted transcription se-
quence differs from the ground-truth transcription.
Different systems are ranked based on the macro-
average over all languages, with lower scores indi-
cating better systems. We also adopted this metric
when evaluating our models on the development
sets.

'All output is represented in IPA; unless specified other-
wise, the input is written in the Latin alphabet.
https://www.wiktionary.org/
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3.3 Baselines

The official baselines for individual languages are
based on an ensembled neural transducer trained
with the imitation learning (IL) paradigm (Makarov
and Clematide, 2018a). The baseline WERs are tab-
ulated in Table 3. In what follows, we overview this
baseline neural-transducer system, as our models
are built on top of this system. The detailed formal
description of the baseline system can be found in
Makarov and Clematide (2018a,b,c, 2020).

The neural transducer in question defines a con-
ditional distribution over edit actions, such as copy,
deletion, insertion, and substitution:

|a|

p@(y7 a]:):) = Hpe(a‘j’a'<ja m)a
j=1

where x denotes an input sequence of graphemes,
and @ = aj ...a)q| stands for a sequence of edit
actions. Note that the ouput sequence y is missing
from the conditional probability on the right-hand
side as it can be deterministically computed from x
and a. The model is implemented with an LSTM
decoder, coupled with a bidirectional LSTM en-
coder.

The model is trained with IL and therefore de-
mands an expert policy, which contains demon-
strations of how the task can be optimally solved
given any configuration. Cast as IL, the mapping
from graphemes to phonemes can be understood
as following an optimal path dictated by the expert
policy that gradually turns input orthographic sym-
bols to output IPA characters. To acquire the expert
policy, a Stochastic Edit Distance (Ristad and Yian-
ilos, 1998) model trained with the EM algorithm
is employed to find an edit sequence consisting of
four types of edits: copy, deletion, insertion, and
substitution. During training time, the expert policy
is queried to identify the next optimal edit that min-
imizes the following objective expressed in terms
of Levenshtein distance and edit sequence cost:

PED(§,y) + ED(x,§), 5 > 1,

where the first term is the Levenshtein distance
between the target sequence y and the predicted
sequence ¢, and the second term measures the cost
of editing « to g.

The baseline is run with default hyperparameter
values, which include ten different initial seeds and
a beam of size 4 during inference. The predictions
of these individual models are ensembled using a



voting majority. Early efforts to modify the ensem-
ble to incorporate system confidence showed that a
majority ensemble was sufficient.

This model has proved to be competitive, judg-
ing from its performance on the previous year’s
G2P shared task. We therefore decided to use it as
the foundation to construct our systems.

4 Our Approaches

This section lays out our attempted approaches.
We investigate two alternatives, both linguistic in
nature. The first is inspired by a universal linguistic
structure—the syllable—and the other by the error
patterns discerned from the baseline predictions on
the development data.

4.1 System 1: Augmenting Data with
Unsupervised Syllable Boundaries

Our first approach originates from the observation
that, in natural languages, a sequence of sounds
does not just assume a flat structure. Neighboring
sounds group to form units, such as the onset, nu-
cleus, and coda. In turn, these units can further
project to a syllable (see Figure 1 for an example
of such projection). Syllables are useful structural
units in describing various linguistic phenomena
and indeed in predicting the pronunciation of a
word in some languages (e.g., Treiman, 1994). For
instance, in Dutch, the vowel quality of the nu-
cleus can be reliably inferred from the spelling
after proper syllabification: .dag. [dax] ‘day’ but
.da.gen. [da:yon] ‘days’, where . marks syllable
boundaries. Note that a in a closed syllable is pro-
nounced as the short vowel [a], but as the long
vowel [a:] in an open syllable. In applying syllabi-
fication to G2P conversion, van Esch et al. (2016)
find that training RNNss to jointly predict phoneme
sequences, syllabification, and stress leads to fur-
ther performance gains in some languages, com-
pared to models trained without syllabification and
stress information.

Syllable

/\

Onset Rhyme

T

Nucleus Coda

SN

t w € I £ 0

Figure 1: The syllable structure of twelfth [twelfb]
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To identify syllable boundaries in the input se-
quence, we adopted a simple heuristic, the specific
steps of which are listed below:>

1. Find vowels in the output: We first identify
the vowels in the phoneme sequence by com-
paring each segment with the vowel symbols
from the IPA chart. For instance, the symbols
[#] and [y] in [thr¢yst] for Icelandic traust are
vowels because they match the vowel symbols
[#] and [y] on the IPA chart.

2. Find vowels in the input: Next we align
the grapheme sequence with the phoneme se-
quence using an unsupervised many-to-many
aligner (Jiampojamarn et al., 2007; Jiampo-
jamarn and Kondrak, 2010). By identifying
graphemes that are aligned to phonemic vow-
els, we can identify vowels in the input. Using
the Icelandic example again, the aligner pro-
duces a one-to-one mapping: ¢ +— t, r =1, a
— @, u+—y,s+— s, and t — t. We therefore
assume that the input characters a and u rep-
resent two vowels. Note that this step is often
redundant for input sequences based on the
Latin script but is useful in identifying vowel
symbols in other scripts.

3. Find valid onsets and codas: A key step in
syllabification is to identify which sequences
of consonants can form an onset or a coda.
Without resorting to linguistic knowledge, one
way to identify valid onsets and codas is to
look at the two ends of a word—consonant
sequences appearing word-initially before the
first vowel are valid onsets, and consonant
sequences after the final vowel are valid codas.
Looping through each input sequence in the
training data gives us a list of valid onsets and
codas. In the Icelandic example tfraust, the
initial tr sequence must be a valid onset, and
the final st sequence a valid coda.

4. Break word-medial consonant sequences
into an onset and a coda: Unfortunately
identifying onsets and codas among word-
medial consonant sequences is not as straight-
forward. For example, how do we know the

3We are aware that different languages permit distinct
syllable constituents (e.g., some languages allow syllabic con-
sonants while others do not), but given the restriction that we
are not allowed to use external resources in the low-resource
subtask, we simply assume that all syllables must contain a
vowel.



sequence in the input VngstrV (V for a vowel
character) should be parsed as Vng.strV, as
Vn.gstrV, or even as V.ngstrV? To tackle this
problem, we use the valid onset and coda lists
gathered from the previous step: we split the
consonant sequence into two parts, and we
choose the split where the first part is a valid
coda and the second part a valid onset. For
instance, suppose we have an onset list {str,
tr} and a coda list {ng, st}. This implies that
we only have a single valid split—Vng.strV—
so ng is treated as the coda for the previous
syllable and str as the onset for the follow-
ing syllable. In the case where more than one
split is acceptable, we favor the split that pro-
duces a more complex onset, based on the
linguistic heuristic that natural languages tend
to tolerate more complex onsets than codas.
For example, Vng.strV > Vngs.trV. In the
situation where none of the splits produces a
concatenation of a valid coda and onset, we
adopt the following heuristic:

e If there is only one medial consonant
(such as in the case where the consonant
can only occur word-internally but not
in the onset or coda position), this con-
sonant is classified as the onset for the
following syllable.

« If there is more than one consonant, the
first consonant is classified as the coda
and attached to the previous syllable
while the rest as the onset of the follow-
ing syllable.

Of course, this procedure is not free of errors
(e.g., some languages have onsets that are only
allowed word-medially, so word-initial onsets
will naturally not include them), but overall it
gives reasonable results.

. Form syllables: The last step is to put to-
gether consonant and vowel characters to form
syllables. The simplest approach is to allow
each vowel character to be projected as a nu-
cleus and distribute onsets and codas around
these nuclei to build syllables. If there are
four vowels in the input, there are likewise
four syllables. There is one important caveat,
however. When there are two or more consec-
utive vowel characters, some languages prefer
to merge them into a single vowel/nucleus in
their pronunciation (e.g., Greek xou — [ce])

while other languages simply default to vowel
hiatuses/two side-by-side nuclei (e.g., Italian
badia —> [badia])—indeed, both are common
cross-linguistically. We again rely on the
alignment results in the second step to select
the vowel segmentation strategy for individual
languages.

After we have identified the syllables that com-
pose each word, we augmented the input se-
quences with syllable boundaries. We identify
four labels to distinguish different types of sylla-
ble boundaries: <cc>, <cv>. <vc>, and <vv>,
depending on the classes of sound the segments
straddling the syllable boundary belong to. For
instance, the input sequence b 1 1 a v e r
k s t & & i in Icelandic will be augmented
tobeb i <ve> 1 a <ve> v e r k <cc>
s t & <ve> & i. We applied the same syl-
labification algorithm to all languages to generate
new input sequences, with the exception of Khmer,
as the Khmer script does not permit a straightfor-
ward linear mapping between input and output se-
quences, which is crucial for the vowel identifi-
cation step. We then used these syllabified input
sequences, along with their target transcriptions, as
the training data for the baseline model.*

4.2 System 2: Penalizing Vowel and Diacritic
Errors

Our second approach focuses on the training ob-
jective of the baseline model, and is driven by
the errors we observed in the baseline predictions.
Specifically, we noticed that the majority of er-
rors for the languages with a high WER—Khmer,
Latvian, and Slovene—concerned vowels, some
examples of which are given in Table 1. Note the
nature of these mistakes: the mismatch can be in
the vowel quality (e.g., [2] for [0]), in the vowel
length (e.g., [&:] for [4]), in the pitch accent (e.g.,
[i:] for [i:]), or a combination thereof.

Based on the above observation, we modified
the baseline model to explicitly address this vowel-
mismatching issue. We modified the objective such
that erroneous vowel or diacritic (e.g., the length-
ening marker [:]) predictions during training incur

“The hyperparameters used are the default values provided
in the baseline model code: character and action embedding =
100, encoder LSTM state dimension = decoder LSTM state
dimension = 200, encoder layer = decoder layer = 1, beam
width = 4, roll-in hyperparameter = 1, epochs = 60, patience
= 12, batch size = 5, EM iterations = 10, ensemble size =
10.
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Language Target Baseline prediction
khm nuh nioh
rorj réaj
spébon span
lat tserls tsé:ls
juoks juoks
vals varls
slv jorgurt jogurrt
krit [ krir [
zdaj zdaj

Table 1: Typical errors in the development set that in-
volve vowels from Khmer (khm), Latvian (1at), and
Slovene (s1v)

additional penalties. Each incorrectly-predicted
vowel incurs this penalty. The penalty acts as a
regularizer that forces the model to expend more
effort on learning vowels. This modification is in
the same spirit as the softmax-margin objective of
Gimpel and Smith (2010), which penalizes high-
cost outputs more heavily, but our approach is even
simpler—we merely supplement the loss with ad-
ditional penalties for vowels and diacritics. We
fine-tuned the vowel and diacritic penalties using a
grid search on the development data, incrementing
each by 0.1, from 0 to 0.5. In the cases of ties, we
skewed higher as the penalties generally worked
better at higher values. The final values used to
generate predictions for the test data are listed in
Table 2. We also note that the vowel penalty had
significantly more impact than the diacritic penalty.

Penalty
Language Vowel Diacritic
ady 0.5 0.3
gre 0.3 0.2
ice 0.3 0.3
ita 0.5 0.5
khm 0.2 0.4
lav 0.5 0.5
mlt latn 0.2 0.2
rum 0.5 0.2
slv 0.4 0.4
wel_ sw 0.4 0.5

Table 2: Vowel penalty and diacritic penalty values in
the final models
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5 Results

The performances of our systems, measured in
WER, are juxtaposed with the official baseline re-
sults in Table 3. We first note that the baseline was
particularly strong—gains were difficult to achieve
for most languages. Our first system (Syl), which is
based on syllabic information, unfortunately does
not outperform the baseline. Our second system
(VP), which includes additional penalties for vow-
els and diacritics, however, does outperform the
baselines in several languages. Furthermore, the
macro WER average not only outperforms the base-
line, but all other submitted systems.

WER
Language Baseline Syl VP
ady 22 25 22
gre 21 22 22
ice 12 13 11
ita 19 20 22
khm 34 31 28
lav 55 58 49
mlt_latn 19 19 18
rum 10 14 10
slv 49 56 47
wel sw 10 13 12
Average 25.1 27.1 2441

Table 3: Comparison of test-set results based on the
word error rates (WERs)

It seems that extra syllable information does not
help with predictions in this particular setting. It
might be the case that additional syllable bound-
aries increase input variability without providing
much useful information with the current neural-
transducer architecture. Alternatively, information
about syllable boundary locations might be redun-
dant for this set of languages. Finally, it is possible
that the unsupervised nature of our syllable anno-
tation was too noisy to aid the model. We leave
these speculations as research questions for future
endeavors and restrict the subsequent error analy-
ses and discussion to the results from our vowel-
penalty system.’

>One reviewer raised a question of why only syllable
boundaries, as opposed to smaller constituents, such as onsets
or codas, are marked. Our hunch is that many phonological al-
ternations happen at syllable boundaries, and that vowel length
in some languages depends on whether the nucleus vowel is
in a closed or open syllable. Also, given that adding syllable
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Figure 2: Distributions of error types in test-set predictions across languages. Error types are distinguished based
on whether an error involves only consonants, only vowels, or both. For example, C-V means that the error is

caused by a ground-truth consonant being replaced by a vowel in the prediction. C-¢ means that it is a deletion
error where the ground-truth consonant is missing in the prediction while e-C represents an insertion error where a

consonant is wrongly added.

6 Error Analyses

In this section, we provide detailed error analyses
on the test-set predictions from our best system.
The goals of these analyses are twofold: (i) to ex-
amine the aspects in which this model outperforms
the baseline and to what extent, and (ii) to get a
better understanding of the nature of errors made
by the system—we believe that insights and im-
provements can be derived from a good grasp of
error patterns.

We analyzed the mismatches between predicted
sequences and ground-truth sequences at the seg-
mental level. For this purpose, we again utilized
many-to-many alignment (Jiampojamarn et al.,
2007; Jiampojamarn and Kondrak, 2010), but this
time between a predicted sequence and the corre-
sponding ground-truth sequence.® For each error
along the aligned sequence, we classified it into
one of the three kinds:

* Those involving erroneous vowel insertions
(e.g., € = [a]), deletions (e.g., [a] — ¢€), or
substitutions (e.g., [o] — [a]).

* In the same vein, those involving erroneous
consonant insertions (e.g., ¢ — [?]), deletions

boundaries does not improve the results, it is unlikely that
marking constituent boundaries, which adds more variability
to the input, will result in better performance, though we did
not test this hypothesis.

5The parameters used are: allowing deletion of input
grapheme strings, maximum length of aligned grapheme and
phoneme substring being one, and a training threshold of
0.001.
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(e.g., [?] — €), and substitutions (e.g., [d] —
(D).

* Those involving exchanges of a vowel and a
consonant (e.g., [w] — [u]) or vice versa.

The frequency of each error type made by the
baseline model and our systems for each individ-
ual language is plotted in Figure 2. Some patterns
are immediately clear. First, both systems have a
similar pattern in terms of the distribution of error
types across language, albeit that ours makes fewer
errors on average. Second, both systems err on
different elements, depending on the language. For
instance, while Adyghe (ady) and Khmer (khm)
have a more balanced distribution between conso-
nant and vowel errors, Slovene (s1v) and Welsh
(wel_sw) are dominated by vowel errors. Third,
the improvements gained in our system seem to
come mostly from reduction in vowel errors, as is
evident in the case of Khmer, Latvian (1av), and,
to a lesser extent, Slovene.

The final observation is backed up if we zoom
in on the errors in these three languages, which
we visualize in Figure 3. Many incorrect vowels
generated by the baseline model are now correctly
predicted. We note that there are also cases, though
less common, where the baseline model gives the
right prediction, but ours does not. It should be
pointed out that, although our system shows im-
provement over the baseline, there is still plenty
of room for improvement in many languages, and
our system still produces incorrect vowels in many
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Figure 3: Comparison of vowels predicted by the baseline model and our best system (VP) with the ground-truth
vowels. Here we only visualize the cases where either the baseline model gives the right vowel but our system does
not, or vice versa. We do not include cases where both the baseline model and our system predict the correct vowel,
or both predict an incorrect vowel, to avoid cluttering the view. Each baseline—ground-truth—ours line represents
a set of aligned vowels in the same word; the horizontal line segment between a system and the ground-truth means
that the prediction from the system agrees with the ground-truth. Color hues are used to distinguish cases where
the prediction from the baseline is correct versus those where the prediction from our second system is correct.
Shaded areas on the plots enclose vowels of similar vowel quality.

instances.

Finally, we look at several languages which
still resulted in high WER on the test set—ady,
gre, ita, khm, lav, and slv. We analyze
the confusion matrix analysis to identify clusters
of commonly-confused phonemes. This analysis
again relies on the alignment between the ground-
truth sequence and the corresponding predicted
sequence to characterize error distributions. The
results from this analysis are shown in Figure 4,
and some interesting patterns are discussed below.
Figure 2 suggests that Khmer has an equal share of
consonant and vowel errors, and the heat maps in
Figure 4 reveal that these errors do not seem to fol-
low a certain pattern. However, a different picture
emerges with Latvian and Slovene. For both lan-
guages, Figure 2 indicates the dominance of errors
tied to vowels; consonant errors account for a rela-
tively small proportion of errors. This observation
is borne out in Figure 4, with the consonant heat
maps for the two languages displaying a clear diag-
onal stripe, and the vowel heat maps showing much
more off-diagonal signals. What is more interest-
ing is that the vowel errors in fact form clusters,
as highlighted by white squares on the heat maps.
The general pattern is that confusion only arises
within a cluster where vowels are of similar quality
but differ in terms of length or pitch accent. For
example, while [i:] might be incorrectly-predicted
as [i], our model does not confuse it with, say, [u].
The challenges these languages present to the mod-
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els are therefore largely suprasegmental—vowel
length and pitch accent, both of which are lexical-
ized and not explicitly marked in the orthography.
For the other three languages, their errors also show
distinct patterns: for Adyghe, consonants differing
only in secondary features can get confused; in
Greek, many errors can be attributed to the mixing
of [r] and [r]; in Italian, front and back mid vowels
can trick our model.

We hope that our detailed error analyses show
not only that these errors “make linguistic sense”—
and therefore attest to the power of the model—
but also point out a pathway along which future
modeling can be improved.

7 Conclusion

This paper presented the approaches adopted by
the UBC Linguistics team to tackle the SIGMOR-
PHON 2021 Grapheme-to-Phoneme Conversion
challenge in the low-resource setting. Our submis-
sions build upon the baseline model with modifi-
cations inspired by syllable structure and vowel
error patterns. While the first modification does
not result in more accurate predictions, the second
modification does lead to sizable improvements
over the baseline results. Subsequent error analy-
ses reveal that the modified model indeed reduces
erroneous vowel predictions for languages whose
errors are dominated by vowel mismatches. Our
approaches also demonstrate that patterns uncov-
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Figure 4: Confusion matrices of vowel and consonant predictions by our second system (VP) for languages with the
test WER > 20%. Each row represents a predicted segment, with colors across columns indicating the proportion
of times the predicted segment matches individual ground-truth segments. A gray row means the segment in
question is absent in any predicted phoneme sequences but is present in at least one ground-truth sequence. The
diagonal elements represent the number of times for which the predicted segment matches the target segment,
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segment groups where mismatches are common.
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ered from careful error analyses can inform the
directions for potential improvements.
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Abstract

We describe three baseline beating sys-
tems for the high-resource English-only
sub-task of the SIGMORPHON 2021
Shared Task 1: a small ensemble that
Dialpad’s’ speech recognition team uses
internally, a well-known off-the-shelf
model, and a larger ensemble model
comprising these and others. We addition-
ally discuss the challenges related to the
provided data, along with the processing
steps we took.

1 Introduction

The transduction of sequences of graphemes
to phones or phonemes,? that is from charac-
ters used in orthographic representations to
characters used to represent minimal units of
speech, is a core component of many tasks in
speech science & technology. This grapheme-
to-phoneme conversion (or g2p) may be used,
e.g., to automate or scale the creation of
digital lexicons or pronunciation dictionaries,
which are crucial to FST-based approaches to
automatic speech recognition (ASR) and syn-
thesis (Mohri et al., 2002).

The SIGMORPHON 2021 Workshop in-
cluded a Shared Task on g2p conversion, com-
prising 3 sub-tasks.> The low- and medium-
resource tasks were multilingual, while the
high-resource task was English-only. This
paper provides an overview of the three
baseline-beating systems submitted by the Di-
alpad team for the high-resource sub-task,

Corresponding author.
listed alphabetically.

Thttps://www.dialpad.com/

*We use these terms interchangeably here to refer
to graphical representations of minimal speech sounds,
remaining agnostic as to their theoretical or ontological

status.
3https://github.com/sigmorphon/2021-task1

Contributing authors are

Proceedings of the Seventeenth SIGMORPHON Workshop on Computational Research

141

along with discussion of the challenges posed
by the data that was provided.

2 Sub-task 1: high-resource,
English-only

The organizers provided 41,680 lines of data
in total; 33,344 for training, and 4,168 each
for development and test. The data consists
of word/pronunciation pairs (word-pron pairs,
henceforth), where words are sequences of
graphemes and pronunciations are sequences
of characters from the International Phonetic
Alphabet (International Phonetic Association,
1999). The data was derived from the English
portion of the WikiPron database (Lee et al.,
2020), a massively multilingual resource of
word-pron pairs extracted from Wiktionary*
and subject to some manual QA and post-
processing.®

The baseline model provided was the 2nd
place finisher from the 2020 g2p shared task
(Gorman et al., 2020). It is an ensembled neu-
ral transition model that operates over edit
actions and is trained via imitation learning
(Makarov and Clematide, 2020).

Evaluation scripts were provided to com-
pute word error rate (WER), the percentage of
words for which the output sequence does not
match the gold label.

Notwithstanding the baseline’s strong prior
performance and the amount of data avail-
able, the task proved to be challenging; the
baseline system achieved development and
test set WERs of 45.13 and 41.94, respec-
tively. We discuss possible reasons for this
below.

“https://en.wiktionary.org/
>See  https://github.com/sigmorphon,/2021-task1
for fuller details on data formatting and processing.
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2.1 Data-related challenges

Wiktionary is an open, collaborative, public
effort to create a free dictionary in multiple
languages. Anyone can create an account and
add or amend words, pronunciations, etymo-
logical information, etc. As with most user-
generated content, this is a noisy method of
data creation and annotation.

Even setting aside the theory-laden ques-
tion of when or whether a given word should
be counted as English,® the open nature of
Wiktionary means that speakers of different
variants or dialects of English may submit
varying or conflicting pronunciations for sets
of words. For example, some transcriptions
indicate that the users who input them had
the cot/caught merger while others do not; in
the training data “cot” is transcribed /k a t/
and “caught” is transcribed /k > t/, indicat-
ing a split, but “aughts” is transcribed as /a t
s/, indicating merger. There is also variation
in the narrowness of transcription. For exam-
ple, some transcriptions include aspiration on
stressed-syllable-initial stops while others do
not c.f. “kill” /k" 11/ and “killer” /k 11 2/.

Typically the set of English phonemes is
taken to be somewhere between 38-45 de-
pending on variant/dialect (McMahon, 2002).
In exploring the training data, we found a to-
tal of 124 symbols in the training set transcrip-
tions, many of which only appeared in a small
set (1-5) of transcriptions. To reduce the ef-
fect of this long tail of infrequent symbols, we
normalized the training set.

The main source of symbols in the long
tail was the variation in the broadness of
transcription—vowels were sometimes but
not always transcribed with nasalization be-
fore a nasal consonant, aspiration on word-
initial voiceless stops was inconsistently indi-
cated, phonetic length was occasionally indi-
cated, etc. There were also some cases of er-
roneous transcription that we uncovered by
looking at the lowest frequency phones and
the word-pronunciation pairs where they ap-
peared. For instance, the IPA /j/ was tran-
scribed as /y/ twice, the voiced alveolar ap-
proximant /1/ was mistranscribed as the trill
/r/ over 200 times, and we found a handful

®E.g., the training data included the arguably French
word-pronunciation pair: embonpoint /G b 3 p w &/
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of issues where a phone was transcribed with
a Unicode symbol not used in the IPA at all.

Most of these were cases where the rare
variant was at least two orders of magnitude
less frequent than the common variant of the
symbol. There was, however, one class of
sounds where the variation was less dramat-
ically skewed; the consonants /m/, /n/, and
/1/ appeared in unstressed syllables follow-
ing schwa (/om/, /on/, /3l/) roughly one or-
der of magnitude more frequently than their
syllabic counterparts (/m/, /n/, /1/), and we
opted not to normalize these. If we had nor-
malized the syllabic variants, it would have
resulted in more consistent g2p output but it
would likely also have penalized our perfor-
mance on the uncleaned test set.” In the end,
our training data contained 47 phones (plus
end-of-sequence and UNK symbols for some
models).

3 Models

We trained and evaluated several models for
this task, both publicly available, in-house,
and custom developed, along with various en-
sembling permutations. In the end, we sub-
mitted three sets of baseline beating results.
The organizers assigned sequential identifiers
to multiple submissions (e.g. Dialpad-N); we
include these in the discussion of our entries
below, for ease of subsequent reference.

3.1 The Dialpad model (Dialpad-2)

Dialpad uses a g2p system internally for scal-
able generation of novel lexicon additions.
We were motivated to enter this shared task
as a means of assessing potential areas of im-
provement for our system; in order to do so
we needed to assess our own performance as
a baseline.

This model is a simple majority-vote ensem-
ble of 3 existing publicly available g2p sys-
tems: Phonetisaurus (Novak et al., 2012), a
WEST-based model, Sequitur (Bisani and Ney,
2008), a joint-sequence model trained via EM,
and a neural sequence-to-sequence model de-
veloped at CMU as part of the CMUSphinx®

7 Although the possibility also exists that one or more
of our models would have found and exploited contex-
tual cues that weren’t obvious to us by inspection.

Shttps://cmusphinx.github.io



toolkit (see subsection 3.2). As Dialpad uses
a proprietary lexicon and phoneset internally,
we retrained all three models on the cleaned
version of the shared task training data, re-
taining default hyperparameters and architec-
tures.

In the end, this ensemble achieved a test set
WER of 41.72, narrowly beating the baseline
(results are discussed in more depth in Section
4).

3.2 A strong standalone model:
CMUSphinx g2p-seq2seq (Dialpad-3)

CMUSphinx is a set of open systems and
tools for speech science developed at Carnegie
Mellon University, including a g2p system.’
It is a neural sequence-to-sequence model
(Sutskever et al., 2014) that is Transformer-
based (Vaswani et al., 2017), written in Ten-
sorflow (Abadi et al., 2015). A pre-trained 3-
layer model is available for download, but it is
trained on a dictionary that uses ARPABET, a
substantially different phoneset from the IPA
used in this challenge. For this reason we re-
trained a model from scratch on the cleaned
version of the training data.

This model achieved a test set WER of
41.58, again narrowly beating the baseline.
Interestingly, this outperformed the Dialpad
model which incorporates it, suggesting that
Phonetisaurus and Sequitur add more noise
than signal to predicted outputs, to say noth-
ing of increased computational resources and
training time. More generally, this points to
the CMUSphinx seq2seq model as a simple
and strong baseline against which future g2p
research should be assessed.

3.3 A large ensemble (Dialpad-1)

In the interest of seeing what results could be
achieved via further naive ensembling, our fi-
nal submission was a large ensemble, compris-
ing two variations on the baseline model, the
Dialpad-2 ensemble discussed above, and two
additional seq2seq models, one using LSTMs
and the other Transformer-based. The latter
additionally incorporated a sub-word extrac-
tion method designed to bias a model’s input-
output mapping toward “good” grapheme-
phoneme correspondences.

“https://github.com/cmusphinx/g2p-seq2seq
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The method of ensembling for this model is
word level majority-vote ensembling. We se-
lect the most common prediction when there
is a majority prediction (i.e. one prediction
has more votes than all of the others). If there
is a tie, we pick the prediction that was gen-
erated by the best standalone model with re-
spect to each model’s performance on the de-
velopment set.

This collection of models achieved a test set
WER of 37.43, a 10.75% relative reduction in
WER over the baseline model. As shown in
Table 1, although a majority of the compo-
nent models did not outperform the baseline,
there was sufficient agreement across differ-
ent examples that a simple majority voting
scheme was able to leverage the models’ vary-
ing strengths effectively. We discuss the com-
ponents and their individual performance be-
low and in Section 4.

3.3.1 Baseline variations

The “foundation” of our ensemble was the de-
fault baseline model (Makarov and Clematide,
2018), which we trained using the raw data
and default settings in order to reflect the
baseline performance published by the orga-
nization. We included this in order to individ-
ually assess the effect of additional models on
overall performance.

In addition to this default base, we added
a larger version of the same model, for which
we increased the number of encoder and de-
coder layers from 1 to 3, and increased the
hidden dimensions 200 to 400.

3.3.2 DbiLSTM + attention seq2seq

We conducted experiments with a RNN
seq2seq model, comprising a biLSTM encoder,
LSTM decoder, and dot-product attention.!®
We conducted several rounds of hyperparam-
eter optimization over layer sizes, optimizer,
and learning rate. Although none of these
models outperformed the baseline, a small
network (16-d embeddings, 128-d LSTM lay-
ers) proved to be efficiently trainable (2 CPU-
hours) and improved the ensemble results, so
it was included.

10We used the DyNet toolkit (Neubig et al., 2017) for
these experiments.



3.3.3 PAS2P: Pronunciation-assisted
sub-words to phonemes

Sub-word segmentation is widely used in ASR
and neural machine translation tasks, as it
reduces the cardinality of the search space
over word-based models, and mitigates the is-
sue of OOVs. Use of sub-words for g2p tasks
has been explore, e.g. Reddy and Goldsmith
(2010) develop an MDL-based approach to ex-
tracting sub-word units for the task of g2p.
Recently, a pronunciation-assisted sub-word
model (PASM) (Xu et al., 2019) was shown
to improve the performance of ASR models.
We experimented with pronunciation-assisted
sub-words to phonemes (PAS2P), leveraging
the training data and a reparameterization of
the IBM Model 2 aligner (Brown et al., 1993)
dubbed fast align (Dyer et al., 2013).!

The alignment model is used to find an
alignment of sequences of graphemeres to
their corresponding phonemes. We follow a
similar process as Xu et al. (2019) to find
the consistent grapheme-phoneme pairs and
refinement of the pairs for the PASM model.
We also collect grapheme sequence statistics
and marginalize it by summing up the counts
of each type of grapheme sequence over all
possible types of phoneme sequences. These
counts are the weights of each sub-word se-
quence.

Given a word and the weights for each
sub-word, the segmentation process is a
search problem over all possible sub-word
segmentation of that word. We solve this
search problem by building weighted FSTs!?
of a given word and the sub-word vocabu-
lary, and finding the best path through this
lattice. For example, the word “thought-
fulness” would be segmented by PASM as
“th_ough_t f ul n_e_ss”, and this would be
used as the input in the PAS2P model
rather than the full sequence of individual
graphemes.

Finally, the PAS2P transducer is a
Transformer-based sequence-to-sequence
model trained using the ESPnet end-to-end
speech processing toolkit (Watanabe et al.,
2018), with pronunciation-assisted sub-
words as inputs and phones as outputs. The

Uhttps://github.com/clab/fast_align
12We use Pynini (Gorman, 2016) for this.

model has 6 layers of encoder and decoder
with 2048 units, and 4 attention heads with
256 units. We use dropout with a probability
of 0.1 and label smoothing with a weight
of 0.1 to regularize the model. This model
achieved WERs of 44.84 and 43.40 on the
development and test sets, respectively.

4 Results

Our main results are shown in Table 1, where
we show both dev and test set WER for each
individual model in addition to the submit-
ted ensembles. In particular, we can see that
many of the ensemble components do not beat
the baseline WER, but nonetheless serve to im-
prove the ensembled models.

Model dev test
Dialpad-3 43.30 41.58
PAS2P 44.84 43.40
Baseline (large) 4499 41.65
Baseline (organizer) 45.13 41.94
Phonetisaurus 45.44 43.88
Baseline (raw data) 45.92 41.70
Sequitur 46.69 43.86
biLSTM seq2seq 47.89 44.05
Dialpad-2 43.83 41.72
Dialpad-1 40.12 37.43
Table 1: Results for components of ensembles,

and submitted models/ensembles (bolded).

5 Additional experiments

We experimented with different ensembles
and found that incorporating models with dif-
ferent architectures generally improves over-
all performance. In the standalone results,
only the top three models beat the base-
line WER, but adding additional models with
higher WER than the baseline continues to re-
duce overall WER. Table 2 shows the effect
of this progressive ensembling, from our top-
3 models to our top-7 (i.e. the ensemble for
the Dialpad-1 model).

5.1 Edit distance-based voting

In addition to varying our ensemble sizes and
components, we investigated a different en-
semble voting scheme, in which ties are bro-
ken using edit distance when there is no 1-
best majority option. That is, in the event of
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Model dev test
Ensemble-top3 41.10 39.71
Ensemble-top4 40.74 38.89
Ensemble-top5 40.50 38.12
Ensemble-top6 40.31 37.69
Ensemble-top7 (Dialpad-1) 40.12 37.43

Table 2: Progressive ensembling results, with top-
performing components

a tie, instead of selecting the prediction made
by the best standalone model (our usual tie-
breaking method), we select the prediction
that minimizes edit distance to all other pre-
dictions that have the same number of votes.
The idea of this method is to maximize sub-
word level agreement. Although this method
did not show clear improvements on the de-
velopment set, we found after submission that
it narrowly but consistently outperformed the
top-N ensembles on the test set (see Table 3).

Model dev test
ED-Dialpad-3 43.76 41.70
ED-top3 41.24 39.40
ED-top4 40.62 38.48
ED-top5 40.50 37.69
ED-top6 40.28 37.50
ED-top7 40.21 37.31

Table 3: Results for ensembling with edit-distance
tie-breaking

6 Error analysis

We conducted some basic analyses of the
Dialpad-1 submission’s patterns of errors, to
better understand its performance and iden-
tify potential areas of improvement.!3

6.1 Oracle WER

We began by calculating the oracle WER, i.e.
the theoretical best WER that the ensemble
could have achieved if it had selected the cor-
rect/gold prediction every time it was present
in the pool of component model predictions
for a given input. The Dialpad-1 system’s ora-
cle WERs on the dev and test sets were 25.12
and 23.27, respectively (c.f. 40.12 and 37.43
actual).

13We are grateful to an anonymous reviewer for sug-
gesting that this would strengthen the paper.
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These represent massive performance im-
provements (approx. 15% absolute, or 37%
relative, WER reduction), and suggest refine-
ment of our output selection/voting method
(perhaps via some kind of confidence weight-
ing) could lead to much-improved results.

6.2 Data-related errors

We also investigated outputs for which none
of our component models predicted the cor-
rect pronunciation, in hopes of finding some
patterns of interest.

Many of the training data-related issues
raised in section 2.1 appeared in the dev and
test labels as well. In some cases this led to
high cross-component agreement, even on in-
correct predictions. Our hope that subtle con-
textual cues might reveal patterns in the distri-
bution of syllabic versus schwa-following lig-
uids and nasals was not borne out, e.g. our en-
semble was led astray on words like “warble”,
which had a labelled pronunciation of /w > 1
b 1/, while all 7 of our models predicted /w >
1bal/, a functionally non-distinct pronuncia-
tion. In addition, the previously mentioned is-
sue of /1/ being mistranscribed as /r/ affected
our performance, e.g. with the word “unilat-
eral”, whose labelled pronunciation was /j u
nilaetoral/,insteadof /junilaetaial/,
which was again the pronunciation predicted
by all 7 models. Finally, narrowness of tran-
scription was also an issue that affected our
performance on the dev and test sets, e.g., for
words like “cloudy” /kta v d i/ and “cry” /k
1ay/, for which we predicted /kl1a v di/ and
/k 1 a 1/, respectively. In the end, it seems
that noisiness in the data was a major source
of errors for our submissions.!*

Aside from issues arising due label noise,
our systems also made some genuine errors
that are typical of g2p models, mostly related
to data distribution or sparsity. For example,
our component models overwhelmingly pre-
dicted that “irreparate” (/11ep 219 t/) should
rhyme instead with “rate” (this “-ate-” /e 1t/
correspondence was overwhelmingly present
in the training data), that “backache” (/b a&
k e 1 k/) must contain the affricate /tT/, that

“We nonetheless acknowledge the magnitude and
challenge of the task of cleaning/normalizing a large
quantity of user-generated data, and thank the organiz-
ers for the work that they did in this area.



“acres” (e1k o z/) rhymes with “degrees”, and
that “beret” has a /t/ sound in it. In each of
these cases, there was either not enough sam-
ples in the training set to reliably learn the
relevant grapheme-phoneme correspondence,
or else a conflicting (but correct) correspon-
dence was over-represented in the training
data.

7 Conclusion

We presented and discussed three g2p sys-
tems submitted for the SIGMORPHON2021
English-only shared sub-task. In addition
to finding a strong off-the-shelf contender,
we show that naive ensembling remains a
strong strategy in supervised learning, of
which g2p is a sub-domain, and that sim-
ple majority-voting schemes in classification
can often leverage the respective strengths
of sub-optimal component models, especially
when diverse architectures are combined. Ad-
ditionally, we provided more evidence for
the usefulness of linguistically-informed sub-
word modeling as an input transformation on
speech-related tasks.

We also discussed additional experiments
whose results were not submitted, indicating
the benefit of exploring top-N model vs en-
semble trade-offs, and demonstrating the po-
tential benefit of an edit-distance based tie-
breaking method for ensemble voting.

Future work includes further search for
the optimal trade-off between ensemble size
and performance, as well as additional explo-
ration of the edit-distance voting scheme, and
more sophisticated ensembling/voting meth-
ods, e.g. majority voting at the phone level
on aligned outputs.

Acknowledgments

We are grateful to Dialpad Inc. for provid-
ing the resources, both temporal and compu-
tational, to work on this project.

References

Martin Abadi, Ashish Agarwal, Paul Barham, Eu-
gene Brevdo, Zhifeng Chen, Craig Citro, Greg S.
Corrado, Andy Davis, Jeffrey Dean, Matthieu
Devin, Sanjay Ghemawat, Ian Goodfellow, An-
drew Harp, Geoffrey Irving, Michael Isard,
Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser,

146

Manjunath Kudlur, Josh Levenberg, Dan Mané,
Rajat Monga, Sherry Moore, Derek Murray,
Chris Olah, Mike Schuster, Jonathon Shlens,
Benoit Steiner, Ilya Sutskever, Kunal Talwar,
Paul Tucker, Vincent Vanhoucke, Vijay Vasude-
van, Fernanda Viégas, Oriol Vinyals, Pete War-
den, Martin Wattenberg, Martin Wicke, Yuan
Yu, and Xiaoqiang Zheng. 2015.  Tensor-
Flow: Large-scale machine learning on hetero-
geneous systems. Software available from ten-
sorflow.org.

Maximilian Bisani and Hermann Ney. 2008. Joint-
sequence models for grapheme-to-phoneme
conversion. Speech Communication, 50(5):434—
451.

Peter F. Brown, Stephen A. Della Pietra, Vincent J.
Della Pietra, and Robert L. Mercer. 1993. The
mathematics of statistical machine translation:
Parameter estimation. Computational Linguistics,
19(2):263-311.

Chris Dyer, Victor Chahuneau, and Noah A. Smith.
2013. A simple, fast, and effective reparam-
eterization of IBM model 2. In Proceedings of
the 2013 Conference of the North American Chap-
ter of the Association for Computational Linguis-
tics: Human Language Technologies, pages 644—
648, Atlanta, Georgia. Association for Compu-
tational Linguistics.

Kyle Gorman. 2016. Pynini: A python library
for weighted finite-state grammar compilation.
In Proceedings of the SIGFSM Workshop on Sta-
tistical NLP and Weighted Automata, pages 75—
80, Berlin, Germany. Association for Computa-
tional Linguistics.

Kyle Gorman, Lucas F.E. Ashby, Aaron Goyzueta,
Arya McCarthy, Shijie Wu, and Daniel You.
2020. The SIGMORPHON 2020 shared task
on multilingual grapheme-to-phoneme conver-
sion. In Proceedings of the 17th SSGMORPHON
Workshop on Computational Research in Phonet-
ics, Phonology, and Morphology, pages 40-50,
Online. Association for Computational Linguis-
tics.

International Phonetic Association. 1999. Hand-
book of the International Phonetic Association:
A guide to the use of the International Phonetic
Alphabet. Cambridge University Press, Cam-
bridge, U.K.

Jackson L. Lee, Lucas F.E. Ashby, M. Elizabeth
Garza, Yeonju Lee-Sikka, Sean Miller, Arya
D. McCarthy Alan Wong, and Kyle Gorman.
2020. Massively multilingual pronunciation
mining with wikipron. In Proceedings of the
12th Language Resources and Evaluation Confer-
ence, pages 4216—4221, Marseille.

Peter Makarov and Simon Clematide. 2018. Imi-
tation learning for neural morphological string



transduction. In Proceedings of the 2018 Confer-
ence on Empirical Methods in Natural Language
Processing, pages 2877-2882, Brussels, Belgium.
Association for Computational Linguistics.

Peter Makarov and Simon Clematide. 2020.
CLUZH at SIGMORPHON 2020 shared task on
multilingual grapheme-to-phoneme conversion.
In Proceedings of the 17th SIGMORPHON Work-
shop on Computational Research in Phonetics,
Phonology, and Morphology, pages 171-176, On-
line. Association for Computational Linguistics.

April McMahon. 2002. An Introduction to English
Phonology. Edinburgh University Press, Edin-
burgh, U.K.

Mehryar Mohri, Fernando Pereira, and Michael
Riley. 2002. Weighted finite-state transducers
in speech recognition. Computer Speech & Lan-
guage, 16(1):69-88.

Graham Neubig, Chris Dyer, Yoav Goldberg,
Austin Matthews, Waleed Ammar, Antonios
Anastasopoulos, Miguel Ballesteros, David Chi-
ang, Daniel Clothiaux, Trevor Cohn, Kevin
Duh, Manaal Faruqui, Cynthia Gan, Dan Gar-
rette, Yangfeng Ji, Lingpeng Kong, Adhiguna
Kuncoro, Gaurav Kumar, Chaitanya Malaviya,
Paul Michel, Yusuke Oda, Matthew Richard-
son, Naomi Saphra, Swabha Swayamdipta, and
Pengcheng Yin. 2017. Dynet: The dynamic neu-
ral network toolkit.

Josef R. Novak, Nobuaki Minematsu, and Kei-
kichi Hirose. 2012. WEST-based grapheme-to-
phoneme conversion: Open source tools for
alignment, model-building and decoding. In
Proceedings of the 10th International Workshop on
Finite State Methods and Natural Language Pro-
cessing, pages 45-49, Donostia—San Sebastian.
Association for Computational Linguistics.

Sravana Reddy and John Goldsmith. 2010. An
MDL-based approach to extracting subword
units for grapheme-to-phoneme conversion. In
Human Language Technologies: The 2010 Annual
Conference of the North American Chapter of the
Association for Computational Linguistics, pages
713-716, Los Angeles, California. Association
for Computational Linguistics.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le.
2014. Sequence to sequence learning with neu-
ral networks. In Advances in Neural Informa-
tion Processing Systems, volume 27. Curran As-
sociates, Inc.

Ashish Vaswani, Noam Shazeer, Niki Parmar,
Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
L. ukasz Kaiser, and Illia Polosukhin. 2017. At-
tention is all you need. In Advances in Neural
Information Processing Systems, volume 30. Cur-
ran Associates, Inc.

147

Shinji Watanabe, Takaaki Hori, Shigeki Karita,
Tomoki Hayashi, Jiro Nishitoba, Yuya Unno,
Nelson Enrique Yalta Soplin, Jahn Heymann,
Matthew Wiesner, Nanxin Chen, Adithya Ren-
duchintala, and Tsubasa Ochiai. 2018. Espnet:
End-to-end speech processing toolkit. In Proc.
Interspeech 2018, pages 2207-2211.

Hainan Xu, Shuoyang Ding, and Shinji Watanabe.
2019. Improving end-to-end speech recogni-
tion with pronunciation-assisted sub-word mod-
eling. ICASSP 2019 - 2019 IEEE International
Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP), pages 7110-7114.



CLUZH at SIGMORPHON 2021 Shared Task on Multilingual
Grapheme-to-Phoneme Conversion: Variations on a Baseline

Simon Clematide and Peter Makarov
Department of Computational Linguistics
University of Zurich, Switzerland

simon.clematide@cl.uzh.ch

Abstract

This paper describes the submission by the
team from the Department of Computational
Linguistics, Zurich University, to the Mul-
tilingual Grapheme-to-Phoneme Conversion
(G2P) Task 1 of the SIGMORPHON 2021
challenge in the low and medium settings. The
submission is a variation of our 2020 G2P
system, which serves as the baseline for this
year’s challenge. The system is a neural trans-
ducer that operates over explicit edit actions
and is trained with imitation learning. For this
challenge, we experimented with the follow-
ing changes: a) emitting phoneme segments in-
stead of single character phonemes, b) input
character dropout, ¢) a mogrifier LSTM de-
coder (Melis et al., 2019), d) enriching the de-
coder input with the currently attended input
character, e) parallel BILSTM encoders, and
f) an adaptive batch size scheduler. In the low
setting, our best ensemble improved over the
baseline, however, in the medium setting, the
baseline was stronger on average, although for
certain languages improvements could be ob-
served.

1 Introduction

The SIGMORPHON Grapheme-to-Phoneme Con-
version task consists of mapping a sequence of
characters in some language into a sequence of
whitespace delimited International Phonetic Alpha-
bet (IPA) symbols, which represent the pronunci-
ation of this input character sequence (not neces-
sarily a phonemic transcription, despite the name
of the task) according to the language-specific con-
ventions used in the English Wiktionary.! The data
was collected and post-processed by the WikiPron
project (Lee et al., 2020). Post-processing removes
stress and syllable markers and applies IPA seg-
mentation for combining and modifier diacritics as

"https://en.wiktionary.org/
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Lang. Grapheme Phoneme Wiktionary
ice  persona phersou:na /'pher.souna/
fra williams wiljamz Jwi.ljamz/
bul  3acuuaitku zesT[[ajki /ze'sitfajki/
kor HE ke:mTe"ul ['ka(:)mte"ull

Figure 1: Examples of the original G2P shared task data
from four different languages and their pronunciation
entries in Wiktionary.

well as contour information. See Figure 1 for the
post-processed shared task entries and the original
entries from the Wiktionary pronunciation section.
For more information, we refer the reader to the
shared task overview paper (Ashby et al., 2021).

In the low and medium data setting, the 2021
SIGMORPHON multilingual G2P challenge fea-
tures ten different languages from various phyloge-
netic families and written in different scripts. The
low setting comes with 800 training, 100 develop-
ment and 100 test examples. In the medium setting,
the data splits are 10 times larger. Although it is
permitted to use external resources for the medium
setting, all our models used exclusively the official
training material.

Our system is a neural transducer with pointer
network-like monotonic hard attention (Aharoni
and Goldberg, 2017) that operates over explicit
character edit actions and is trained with imita-
tion learning (Daumé III et al., 2009; Ross et al.,
2011; Chang et al., 2015). It is an adaptation of
our type-level morphological inflection generation
system that proved its data efficiency and perfor-
mance in the SIGMORPHON 2018 shared task
(Makarov and Clematide, 2018). G2P shares many
similarities with traditional morphological string
transduction: The changes are mostly local and of-
ten simple depending on how close the spelling
of a language reflects pronunciation. For most lan-
guages, a substantial part of the work is actually

in Phonetics, Phonology, and Morphology,pages 148-153
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Y : e/ p(DEL(X)) €:Q / p(INS(£2))
" p
()

¥ :Q/p(suB(X, Q)

Figure 2: Stochastic edit distance (Ristad and Yianilos,
1998): A memoryless probabilistic FST. ¥ and {2 stand
for any input and output symbol, respectively. Transi-
tion weights are to the right of the slash and p(#) is
the final weight.

applying character-by-character substitutions. An
extreme case is Georgian, which features an al-
most deterministic one-to-one mapping between
graphemes and IPA segments that can be learned
almost perfectly from little training data.’

The main goal of our submission was to test
whether our last year’s system, which is the base-
line for this year’s G2P challenge, already exhausts
the potential of its architecture, or whether changes
to the output representation (IPA segments vs. IPA
Unicode codepoints; input character dropout), to
the LSTM decoder (the mogrifier steps and the
additional input of the attended character), to the
BiLSTM encoder (parallel encoders), or to other
hyper-parameter settings (adaptive batch size) can
improve the results without replacing the LSTM-
based encoder/decoder setup by a Transformer-
based architecture (see e.g. Wu et al. (2021) for
Transformer-based state-of-the-art results).

2 Model description

The model defines a conditional distribution
over substitution, insertion and deletion edits

|al , : —
po(a | x) = I[;2, po(a; | a<j,x), where x =
T1...Z|x| 1s an input sequence of graphemes and
a = ay...a)y is an edit action sequence. The
output sequence of IPA symbols y is determin-
istically computed from x and a. The model is
equipped with an LSTM decoder and a bidirec-
tional LSTM encoder (Graves and Schmidhuber,
2005). At each decoding step j, the model attends
to a single grapheme x;. The attention steps mono-
tonically through the input sequence, steered by the
edits that consume input (e.g. a deletion shifts the
attention to the next grapheme X;1).

’Even a reduced training set of only 100 items allows a
single model to achieve over 90% accuracy on the Georgian
test set.
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The imitation learning algorithm relies on an
expert policy for suggesting intuitive and appro-
priate character substitution, insertion and deletion
actions. For instance, for the data sample kut —
/Kiit/ (Russian: “whale”), we would like the fol-
lowing most natural edit sequence to attain the low-
est cost: SUBS[k], INS[1], SUBS]i], SUBS]t]. The cost
function for these actions is estimated by fitting
a Stochastic Edit Distance (SED) model (Ristad
and Yianilos, 1998) on the training data, which
is a memoryless weighted finite-state transducer
shown in Figure 2. The resulting SED model is
integrated into the expert policy, the SED policy,
that uses Viterbi decoding to compute optimal edit
action sequences for any point in the action search
space: Given a transducer configuration of partially
processed input, find the best edit actions to gen-
erate the remaining target sequence suffix. Dur-
ing training, an aggressive exploration schedule
psampling(i) = H%Xp(i) where i is the training
epoch number, exposes the model to configurations
sampled by executing edit actions from the model.
For an extended description of the SED policy and
IL training, we refer the reader to the last year’s
system description paper (Makarov and Clematide,
2020).

2.1 Changes to the baseline model

This section describes the changes that we imple-
mented in our submissions.

IPA segments vs. IPA Unicode characters:
Emitting IPA segments in one action (includ-
ing its whitespace delimiter), e.g., for the Rus-
sian example from above SUBS[kie],? instead
of producing the same output by three actions
suBs[k], INS['], INS[e] reduces the number of ac-
tion predictions (and potential errors) considerably,
which is beneficial. On the other hand, this might
lead to larger action vocabularies and sparse train-
ing distributions. Therefore, we experimented with
character (CHAR) and IPA segment (SEG) edit ac-
tions in our submission. Table 1 shows statistics
on the resulting vocabulary sizes if CHAR or SEG
actions are used. Some caution is needed though
because some segments might only appear once in
the training data, e.g. English has an IPA segment
st that only appears in the word “psst”.

Input character dropout: To prevent the model
from memorizing the training set and to force it to
learn about syllable contexts, we randomly replace

3e denotes whitespace symbol.



S Language NFD< SgGg CNFC cNFD
L ady 0.5% 67 37 37
L gre 4.3% 33 33 33
L ice 30.3% 60 36 36
L ita 0.8% 32 29 29
L khm 0.5% 47 36 34
L lav 12.4% 73 51 36
L mitlatn 9.0% 41 29 29
L rum 0.3% 45 31 31
L slv 4.3% 48 38 30
L  welsw 2.4% 43 37 37
M arm.e 0.0% 54 31 31
M bul 3.5% 46 34 34
M dut 0.8% 49 39 39
M fre 0.1% 39 36 36
M geo 0.0% 33 27 27
M hbs_latn 3.7% 63 43 33
M  hun 42.5% 66 37 37
M jpn_hira 36.1% 64 42 39
M kor 99.8% 60 46 46
M viehanoi 88.2% 49 44 44
H eng.us 0.0% 124 83 80
Average 162% 54.1 39.0 37.0

Table 1: Statistics on Unicode normalization for low
(L), medium (M), and high (H) settings (column S).
Column NFD< specifies the percentage of training
items where NFD normalized graphemes had smaller
length difference to phonemes than in NFC normal-
ization. Column SEG gives the vocabulary size of IPA
segments (the counts are the same for NFC and NFD).
Column cNFC€ reports the phoneme vocabulary size in
NFC Unicode characters (CHAR) and cNFP in NFD.

an input character with the UNK symbol according
to a linearly decaying schedule.*

Mogrifier LSTM decoder: Mogrifier LSTMs
(Melis et al., 2019) iteratively and mutually up-
date the hidden state of a previous time step with
the current input before feeding the modified hid-
den state and input into a standard LSTM cell. On
language modeling tasks with smaller corpora, this
technique closed the gap between LSTM and Trans-
former models. We apply a standard mogrifier with
5 rounds of updates in our experiments. We expect
the mogrifier decoder to profit from IPA segmen-
tation because in this setup the decoder mogrifies
neighboring IPA phoneme segments and not space

*For all experiments, we start with a probability of 50%
for UNKing a character in a word and reduce this rate over 10
epochs to a minimal probability of 1%. Light experimentation
on a few languages led to this cautious setting, which might
leave room for further improvement.
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and IPA characters.

Enriching the decoder input with the cur-
rently attended input character: The auto-
regressive decoder of the baseline system uses the
LSTM decoder output of the previous time step
and the BiLSTM encoded representation of the
currently attended input character as input. Intu-
itively, by feeding the input character embedding
directly into the decoder (as a kind of skip con-
nection), we want to liberate the BiLSTM encoder
from transporting the hard attention information
to the decoder, thereby motivating the sequence
encoder to focus more on the contextualization of
the input character.

Multiple parallel BiILSTM encoders: Convo-
lutional encoders typically use many convolutional
filters for representation learning and Transformer
encoders similarly feature multi-head attention. Us-
ing several LSTM encoders in parallel has been
proposed by Zhu et al. (2017) for language model-
ing and translation and was e.g. also successfully
used for named entity recognition (Zukov-Gregori¢
et al., 2018). Technically, the same input is fed
though several smaller LSTMs, each with its own
parameter set, and then their output is concatenated
for each time step. The idea behind parallel LSTM
encoders is to provide a more robust ensemble-style
encoding with lower variance between models. For
our submission, there was not enough time to sys-
tematically tune the input and hidden state sizes as
well as the number of parallel LSTMs.

Adaptive batch size scheduler: We combine
the ideas of “Don’t Decay the Learning Rate, In-
crease the Batch Size” (Smith et al., 2017) and
cyclical learning schedules by dynamically enlarg-
ing or reducing the batch size according to develop-
ment set accuracy: Starting with a defined minimal
batch size m threshold, the batch size for the next
epoch is set to [m — 0.5] if the development set
performance improved, or |m + 0.5 otherwise.’
If a predefined maximum batch size is reached,
the batch size is reset in one step to the minimum
threshold. The motivation for the reset comes from
empirical observations that going back to a small
batch size can help overcome local optima. With
larger training sets, we subsample the training sets
per epoch randomly in order to have a more dy-
namic behavior.°

3See also the recent discussion on learning rates and batch
sizes by Wu et al. (2021).

The subsample size is set to 3,000 items per epoch in all
our experiments.



2.2 Unicode normalization

For some writing systems, e.g. for Korean or Viet-
namese, applying Unicode NFD normalization to
the input has a great impact on the input sequence
length and consequently on the G2P character cor-
respondences. The decomposition of diacritics and
other composing characters for all languages, as
performed in the baseline, has the disadvantage of
longer input sequences. We apply a simple heuris-
tic to decide on NFD normalization based on a
criterion for the minimum length distance between
graphemes and phonemes: If more than 50% of the
training grapheme sequences in NFD normalization
have a smaller length difference compared to the
phoneme sequence than their corresponding NFC
variants, then NFD normalization is applied. See
Table 1 for statistics, which indicate a preference
for NFD for only 2 languages.

3 Submission details

Modifications such as mogrifier LSTMs, additional
input character skip connections, or parallel en-
coders increase the number of model parameters
and make it difficult to compare the baseline system
directly with its variants. Additionally, we did not
have enough time before the submission to system-
atically explore and fine-tune for the best combina-
tion of model modifications and hyper-parameters.
In the end, after some light experimentation we had
to stick to settings that might not be optimal.

We train separate models for each language on
the official training data and use the development
set exclusively for model selection. As beam de-
coding for mogrifier models sometimes suffered
compared to greedy decoding, we built all ensem-
bles from greedy model prediction. Like the base-
line system (B), we train the SED model for 10
epochs, use one-layer LSTMs, hidden state dimen-
sion 200 for the decoder LSTMs and action embed-
ding dimension 100. For the low (L) and medium
(M) setting, we have the following specific hyper-
parameters:

* patience: 12 (B), 24 (L), 18 (M)
maximal epochs: 60 (B), 80 (L/M)
minimal batch size:” 3 (L), 5 (M)
maximal batch size: 10 (L/M)

* character embedding dimension:® 100 (B),

"The baseline system’s batch size is 5.

8The motivation for lowering the character embedding
size comes from adding the input character to the mogrifier
decoder LSTM, which increases the parameter size for each
of the 5 update weight matrices.
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50(L/M)
e L.STM encoder hidden state dimension: 200
(B), 300 (L/M) divided by 6 parallel encoders.

We submit 3 ensemble runs for the low setting:
CLUZH-1: 15 models with CHAR input,
CLUZH-2: 15 models with SEG input,
CLUZH-3: 30 models with CHAR or SEG input.

We submit 4 ensemble runs for the medium setting:
CLUZH-4: 5 models with CHAR input,
CLUZH-5: 10 models with SEG input,
CLUZH-6: 5 models with SEG input,
CLUZH-7: 15 models with CHAR or SEG input.

Due to a configuration error, medium results were

actually computed without two add-ons: mogrifier

LSTM:s and the additional input character. In post-

submission experiments, we computed runs that

enabled these features and report their results as
well (CLUZH-4m/5m).

4 Results and discussion

Table 2 shows a comparison of results for the low
setting. We report the development and test set
average word error rate (WER) performance to
illustrate the sometimes dramatic differences be-
tween these sets (e.g. Greek). Both runs containing
CHAR action emitting models (CLUZH-1, CLUZH-
3) have second best results (the best system reaches
24.1). The SEG models with IPA segmentation ac-
tions excel on some languages (Adyghe, Latvian),
but fail badly on Slovene and Maltese. Only for
Romanian and Italian, we see an improvement for
the 30-strong mixed ensemble. The expectation
that the size difference between the SEG and CHAR
vocabulary correlates with language-specific per-
formance differences cannot be confirmed given
the numbers in Table 1. E.g. Latvian features 73
different IPA segments but only 51 IPA characters,
still, the SEG variant shows only 49% WER.

Table 3 shows a comparison of results for the
medium setting. We report selected development
and test set average performance to illustrate that
also in this larger setting, the expectation of a
slightly higher development set performance does
not always hold (e.g. Korean or Japanese). On the
other hand, Bulgarian and Dutch have a sharp in-
crease in errors on the test set compared to the de-
velopment set. The comparison between runs with
the mogrifier LSTM decoder and the attended char-
acter input (CLUZH-Nm) or without (C-N) suggest
that these changes are not beneficial. In the medium
setting, C-4 (CHAR) and C-6 (SEG) can be directly



CLUZH-1 (CHAR) CLUZH-2 (SEG) C-3 OUR BASELINE BSL | Other

AVERAGE E AVERAGE E E AVERAGE E E
LNG | dev test sd test | dev test sd test | test | dev test sd test | test test
ady 250 27.8 3.3 24 1256 262 1.8 22 22 26 252 28 21 22 22
gre 65 222 23 20| 5.1 228 238 22 20 5 260 33 25 21 21
ice 148 124 24 10 | 16.1 145 22 12 10 21 158 2.1 12 12 11
ita 245 27.0 22 23| 244 263 3.2 24 21 25 227 35 19 19 20
khm | 39.8 38.2 34 321403 369 22 33 32 39 404 2.5 34 34 28
lav 472 537 2.8 531469 553 3.7 49 49 44 56,5 2.2 54 55 49
mlt 170 18.0 24 12 | 19.7 212 29 16 14 23 218 5.1 17 19 18
rum | 11.1 137 1.8 131103 14.1 1.0 13 12 11 125 2.1 10 10 10
slv 464 564 2.7 50 48 602 34 59 55 44 542 2.1 51 49 47
wel 180 149 35 10 | 156 157 1.8 13 12 19 148 2.0 12 10 12
AVG | 25,0 284 27 247|252 293 25 263|247 |257 290 28 255 | 25.1 23.8

Table 2: Overview of the dev and test results in the low setting. C-3 is CLUZH-3 ensemble. OUR BASELINE
shows the results for our own run of the baseline configuration. They are different from the official baseline results
(BSL) due to different random seeds. Column sd always reports the test set standard deviation. E means ensemble

results.

C4 CLUZH-4m (CHAR) C-5 CLUZH-5m (SEG) C-51| C6| C-7 OUR BASELINE BSL

Es AVERAGE Es | Eio AVERAGE Eio | Eio Es5 | Ei5 AVERAGE Eio | Eio

LNG | test | dev test sd test | test | dev test sd test | test | test | test | dev test sd test | test
arm 7.1 54 79 07 64| 66| 51 72 05 62| 71| 66| 64| 58 78 07 65 7.0
bul 20.1 | 122 204 20 199|192 | 119 233 21 224|162 | 188 | 19.7 125 19.7 1.7 193 | 183
dut 150|131 183 12 148|149 | 124 168 0.6 14.6| 145|156 | 147 | 131 17.7 13 143 | 14.7
fre 75| 84 97 06 82| 75| 85 95 07 8.1 8.1 75 76| 89 91 05 78 8.5
geo .0 .0 0 0 .0 .0 .0 0 0 .0 .0 .0 .0 .0 0 0 .0 .0
hbs 384|432 445 1.1 39.1 | 356|424 443 1.5 36.8|357]37.0]353|39.1 389 12 336 32.1
hun 1.5 1.8 1.8 0.1 1.6 1.2 1.7 1.5 03 1.0 09| 1.0 10| 1.7 20 03 1.8 1.8
jpn 59| 69 68 02 55| 53| 68 65 03 54| 52| 55| 50| 68 64 05 55 5.2
kor 16.2 | 21.3 186 0.7 174|169 | 196 183 08 162 | 16.1 | 172|163 | 204 189 0.8 165 | 163
vie 2.3 1.2 24 0.1 231 20| 1.2 21 0.1 2.1 221 21| 20 14 25 02 24 2.5
AVG | 114|114 130 07 115|109 | 110 129 0.7 113 |10.6 | 11.1 | 10.8 | 11.0 123 0.7 10.8 | 10.6

Table 3: Overview of the development and test results in the medium setting. C-N is CLUZH-N ensemble. CLUZH-
Nm runs use the mogrifier decoder and additional input character in decoder (these are post-submisson runs). C-51
uses larger parameterization and reaches WER 10.60 (BSL: 10.64). OUR BASELINE shows the results for our
own run of the baseline configuration. Boldface indicates best performance in official shared task runs; underline
marks the best performance in post-submission configurations. Column sd always reports the test set standard

deviation. E,, means n-strong ensemble results.

compared because they feature the same ensem-
ble size: The results suggest that [PA segmentation
(SEG) for higher resource settings (and the specific
medium languages) seems to be slightly better than
CHAR. C-5l is a post-submission run with a larger
parametrization.” This post-submission ensemble
outperforms the baseline system by a small mar-
gin, but still struggles with Serbo-Croatian (hbs)
compared to the official baseline results.

In a post-submission experiment on the high set-
ting, we built a large'? 5-strong SEG-based ensem-

Three parallel encoders with 200 hidden units each; char-
acter embedding dimension of 200; no mogrifier; no input
character added to the decoder.

!0Character embedding dimension: 200; action embedding
dimension: 100; 10 parallel encoders with hidden state dimen-
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ble. It achieves an impressive low word error rate
of 38.7 compared to the official baseline (41.94)
and the best other submission (37.43).

Future work: Performance variance between
different runs of our LSTM-based architecture
makes it difficult to reliably assess the actual useful-
ness of the small architectural changes; extensive
experimentation, e.g. in the spirit of Reimers and
Gurevych (2017), is needed for that. One should
also investigate the impact of the official data set
splits: The observed differences between the de-
velopment set and test set performance in the low
sion 100; decoder hidden state dimension: 500; minimal batch
size: 5; maximal batch size: 20; epochs: 200 (subsampled to

3,000 items); patience: 24; no mogrifier; no input character
added to the decoder.



setting for Slovene or Greek are extreme. Cross-
validation experiments might help assess the true
difficulty of the WikiPron datasets.

5 Conclusion

This paper presents the approach taken by the
CLUZH team to solving the SIGMORPHON 2021
Multilingual Grapheme-to-Phoneme Conversion
challenge. Our submission for the low and medium
settings is based on our successful SIGMORPHON
2020 system, which is a majority-vote ensemble
of neural transducers trained with imitation learn-
ing. We add several modifications to the existing
LSTM architecture and experiment with IPA seg-
ment vs. IPA character action predictions. For the
low setting languages, our IPA character-based run
outperforms the baseline and ranks second overall.
The average performance of segment-based action
edits suffers from performance outliers for certain
languages. For the medium setting languages, we
note small improvements on some languages, but
the overall performance is lower than the baseline.
Using a mogrifier LSTM decoder and enriching
the encoder input with the currently attended in-
put character did not improve performance in the
medium setting. Post-submission experiments sug-
gest that network capacity for the submitted sys-
tems was too small. A post-submission run for the
high-setting shows considerable improvement over
the baseline.
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Abstract

This paper investigates how abstract processes
like suffixation can be learned from morpho-
logical inflection task data using an analogi-
cal memory-based framework. In this frame-
work, the inflection target form is specified
by providing an example inflection of another
word in the language. This model is capa-
ble of near-baseline performance on the Sig-
Morphon 2020 inflection challenge. Such a
model can make predictions for unseen lan-
guages, allowing one-shot inflection for natu-
ral languages and the investigation of morpho-
logical transfer with synthetic probes. Accu-
racy for one-shot transfer can be unexpectedly
high for some target languages (88% in Shona)
and language families (53% across Romance).
Probe experiments show that the model learns
partially generalizable representations of pre-
fixation, suffixation and reduplication, aiding
its ability to transfer. The paper argues that
the degree of generality of these process repre-
sentations also helps to explain transfer results
from previous research.

1 Introduction

Morphological transfer learning has proven to be
a powerful and effective technique for improving
the performance of inflection models on under-
resourced languages. The beneficial effects of
transfer between source and target languages are
known to be higher when the two are closely re-
lated (Anastasopoulos and Neubig, 2019) or typo-
logically similar (Lin et al., 2019), mediated by
the effect of script (Murikinati et al., 2020). But
these effects are not always consistent; a variety
of researchers report failure of transfer between
closely related languages, or surprising successes
with rather dissimilar ones (Sec 2). Pushing for-
ward our understanding of these cases requires a
more nuanced understanding of what is transferred
by morphological transfer learning— that is, what

abstract representational concepts do inflection net-
works acquire and how are these shared across lan-
guages?

This is a difficult question to address in the stan-
dard framework for inflection (Kann and Schiitze,
2016), in which morphosyntactic properties are
closely tied to their specific exponents in a par-
ticular language as well as to the more abstract
processes by which these exponents are applied.
In such a network, it is difficult to test whether
a generic suffixation operation has been learned,
without reference to a particular form/feature map-
ping, for instance between the Maori passive fea-
ture PASS and the spelling of a particular passive
suffix -fia. Suffixing as a generic operation is much
more likely to be useful in another language than
the individual suffix. This work decouples these
representational pieces by performing inflection in
an analogical, memory-based framework.! In this
framework, inflection instances do not have tags;
rather, they include an instance of the desired map-
ping with respect to a different lemma (Figure 1).
For example, to produce a passive Maori verb, the
system takes an example verb with its passive and
completes the four-part analogy: lemma : target ::
exemplar lemma : exemplar target. The advantage
of this redefinition of the task is that, in principle,
the system does not need to learn anything about
the individual affixes of a particular language, since
these can be copied from the exemplar. Thus, it is
possible to investigate how well such a system has
learned a particular morphological process such as
suffixation, which is expected to be present in a
variety of languages.”

'“Memory-based” has been used in the literature to refer
to models with dynamic read-write memory (Graves et al.,
2016), as well as KNN-like exemplar models which store a
large number of examples in a static memory (van den Bosch
and Daelemans, 1999). The current work is of the latter type.

2Code available at: https://github.com/
melsner/transformerbyexample.
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Section 5 shows that this analogical framework
for inflection can predict inflections across a va-
riety of languages, demonstrating reasonable per-
formance on the Sigmorphon 2020 multilingual
benchmark (Vylomova et al., 2020). Section 6 de-
scribes one-shot learning experiments, performing
language transfer without fine-tuning, and shows
that for languages with concatenative affixes, one-
shot transfer can be more effective than previously
thought. Section 7 studies the system’s ability to ap-
ply different types of morphological processes us-
ing constructed stimuli, showing that some config-
urations are capable of learning generic and trans-
ferable representations of processes including pre-
fixing, suffixing and reduplication.

2 Related work

The overall positive effect of transfer learning is
well established (McCarthy et al., 2019). Previ-
ous research has also evaluated how the choice
of source language affects the performance in the
target. While there is a robust trend for related
languages to perform better, there are also many re-
ports of exceptions. Kann (2020) finds that Hungar-
ian is a better source for English than German and
a better source for Spanish than Italian. She con-
cludes that matching the target language’s default
affix placement (prefixing/suffixing) is important,
and that agglutinative languages might be benefi-
cial to transfer learning in general, but that genetic
relatedness is not always a necessary or sufficient
for effective transfer. Lin et al. (2019) also find that
Hungarian and Turkish are good source languages
for a surprising variety of unrelated targets. Rather
than attribute this to agglutination, they propose
that these languages lead to good transfer because
of their large datasets and difficulty as tasks. Fur-
ther puzzling results come from Anastasopoulos
and Neubig (2019), who find that Italian data does
not improve performance in closely related Ladin
or Neapolitan® once monolingual hallucinated data
is available, and that Latvian is as good a source
for Scots Gaelic as its relative Irish.

Previous analyses of transfer learning have at-
tempted to differentiate the contributions of various
parts of the model through factored vocabularies or
ciphering (Kann et al., 2017b; Jin and Kann, 2017).
These methods give disjoint representations to char-
acters and tags in the source and target languages,

3Regional Romance languages spoken in Northern and
Southern Italy respectively.
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or disrupt the mapping between them. Low-level
correspondence between character sets is the most
important factor for successful transfer in very low-
resource settings, but models with disjoint charac-
ter representations still succeed at transfer once at
least 200 target examples are available, indicating
that higher-level information is also transferred and
contributes to performance.

Kann et al. (2017b) also represents a prior one-
shot morphological learning experiment. Their set-
ting is not quite the same as the one here; they
assume access to a single inflected form in half the
paradigm cells in their target language (Spanish)
which are used to fine-tune a pretrained system.
Because their system uses the conventional tag-
based framework, they are capable of filling cells
for which no example is available (zero-shot learn-
ing), while the memory-based system presented
here is not. On the other hand, the current work
does not use fine-tuning or require target-language
data at training time. They evaluate inflection on
both seen and unseen cells as a function of five
source languages, four of which are in the Romance
family. The best one-shot transfer within Romance
scores 44% exact match, the worst 13%. Transfer
from unrelated Arabic scores 0%. One-shot learn-
ing experiments in this work use a much larger set
of languages, and although performance in the typ-
ical case is similar, the best results are substantially
better.

The memory-based design of the current work is
rooted in cognitive theories of morphological pro-
cessing. The widely accepted dual route model of
morphological processing postulates that the mind
retrieves familiar inflected forms from memory as
well as synthesizing forms from scratch (Milin
etal., 2017; Alegre and Gordon, 1998; Butterworth,
1983). It has often been claimed that memorized
forms of specific words are central to the structure
of inflection classes (Bybee and Moder, 1983; By-
bee, 2006; Jackendoff and Audring, 2020). In such
a theory, production of a form of a rare lemma is
guided by the memory of the appropriate forms of
common ones. Additional evidence for this view
comes from historical changes in which one word’s
paradigm is analogically remodeled on another’s
(Krott et al., 2001; Hock and Joseph, 1996, ch.5).
Liu and Hulden (2020) evaluate a model very simi-
lar to this one (a transformer in which target forms
of other words, which they term “cross-table” ex-
amples, are provided as part of the input). They



Lemma Target specification =~ —  Target
Standard inflection generation waiata  V;PASS waiatatia

waiata  karanga : karangatia waiatatia
Memory-based . & g2 L

waiata  kaukau : kaukauria waiatatia

Figure 1: Differing inputs for inflection models, eliciting the passive of the Maori verb waiata “sing”. The memory-
based system relies on an exemplar verb as the target specifier; shown here are karanga “call”, which takes a
matching suffix, and kaukau “swim”, which mismatches.

find that such examples are complementary to data
hallucination and yield improved results in data-
sparse settings. Some earlier non-neural models
also rely on stored word forms (Skousen, 1989;
Albright and Hayes, 2002).

3 Exemplar selection

The system uses instances generated as described in
Figure 1, separating the lemma, exemplar lemma
and exemplar form with punctuation characters.
Each instance also contains two features indicating
the language and language family of the example
(e.g. LANG_MAO, FAM_AUSTRONESIAN).

The selection of the exemplar is critical to the
model’s performance. Ideally, the lemma and the
exemplar inflect in the same way, reducing the in-
flection task to copying. But this is not always the
case. For example, Maori verbs fall into inflection
classes, as shown in Figure 1; when the exemplar
comes from a different class than the lemma, copy-
ing will yield an invalid output, so the model has
to guess which class the input belongs to.*

This paper presents experiments using two set-
tings: In random selection, the exemplar lemma
is chosen arbitrarily from the set of training
lemma/form pairs for the appropriate language and
cell. This makes the task difficult, but allows the
model to learn to cope with the distribution of in-
puts it will face at test time. In similarity-based
selection, each source lemma is paired with an
exemplar for which the transductions are highly
similar. This makes the task easy, but since it relies
on access to the true target form, it can be used only
for model training, not for testing.> All models are

*In cases of class-dependent syncretism, the model must
also guess which cell is being specified. For instance, German
feminine nouns do not inflect for case, but some masculine
nouns do, so the combination of a masculine lemma and a
feminine exemplar can yield an unsolvable prediction prob-
lem.

SWithin the training set, the same lemma/inflected form
pair can appear as both an exemplar and a target instance; a re-
viewer speculates that this might allow the model to memorize
lexically-specific outputs within the training set even when
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evaluated using instances generated using random
selection.

To perform similarity-based selection, each
lemma is aligned with its target form in the training
data in order to extract an edit rule (Durrett and
DeNero, 2013; Nicolai et al., 2016). (For the first
memory-based example in Figure 1, both words
have the same edit rule -+tia.) The selected exem-
plar/form pair uses the same edit rule, if possible.
During training, a lemma is allowed to act as its
own exemplar, so that there is always at least one
candidate. However, words in the test set must be
given exemplars from the training set. If a cell in
the test set does not appear in the training set, no
prediction can be made; in this case, the system
outputs the lemma. Extending the model to cover
this case is discussed below as future work.®

4 Model design

The system uses the character-based transformer
(Wu et al., 2020) as its learning model; this is a
sequence-to-sequence transformer (Vaswani et al.,
2017) tuned for morphological tasks, and serves as
a strong official baseline for the Sigmorphon 2020
task. Moreover, transformers are known to perform
well in the few-shot setting (Brown et al., 2020).
All default hyperparameters’ match those of Wu
et al. (2020).

As discussed in prior work (Anastasopoulos
and Neubig, 2019; Kann and Schiitze, 2017), it
is important to pretrain the model to predispose
it to copy strings. To ensure this, the system is
trained on a synthetic dataset. Each synthetic in-
stance is generated within a random character set.
The instance consists of a random pseudo-lemma
and pseudo-exemplar created by sampling word

using random selection. To avoid this issue, no training scores
are reported in this paper.

%In the SigMorphon 2020 datasets, this rarely occurs in
practice. > 99% of target cells are covered in all languages ex-
cept Ingrian (98%), Evenki (96%), and notably Ludic (61%).

"Including 4 layers, batches of 64, and the learning rate
schedule.



lengths from the training word length distribution
and then filling each one with random characters.
With probability 50% the example is given a pre-
fix; independently with probability 50% a suffix;
independently with probability 10% an infix at
a random character position. Prefixes and suf-
fixes are random strings between 2-5 characters
long and infixes are 1-2 characters long. (This
means that, in some cases, no affix is added and
the transformation is the identity, as occurs in cases
of morphological syncretism.) An example such
instance is mpierijmel:rbeaikkea: :zliirbeaikkeaiie
with output zliimpierijmeliie. The language tags
for these examples indicate the kinds of affixa-
tion operations which were performed, for exam-
ple LANG_PREFIX_SUFFIX; the family tag identifies
them as SYNTHETIC. While this synthetic dataset is
inspired by hallucination techniques (Anastasopou-
los and Neubig, 2019; Silfverberg et al., 2017), note
that these synthetic instances are not presented to
the model as part of any natural language.

The Sigmorphon 2020 data is divided into “de-
velopment languages” (45 languages in 5 fami-
lies: Austronesian, Germanic, Niger-Congo, Oto-
Manguean and Uralic) and “surprise languages”
(45 more languages, including some members of
development families as well as unseen families).
Data from all the “development languages”, plus
the synthetic examples from the previous stage, is
used to train a multilingual model, which is fine-
tuned family. Finally the family models are fine-
tuned by language. During multilingual training
and per-family tuning, the dataset is balanced to
contain 20,000 instances per language; languages
with more training instances than this are subsam-
pled, while languages with fewer are upsampled by
sampling multiple exemplars (with replacement)
for each lemma/target pair. For the final language-
specific fine-tuning stage, all instances from the
specific language are used.

5 Fine-tuned results

This section shows the test results for fully fine-
tuned models on the development languages. Table
1 shows the average exact match and standard de-
viation by language family. Full results are given
in Appendix A. Tables also show the results of the
official competition baseline which is closest to the
current work, the character transformer (Wu et al.,
2020) fine-tuned by language, TRM-SINGLE.
Because the results of exemplar-based models

Family Random Similarity Base
Austronesian (4) 83 (13) 67 (21) 81 (18)
Germanic (10) 87 (10) 51 (16) 90 (9)
Niger-Congo (9) 98 (4) 94 (9) 97 (3)
Oto-Manguean (10) 82 (16) 39 (23) 86 (12)3
Uralic (11) 92 (6) 46 (14) 93 (0.05)
Overall 89 (12) 57 (26) 90 (11)

Table 1: Fine-tuned accuracy scores for models trained
with random and similarity-based selection, compared
to the baseline. Num languages in family and score
standard deviation across languages in parentheses.

can vary based on the choice of exemplar, the sys-
tem applies a simple post-process to compensate
for unlucky choices: it runs each lemma with five
randomly-selected exemplars and chooses the ma-
jority output.

Neither model achieves the same performance as
the baseline (90%), although the random-exemplar
model (89%) comes quite close. The similar-
exemplar model (57%) is clearly inferior due to
its severe mismatch between training and test set-
tings. Performance varies across language families.
All models perform well in Niger-Congo, although
the conference organizers state that data from these
languages may have been biased toward regular
forms in an unrepresentative way.® The random-
exemplar model is at or near baseline performance
in Austronesian and Uralic, but falls further below
baseline in Germanic and Oto-Manguean. Both
of these families are characterized by complex in-
flection class structure in which randomly chosen
exemplars are less likely to resemble the target for
a given word.

The similar-exemplar model also performs
poorly in Uralic. While some Uralic languages
have inflection classes (Baerman, 2014), many
(like Finnish) do not, but have complex systems
of phonological alternations (Koskenniemi and
Church, 1988). While the random-exemplar model
can learn to compensate for these, the similar-
exemplar model does not.

6 One-shot results

This section shows the results of one-shot learning.
These experiments apply the multilingual and fam-
ily models from the development languages to the
surprise languages, without fine-tuning. For lan-
guages within development families, they use the
appropriate family model; otherwise they use the

8 A Swahili speaker confirms that some forms in the data
appear artificially over-regularized (Martha Johnson p.c.).
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multilingual model. Thus, the model’s only access
to information about the target language is via the
provided exemplar.

Each experiment evaluates the results across five
random exemplars per test instance (with replace-
ment), but averages the results rather than applying
majority selection. This computes the expected
performance in the one-shot setting where only a
single exemplar is available.

Results are shown in Table 2. One-shot learning
is not competitive with the baseline fine-tuned sys-
tem in any language family, but has some capacity
to predict inflections in all families. Performance
is generally better in families for which related
languages were present in development.

The system trained with random exemplars
achieves its best results on Tajik (Iranian: tgk, score
89%), Shona (Niger-Congo: sna, score 75%)°, and
Norwegian Nynorsk (Germanic: nno, score 42%).
The system trained with similar exemplars achieves
its best results on Shona (88%), Zarma (Songhay:
dje, score 82%) and Tajik (79%). Notably, some
of these high scores are achieved on languages that
were difficult for the baseline systems; the score for
Tajik beats the transformer baseline (56%), perhaps
due to data sparsity, since baselines regularized us-
ing data hallucination perform better (93%).

Training with similar exemplars leads to clearly
better results than random exemplars, a reversal of
the trend observed with fine-tuning. This difference
is particularly marked in Romance (53% average
vs 5%). While the random-exemplar system is
better at guessing what to do when the exemplar
and target forms are divergent, this causes errors
with unfamiliar languages. The system attempts
to guess the correct inflection, rather than simply
copying.

As an example, Table 3 shows an analysis of
performance in Catalan (cat), selected because its
results are fairly typical of the Romance family;
the similar-exemplar system scores 53% while the
random-exemplar system scores 12%. The table
shows selected instances with different levels of
exemplar match and mismatch. The first two, ar-
rissar “curl” and disputar “discuss”, match their
exemplars well and are good cases for copying.
The random-exemplar model gets these both wrong,
segmenting incorrectly in the first and adding a spu-
rious character in the second. The next two, repetir

% As stated above, the Niger-Congo datasets are artificial-

ized and probably does not represent the real difficulty of the
inflection task.

Family Random  Similarity Base
Germanic (3) 29 (13) 38 (22) 80 (13)
Niger-Congo (1) 75 (0) 88 (0) 100 (0)
Uralic (5) 21 (9) 28 (12) 76 (26)
Afro-Asiatic (3) 7(3) 26 (18) 96 (3)
Algic (1) 2 (0) 14 (0) 68 (0)
Dravidian (2) 7(7) 13 (3) 85(9)
Indic (4) 4(5) 4(2) 98 (3)
Iranian (3) 35 (39) 34 (32) 82 (19)
Romance (8) 6(4) 53 (19) 99 (1)
Sino-Tibetan (1) 21 (0) 9(0) 84 (0)
Siouan (1) 13 (0) 13 (0) 96 (0)
Songhay (1) 21 (0) 82 (0) 88 (0)
Southern Daly 4 (0) 6 (0) 90 (0)
Tungusic (1) 28 (0) 27 (0) 57 (0)
Turkic (9) 7(8) 19 (11) 96 (7)
Uto-Aztecan (1) 33 (0) 30 (0) 81 (0)
Overall 14 (18) 30 (25) 90 (15)

Table 2: One-shot accuracy scores for models trained
with random and similarity-based selection, compared
to the baseline. Num. languages in family and
score standard deviation across languages in parenthe-
ses. Families represented in development above the
line, surprise families below.

“repeat” and engolir “ingest”, are mismatched with
exemplars from a different inflection class; both
systems make incorrect predictions, but the similar-
exemplar system preserves the suffixes while the
random-exemplar system does not. Finally, in
the last example llevar-se “get up”, the similar-
exemplar model misinterprets the reflexive suffix
-se as part of the verb stem, while the random-
exemplar model fails to make any edit.

A more systematic analysis computes an
alignment-based edit rule for each system predic-
tion (King et al., 2020) and counts the unique rules
used to form one-shot predictions in the Catalan de-
velopment set. Over 37105 instances, the random-
exemplar model applies 626 unique edit rules, 20
of which appear in correct predictions. The similar-
exemplar model applies 3137 unique rules, 154 of
them correctly. The greater variety of both correct
and incorrect outputs from the similar-exemplar
model demonstrates its preference for faithfulness
to the exemplar rather than remodeling the output
to fit language-specific constraints.

7 Synthetic transfer experiments

When transfer learning fails, it can be difficult to
tell whether the system has failed to represent a
general morphological process, or whether it mis-
applies what it has learned due to mismatched lexi-
cal/phonological triggers. Experiments on artificial
data can probe what abstract processes the model
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Lemma  Exemplar Rand. Sel.  Sim. Sel Target
arrissar ~ posar : posarien arrissaren  arrissarien  arrissarien
disputar  descriure : descriuria  disputarta  disputaria  disputaria
repetir cremar : cremo repetirer repetio repeteixo
engolir forjar : forjava engolire engoliva engolia
llevar-se  terminar : termino llevar-se llevor-se llevo

Table 3: Development data from Catalan (Romance: cat) showing the outputs of two one-shot systems.

has learned to apply, the links between these pro-
cesses and language families, and the environments
in which they can operate.

A probing dataset is synthesized to model several
morphological operations (Figure 2), including pre-
fix/suffix affixation, reduplication and gemination.
Affixation is typologically widespread (Bickel and
Nichols, 2013) and appears in every development
language on which the model was trained. Suf-
fixation is more common in Germanic and Uralic;
Oto-Manguean tonal morphology is also often rep-
resented via word-final diacritics.!® Prefixing is
more common in the Niger-Congo family.

Reduplication appears in three of the four Aus-
tronesian development languages, Tagalog, Hili-
gaynon and Cebuano (WAL, 2013), but not in the
Maori dataset provided. The probe language has
partial reduplication of the first syllable, as found in
Tagalog and Hiligaynon. Previous work with artifi-
cial data demonstrates that sequence-to-sequence
learners can learn fully abstract representations of
reduplication (Prickett et al., 2018; Nelson et al.,
2020; Haley and Wilson, 2021), but it has not been
previously shown that networks trained on real
data do this in a transferable way. In one-shot
language transfer, reduplication instances are actu-
ally ambiguous. Given an instance modi : _:: gobu
: gogobu, there are two plausible interpretations,
reduplicative momodi and affixal gomodi. Thus,
analysis of reduplicative instances can be infor-
mative about the model’s learned linkage between
language family and typology.

Gemination is a inflectional process whereby a
segment is lengthened to mark some morpholog-
ical feature (Samek-Lodovici, 1992). The probe
language geminates the last non-final consonant.
None of the development languages have morpho-
logical gemination.

The probe languages use two alphabets: the first
is a common subset of characters which appear in

"No Unicode normalization was performed; Oto-
Manguean tone diacritics are treated as characters (as are parts
of the complex characters of the Indic scripts). The placement
of these diacritics within the word varies from language to
language.
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at least half the languages of every development
family.!! The second is a subset of Cyrillic char-
acters intended to test transfer to a less-familiar or-
thography; a few Uralic development languages are
written in Cyrillic. Each language has 90 random
lemmas, sampled with the frames CVCV, CVCVC,
CVCVCVC; affixal languages have 30 affixes of
types VCV, CV, CVCV, plus 7 single-letter affixes.
No probe lemma coincides with any real lemma,
and no probe affix has frequency > 5% as a string
prefix or suffix in any real language. Affixal lan-
guages contain an instance for every lemma/affix
pair. Reduplication and gemination languages have
one instance per lemma.

The model is prompted to inflect the probes as
if they are members of each language family, and
as members of a comparatively well-resourced lan-
guage selected from those families, specifically
Tagalog (tgl), German (deu), Mezquital Otomi
(ote), Swahili (swa) and Finnish (fin), as well as
the synthetic suffixing language used in pretraining
(suff). In addition to checking whether the output
matches, the table shows whether reduplicated in-
stances have been correctly reduplicated (using a
regular expression).

Table 4 shows the results. A comparison be-
tween the random-exemplar and similar-exemplar
models confirms the hypothesis from above that
random-exemplar models have less generalizable
representations of morphological processes, es-
pecially prefixation and suffixation. While both
models are capable of attaching affixes in the syn-
thetic language, the random-exemplar model learns
very language- and suffix-specific rules for apply-
ing these operations, leading to very low accuracy
for copying generic affixes. Both models show
less language-specific remodeling of affixes in the
family-only setting than when the probes are la-
beled as part of a particular language; this effect is
again more pronounced for the random-exemplar
model.

Both models learn to reduplicate arbitrary CV
syllables, but this process is mostly restricted to

'"'Consonants mpbntdriskgh, vowels aeiou.



Lemma semet

Probe type Exemplar Target
Prefixing kigu : igokigu igosemet
Suffixing kigu : kiguigo semetigo
Reduplication modi: momodi  sesemet
Gemination bogu : boggu semmet

Figure 2: Probe tasks illustrated for a single lemma.

Tagalog,'?, with some generalization to Austrone-
sian. Most other languages interpret reduplication
instances as affixes.

Only the similar-exemplar model gets any gem-
ination instances correct, and these primarily in
Uralic.!® This is unsurprising, since the model was
never trained with morphological gemination. It
demonstrates that the model’s representations of
morphological processes represent the input typol-
ogy and are not simply artifacts of the transformer
architecture. While Uralic does not have gemi-
nation as an independent morphological process,
alternations involving geminates do occur in some
paradigms; the NOM.PL of tikka “dart” is tikat.'*
The model seems to have learned a little about gem-
ination from this morphophonological process, but
not a fully generalized representation.

Affixation remains relatively successful when us-
ing Cyrillic characters (suffixes more than prefixes),
but for the most part, less so than with Latin char-
acters, although in the random-exemplar model,
Cyrillic suffixes are somewhat more accurate, prob-
ably due to less interference from language-specific
knowledge. This substantiates the general find-
ing (Murikinati et al., 2020) that transfer across
scripts is more difficult than within-script. Cyrillic
reduplication sees a much larger drop in accuracy.
The difference is probably that simple affixation is
phonologically uncomplicated, while reduplication
requires phonological information about vowels
and consonants.

8 Discussion

These experiments with real and synthetic trans-
fer suggest some useful insights into the problem-
atic findings of earlier transfer experiments. Why

12The random-exemplar model has low accuracy for redu-
plication in Tagalog because it appends spurious Tagalog pre-
fixes to the output, another example of a language-specific
rule. However, the regular expression check confirms that
reduplication is performed correctly.

3Because of this poor performance, Cyrillic gemination
was not tested.

1*See Silfverberg et al. (2021) for a fuller investigation of
generalizable representations of gradation processes in Finnish
noun paradigms.

is Hungarian so successful as a source language
for unrelated targets? Kann (2020) suggests that
it is its agglutinative nature. The results shown
here offer some speculative support for this view—
perhaps the relative segmentability of prototypi-
cally agglutinative languages (Plank, 1999) acts
like the similar-exemplar setting in the memory-
based model, giving the source model a general
bias for concatenative affixation, unpolluted by too
many lexical and phonological alternations. As re-
ported here, such a model is a promising starting
point for inflection in many non-agglutinative sys-
tems, such as Romance verbs, which nevertheless
are strongly concatenative.

Where transfer between related languages fails,
it is conjecturally possible that the source model
representations of edit operations are too closely
linked to particular phonological and lexical prop-
erties of the source. This is clearly shown in the
synthetic transfer experiments, where generic suf-
fixation fails in Germanic and Uralic despite these
families being strongly suffixing, because the sys-
tem has learned to remodel its outputs to conform
too closely to source-language templates.

More broadly, the synthetic experiments show
a link between language typology and learning
of morphological processes, suggesting that lan-
guage structure, not only language relatedness, is
key to successful transfer— transfer of structural
principles can lead to improvements even without
cognate words or affixes. For instance, success-
ful reduplication appears only in Austronesian and
successful gemination only in Uralic. A promising
direction for future work would be to replace the
language family feature with a set of typological
feature indicators such as WALSs properties (WAL,
2013), which might help the model to learn faster
in low-resource target languages.

Two other extensions might bring the memory-
based model closer to the state of the art in super-
vised inflection prediction. First, although the Sig-
Morphon 2020 datasets are balanced by paradigm
cell, real datasets are Zipfian, with sparse cover-
age of cells (Blevins et al., 2017; Lignos and Yang,
2018). For languages with large paradigms, the
model thus requires the capacity to fill cells for
which no exemplar can be retrieved, perhaps using
a variant of adaptive source selection (Erdmann
et al., 2020; Kann et al., 2017a). Second, the
similar-exemplar model performs better in one-shot
transfer experiments, but is hampered in the su-
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Model Fam/Lg. Pref  Pref (Cyrl) Suff Suff (Cyrl) Redup. Redup. (Cyrl) Gem.
austro 62 36 26 38 0 (10) 0 0
austro/tgl 0 1 0 0 28(90) 3() 0
ger 1 0 25 36 0@3) 0 0
ger/deu 0 0 8 10 03) 0 0
n-congo 92 55 40 41 0@3) 0 0

Rand n-congo/swa 100 76 36 25 003 0 0

© oto 20 15 21 33 03 0 0
oto/ote 35 30 1 9 0@3) 0 0
uralic 3 0 23 34 0@3) 0 0
uralic/fin 0 0 7 22 0@3) 0 0
synth 84 62 97 91 03 0 0
synth/suff 28 1 100 97 0@3) 0 0
austro 86 75 94 85 30(30) 0 0
austro/tgl 30 35 75 63 88(88) 8(8) 0
ger 85 55 99 96 303) 0 8
ger/deu 86 55 99 98 0 0 5
n-congo 99 96 98 93 0Q3) 0 3

Sim n-congo/swa 99 98 88 57 0 0 0

) oto 88 76 95 87 18 (18) 0 0
oto/ote 96 84 59 17 5(5) 0 0
uralic 59 10 97 95 0 0 17
uralic/fin 52 4 98 98 0 0 12
synth 94 84 99 95 8 (10) 0 2
synth/suff 86 42 100 99 0 0 2

Table 4: Accuracy of synthetic probe tasks presented as different language and language family. (Cyrl) indicates
Cyrillic alphabet. Parentheses in reduplication columns show frequency of correct CV reduplication.

pervised setting by train-test mismatch. Selecting
training exemplars using a classifier which could
also be used at inference time would reduce this
mismatch. These experiments are left for future
work.

Finally, since the memory-based architecture is
cognitively inspired, it might be adapted as a cog-
nitive model of language learning in contact sit-
uations. Work on this learning process suggests
that speakers find it much easier to learn new ex-
ponents than to learn new morphological processes
(Dorian, 1978; Mithun, 2020). Thus, the impact
of source-language transfer may indeed be most
significant in cases where the L1 and L2 (source
and target) languages differ in the abstract mecha-
nisms of inflection rather than the specifics. Histor-
ical contact-induced change provides evidence for
this viewpoint in the form of systems which have
changed to employ the same processes as a contact
language. For example, Cappadocian Greek has
become agglutinative through its extensive contact
with Turkish (Janse, 2004). For other examples,
see Green (1995); Thomason (2001).

9 Conclusion

The results of this paper demonstrate that the pro-
posed cognitive mechanism of memory-based anal-
ogy provides a relatively strong basis for inflection
prediction. Performance in a supervised setting is
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strongest in languages without large numbers of
inflection classes, and requires training exemplars
to be selected in the same way as test exemplars.
Memory-based analogy also provides a foundation
for one-shot transfer; in this case, training exem-
plars should closely match the elicited inflections,
so that the model learns to copy rather than recon-
struct the output form. One-shot transfer using this
mechanism can achieve higher accuracy than pre-
viously thought, even when no genetically related
languages are available in training. Scores vary
widely, but can be over 80% for some languages.

Finally, this paper provides new evidence about
what kinds of abstract information (beyond char-
acter correspondences) is transferred between lan-
guages when learning to inflect. The model learns
general processes for prefixation and suffixation
which apply (to some extent) across character sets,
but its application of these can be disrupted by
language-specific morpho-phonological rules. It
also learns to reduplicate arbitrary CV sequences,
but applies this process only when targeting a lan-
guage with reduplication. Learning of morphologi-
cal processes in general appears to be driven by the
input typology. The discussion argues that the use-
fulness of general representations for prefixation
and suffixation accounts for the puzzling effective-
ness of agglutinative languages as transfer sources
reported in previous research.
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A Full results

For replicability, this appendix provides
full results for all languages, as 0-1 accu-
racy on the official test datasets.  The re-

ported baseline is TRM-SINGLE, copied from
https://docs.google.com/spreadsheets/d/

10DFRnHUwN-mvGt zXA1sNdCi-jNgZjiE—1i9jRxZCKOkg. Lang

Scores for supervised systems on the development
languages are shown in Table 5 and scores for
one-shot systems on surprise languages are shown
in Table 6. See Vylomova et al. (2020) for
language abbreviation definitions.
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Fam Rand Sim Base
ang Indo-Eur: Germanic 72 19 78
azg Oto-Manguean 94 22 95
ceb Austronesian 79 69 84
cly Oto-Manguean 82 19 91
cpa Oto-Manguean 74 33 91
ctp Oto-Manguean 43 15 60
czn Oto-Manguean 83 32 80
dan Indo-Eur: Germanic 75 42 75
deu Indo-Eur: Germanic 93 62 98
eng Indo-Eur: Germanic 97 67 97
est Uralic 94 47 95
fin Uralic 100 39 100
frr Indo-Eur: Germanic 81 39 87
gaa Niger-Congo 100 100 98
gmh Indo-Eur: Germanic 94 75 91
hil Austronesian 97 74 98
isl Indo-Eur: Germanic 88 37 97
izh Uralic 85 33 87
kon Niger-Congo 99 99 98
krl Uralic 99 36 99
lin Niger-Congo 100 100 100
liv Uralic 93 54 96
lug Niger-Congo 90 74 91
mao Austronesian 71 57 52
mdf Uralic 92 67 94
mhr Uralic 91 67 93
mlg Austronesian 100 100 100
myv Uralic 93 61 94
nld Indo-Eur: Germanic 99 61 99
nob Indo-Eur: Germanic 75 47 76
nya Niger-Congo 100 100 100
ote Oto-Manguean 99 80 99
otm Oto-Manguean 98 46 98
pei Oto-Manguean 65 17 72
sme Uralic 99 31 100
sot Niger-Congo 100 100 98
swa Niger-Congo 100 100 100
swe Indo-Eur: Germanic 97 59 99
tgl Austronesian 69 35 72
vep Uralic 83 28 84
vot Uralic 81 41 86
Xty Oto-Manguean 90 79 91
zZpv Oto-Manguean 87 46 85
zul Niger-Congo 92 83 92
Overall 89 57 90
Stdev 12 26 11

Table 5: Zero-one test-set accuracy scores by language
for SigMorphon 2020 development languages (super-
vised).



Lang Fam Rand Sim Base
ast Indo-Eur: Romance 2 64 100
aze Turkic 9 17 81
bak Turkic 15 14 100
ben Indo-Aryan 1 4 99
bod Sino-Tibetan 21 9 84
cat Indo-Eur: Romance 12 53 100
cre Algic 2 14 68
crh Turkic 24 45 99
dak Siouan 13 13 96
dje Nilo-Saharan 21 82 88
evn Tungusic 28 27 57
fas Indo-Eur: Iranian 2 13 100
frm Indo-Eur: Romance 7 73 100
fur Indo-Eur: Romance 11 19 100
glg Indo-Eur: Romance 9 59 100
gml Indo-Eur: Germanic 11 11 62
asw Indo-Eur: Germanic 33 64 93
hin Indo-Aryan 0 1 100
kan Dravidian 13 16 76
kaz Turkic 0 7 98
kir Turkic 2 6 98
kjh Turkic 11 11 100
kpv Uralic 17 47 97
1id Indo-Eur: Romance 3 68 99
Iud Uralic 22 14 32
mlt Afro-Asiatic 10 13 97
mwf Australian 4 6 90
nno Indo-Eur: Germanic 42 40 86
olo Uralic 37 33 94
ood Uto-Aztecan 33 30 81
orm Afro-Asiatic 2 52 99
pus Indo-Eur: Iranian 13 9 90
san Indo-Aryan 13 5 93
sna Niger-Congo 75 88 100
syc Afro-Asiatic 8 13 91
tel Dravidian 0 10 95
tgk Indo-Eur: Iranian 89 79 56
tuk Turkic 0 21 86
udm Uralic 11 30 98
uig Turkic 0 26 99
urd Indo-Aryan 2 7 99
uzb Turkic 0 21 100
vec Indo-Eur: Romance 2 62 100
vro Uralic 17 17 61
XNno Indo-Eur: Romance 2 22 96
Overall 14 30 90
Stdev 18 25 15

Table 6: Zero-one test-set accuracy scores by language

for SigMorphon 2020 surprise languages (one-shot).
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Abstract

We introduce a simple and highly general
phonotactic learner which induces a proba-
bilistic finite-state automaton from word-form
data. We describe the learner and show how to
parameterize it to induce unrestricted regular
languages, as well as how to restrict it to cer-
tain subregular classes such as Strictly k-Local
and Strictly k-Piecewise languages. We evalu-
ate the learner on its ability to learn phonotac-
tic constraints in toy examples and in datasets
of Quechua and Navajo. We find that an un-
restricted learner is the most accurate over-
all when modeling attested forms not seen in
training; however, only the learner restricted
to the Strictly Piecewise language class suc-
cessfully captures certain nonlocal phonotactic
constraints. Our learner serves as a baseline
for more sophisticated methods.

1 Introduction

Natural language phonotactics is argued to fall in
the class of regular languages, or even in a smaller
class of subregular languages (Rogers et al., 2013).
This observation has motivated the study of proba-
bilistic finite-state automata (PFAs) that generate
these languages as models of phonotactics. Here
we implement a simple method for the induction of
PFAs for phonotactics from data, which can induce
general regular languages in addition to languages
in certain more restricted subclasses, for example,
Strictly k-Local and Strictly k-Piecewise languages
(Heinz, 2018; Heinz and Rogers, 2010). We evalu-
ate our learner on corpus data from Quechua and
Navajo, with a particular emphasis on the ability to
learn nonlocal constraints.

We make both theoretical and empirical con-
tributions. Theoretically, we present the differen-
tiable linear-algebraic formulation of PFAs which
enables learning of the structure of the automa-
ton by gradient descent. In our framework, it is
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possible to induce an unrestricted automaton with
a given number of states, or an automaton with
hard-coded constraints representing various subreg-
ular languages. This work fills a gap in the formal
linguistics literature, where learners have been de-
veloped within certain subregular classes (Shibata
and Heinz, 2019; Heinz, 2010; Heinz and Rogers,
2010; Futrell et al., 2017), whereas our learner
can in principle induce any (sub)regular language.
In addition, we demonstrate how Strictly Local
and Strictly Piecewise constraints can be encoded
within our framework, and show how information-
theoretic regularization can be applied to produce
deterministic automata.

Empirically, our main result is to show that
our approach gives reasonable and linguistically
accurate results. We find that inducing an unre-
stricted PFA produces the best fit to held-out at-
tested forms, while inducing an automaton for a
Strictly 2-Piecewise language yields a model that
successfully captures nonlocal constraints. We also
analyze the nondeterminism of induced automata,
and the extent to which induced automata overfit
to their training data.

2 Model specification

2.1 Probabilistic Finite-state Automata

A probabilistic finite-state automaton (PFA) for
generating sequences consists of a finite set of
states (), an inventory of symbols X, an emission
distribution with probability mass function p(z|q)
which gives the probability of generating a symbol
x € X given state ¢ € (), and a transition dis-
tribution with probability mass function p(q’|q, x)
which gives the probability of transitioning into
new state ¢’ from state ¢ after emission of symbol
x.

We parameterize a PFA using a family of right-
stochastic matrices. The emission matrix E, of
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shape |Q| x |X|, gives the probability of emitting
a symbol x given a state. Each row in the matrix
represents a state, and each column represents an
output symbol. Given a distribution on states rep-
resented as a stochastic vector q, the probability
mass function over symbols is:

p(la) = q E. (1)

Each symbol z € X is associated with a right-
stochastic transition matrix T, of shape |Q|x|Q)|,
so that the probability distribution on following
states given that the symbol = was emitted from the
distribution on states q is

p(la,z) =q' T,. )

Generation of a particular sequence x € >*
works by starting in a distinguished initial state
qo, generating a symbol z, transitioning into the
next state ¢/, and so on recursively until reaching a
distinguished final state g;. Given a PFA parame-
terized by matrices E and T, the probability of a
sequence »’Uf\;1 marginalizing over all trajectories
through states can be calculated according to the
Forward algorithm (Baum et al., 1970; Vidal et al.,
2005a, §3) as follows:

p(aily B, T) = f(2il110,),

where J, is a one-hot coordinate vector on state ¢
and

f(0la) = 6,.q
faiila) = p(aila) - f(z}sla’ Tay).

The important aspect of this formulation is that
the probability of a sequence is a differentiable
function of the matrices E and T that define the
PFA. Because the probability function is differen-
tiable, we can induce a PFA from a set of training
sequences by using gradient descent to search for
matrices that maximize the probability of the train-
ing sequences.

2.2 Learning by gradient descent

We describe a simple and highly general method
for inducing a PFA from data by stochastic gradi-
ent descent. Although more specialized learning
algorithms and heuristics exist for special cases
(see for example Vidal et al., 2005b, §3), ours has
the advantage of generality. Our goal is to see how
effective this simple approach can be in practice.

Given a data distribution X with support over
>*, we wish to learn a PFA by finding parameter
matrices E and T to minimize an objective func-
tion of the form

J(E7 T) = <_ 10gp<w‘E7 T)>:p~X + C<E7 T)7

3)
where (-)._y indicates an average over val-
ues x drawn from the data distribution X, and
—logp(z|E, T) is the negative log likelihood
(NLL) of a sample = under the model; the average
negative log likelihood is equivalent to the cross en-
tropy of the data distribution X and the model. By
minimizing cross-entropy, we maximize likelihood
and thus fit to the data. The term C'(E,T) repre-
sents additional complexity constraints on the E
and T matrices, discussed in Section 2.4. When C'
is interpreted as a log prior probability on automata,
then minimizing Eq. 3 is equivalent to fitting the
model by maximum a posteriori.

Given the formulation in Eq. 3, because the ob-
jective function is differentiable, we can search
for the optimal matrices E and T by performing
(stochastic) descent on the gradients of the objec-
tive. That is, for a parameter matrix X, we can
search for a minimum by performing updates of
the form

X=X -nVJ(X), 4

where the scalar 7 is the learning rate. In stochas-
tic gradient descent, each update is performed using
a random finite sample from the data distribution,
called a minibatch, to approximate the average
over the data distribution in Eq. 3.

However, we cannot apply these updates directly
to the matrices E and T because they must be
right-stochastic, meaning that the entries in each
row must be positive and sum to 1. There is no
guarantee that the output of Eq. 4 would satisfy
these constraints. This issue was addressed by Dai
(2021) by clipping the values of the matrix E to
be between 0 and 1. A more general solution is
that, instead of doing optimization on the E and T
matrices directly, we instead do optimization over
underlying real-valued matrices E and T such that

. exXp Eij exp T‘ij
- ~— Lij = ~
> exp By > exp T,

in other words we derive the matrices E and T
by applying the softmax function to underlying
matrices E and T, whose entries are called logits.
Gradient descent is then done on the objective as
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a function of the logit matrices E and T. This ap-
proach to parameterizing probability distributions
is standard in machine learning. Applied to induce
a PFA with states () and symbol inventory X, our
formulation yields a total of |Q| x (|Q] x |X| — 1)
meaningful trainable parameters.

We note that this procedure is not guaranteed to
find an automaton that globally minimizes the ob-
jective when optimizing T (see Vidal et al., 2005b,
§3). But in practice, stochastic gradient descent in
high-dimensional spaces can avoid local minima,
functioning as a kind of annealing (Bottou, 1991,
§4); using these simple optimization techniques on
non-convex objectives is now standard practice in
machine learning.

2.3 Sequence representation and word
boundaries

In order to model phonotactics, a PFA must be sen-
sitive to the boundaries of words, because there are
often constraints that apply only at word beginnings
or endings (Hayes and Wilson, 2008; Chomsky and
Halle, 1968). In order to account for this, we in-
clude in the symbol inventory ¥ a special word
boundary delimiter #, which occurs as the final
symbol of each word, and which only occurs in
that position. Furthermore, we constrain all ma-
trices T to transition deterministically back into
the initial state following the symbol #, effectively
reusing the initial state gq as the final state g;.

By constructing the automata in this way, we
ensure that their long-run behavior is well-behaved.
If an automaton of this form is allowed to keep gen-
erating past the symbol #, it will generate succes-
sive concatenated independent and identically dis-
tributed samples from its distribution over words,
with boundary symbols # delineating them. This
construction makes it possible to calculate station-
ary distributions over states and complexity mea-
sures related to them.

2.4 Regularization

The objective in Eq. 3 includes a regularization
term C representing complexity constraints. Any
differentiable complexity measure could be used
here. This regularization term can be viewed from
a Bayesian perspective as defining a prior over au-
tomata, and providing an inductive bias. We pro-
pose to use this term to constrain the PFA induction
process to produce deterministic automata.

Most formal work on probabilistic finite-state
automata for phonology has focused on determin-
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istic PFAs because of their nice theoretical proper-
ties (Heinz, 2010). A deterministic PFA is dis-
tinguished by having fully deterministic transi-
tion matrices T. This condition can be expressed
information-theoretically. Assuming Olog(0 = 0,
letting the entropy of a stochastic vector p be:

Hip| = =) pilogp;,

a PFA is deterministic when it satisfies the con-
dition H[q' T,] = 0 for all symbols z and state
distributions q.

We can use this expression to monitor the degree
of nondeterminism of a PFA during optimization,
or to add a determinism constraint to the objective
in Section 2.2. The average nondeterminism N
of a PFA is given by

N(E,T) =) GE;H[5,T;),
ij

where q is the stationary distribution over states,
representing the long-run average occupancy dis-
tribution over states. The stationary distribution §
is calculated by finding the left eigenvector of the
matrix S satisfying

a's=aq,
where S is a right stochastic matrix giving the prob-

ability that a PFA transitions from state ¢ to state j
marginalizing over symbols emitted:

Sij = Y p(x|g)p(glgi, x)-
IS

For the Strictly Local and Strictly Piecewise au-
tomata, N = 0 by construction. For an automaton
parameterized by T = softmax(T), it is not pos-
sible to attain N = 0, but nonetheless N can be
made arbitrarily small. There are alternative pa-
rameterizations where N = 0 is achievable, for
example using the sparsemax function instead of
softmax (Martins and Astudillo, 2016; Peters et al.,
2019).

In order to constrain automata to be determinis-
tic, we set the regularization term in Eq. 3 to be

C =aN,

where « is a non-negative scalar determining the
strength of the trade-off of cross entropy and nonde-
terminism in the optimization. With o = 0 there is
no constraint on the nondeterminism of the automa-
ton, and minimizing the objective in Eq. 3 reduces
to maximum likelihood estimation.



2.5 Implementing restricted automata

We define Strictly Local and Strictly Piecewise au-
tomata as automata that generate the respective lan-
guages. We implement Strictly Local and Strictly
Piecewise automata by hard-coding the transition
matrices T. For these automata, we only do opti-
mization over the emission matrices E.

Strictly Local In a Strictly k-Local (k-SL) lan-
guage, each symbol is conditioned only on imme-
diately preceding k — 1 symbol(s) (Heinz, 2018;
Rogers and Pullum, 2011). We implement a 2-SL
automaton by associating each state ¢ € () with a
unique element z in the symbol inventory 3. Upon
emitting symbol x, the automaton deterministically
transitions into the corresponding state, denoted g..
Thus the transition matrices have the form

Qe qz ot

T, = ..0... 1 ...0...

This construction can be straightforwardly ex-
tended to k-SL, yielding |X|*~1 x (|%] — 1) train-
able parameters for a k-SL automaton.

Strictly Piecewise A Strictly k-Piecewise k-SP)
language, each symbol depends on the presence of
any preceding £ — 1 symbols at arbitrary distance
(Heinz, 2007, 2018; Shibata and Heinz, 2019). For
example, in a 2-SP language, in a string abc, ¢
would be conditional on the presence of a and the
presence of b, without regard to distance nor the
relative order of a and b.

The implementation of an SP automaton is
slightly more complex than the SL automaton, as
the number of states required in a naive imple-
mentation is exponential in the symbol inventory
size, resulting in intractably large matrices. We cir-
cumvent this complexity by parameterizing a 2-SP
automaton as a product of simpler automata. We
associate each symbol x € 3 with a sub-automaton
A, which has two states ¢j and g, with state ¢§
indicating that the symbol z has not been seen,
and ¢ indicating that it has been seen. Each sub-
automaton A, has an emission matrix E@) of size
2 x |X]| corresponding to the two states ¢ and ¢7;
the emission matrix for all states g is constrained
to be the uniform distribution over symbols. The
transition matrices T(*) are

(x)_O 1 (m)_l 0
T —{o 1]’Ty¢w—[o 1)

Then the probability of the ¢’th symbol in a se-
quence x; given a context of previous symbols
g1
x,_; is the geometric mixture of the probability
of x; under each sub-automaton, also called the

co-emission probability

1=

) HpA (ze|lZ]

Because each sub-automaton Ay is deterministic,
its state after seeing the context mf;% is known,
and the conditional probability p4, (z¢|zlZ1) can
be computed using Eq. 1. For calculating the prob-
ability of a sequence, we assume an initial state of
having seen the boundary symbol #; that is, the
sub-automaton A starts in state qfﬁ .

Using this parameterization, we can do opti-
mization over the collection of emission matri-
ces {E@},cx. This construction yields || x
(|2] — 1) trainable parameters for the 2-SP automa-
ton, the same number of parameters as the 2-SL
automaton.

p(we| i)

SP 4+ SL It is also possible to create and train
an automaton with the ability to condition on both
2-SL and 2-SP factors by taking the product of 2-
SL and 2-SP automata, as proposed by Heinz and
Rogers (2013). We refer to the language gener-
ated by such an automaton as 2-SL + 2-SP. We
experiment with such product machines below.

2.6 Related work

PFA induction from data is a well-studied task
which has been the subject of multiple competi-
tions over the years (see Verwer et al., 2012, for a
review). The most common approaches are vari-
ants of Baum-Welch and heuristic state-merging
algorithms (see for example de la Higuera, 2010).
Gibbs samplers and spectral methods have also
been proposed (Gao and Johnson, 2008; Bailly,
2011; Shibata and Yoshinaka, 2012). Induction of
restricted PDFAs, especially for SL and SP lan-
guages, is explored in Heinz and Rogers (2013,
2010)

Our work differs from previous approaches in its
simplicity. Inspired by Shibata and Heinz (2019),
we optimize the training objective directly via gra-
dient descent, without approximations or heuristics
other than the use of minibatches. The same algo-
rithm is applied to learn both transition and emis-
sion structure, for learning of both general PFAs
and restricted PDFAs. One of our contributions
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is to show that this very simple approach gives
reasonable results for learning phonotactics.

3 Inducing toy languages

First, we test the ability of the model to recover
automata for simple examples of subregular lan-
guages. We do so for the two subregular classes
2-SL and 2-SP described in Section 2.5. For each
of these language classes, we implement a ref-
erence PFA which generates strings from a sim-
ple example language in that class, then generate
10, 000 sample sequences from the reference PFA.
We then use these samples as training data, and
study whether our learners can recover the relevant
constraints from the data.

3.1 Evaluation

We evaluate the ability to induce appropriate au-
tomata in two ways. First, since we are studying
very simple languages and automata, it is possible
to directly inspect the E and T matrices and check
that they implement the correct automaton by ob-
serving the transition and emission probabilities.

Second, we study the probabilities assigned
to carefully selected strings which exemplify the
constraints that define the languages. For each
language, we define an illegal test string which
violates the constraints of the language, and a
minimally-different legal test string. Given an
automaton, we can measure the legal-illegal dif-
ference: the log probability of the legal test string
minus the log probability of the illegal test string.
A larger legal—illegal difference indicates that the
model is assigning a higher probability to the legal
form compared to the illegal one and therefore is
successfully learning the constraints represented by
the testing data.

3.2 Languages

All languages are defined over the symbol inven-
tory {a, b, ¢} plus the boundary symbol #.

As an exemplar of 2-SL languages, we use the
language characterized by the forbidden factor *ab.
A deterministic PFA for the language is given in
Figure 1 (top). The language contains all strings
that do not have an a followed immediately by a b.
Our legal test string for this language is bacccb#
and the illegal test string is babccc#.

As an exemplar of 2-SP languages, we use
the language characterized by a forbidden factor
*a...b. This language contains all strings that do
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not have an a followed by a b at any distance. The
reference automaton is given in Figure 1 (bottom).
The legal test string is baccca# and the illegal test
string is baccch#.

3.3 Training parameters

The logit matrices E and T are initialized with
random draws from a standard Normal distribution
(Derrida, 1981). We perform stochastic gradient de-
scent using the Adam algorithm, which adaptively
sets the learning rate (Kingma and Ba, 2015). We
perform 10, 000 update steps with starting learning
rate 7 = 0.001 and minibatch size 5.

3.4 Results

Unrestricted PFA induction succeeds in recover-
ing the reference automata for both toy languages.
Learners restricted to the appropriate classes, as
well as the automaton combining SL and SP factors,
also succeed in inducing the appropriate automata,
while learners restricted to the ‘wrong’ class fail.

Figure 1 shows the legal—illegal differences for
test strings over the course of training. We can
see that, when the learner is unrestricted or when
the learner is in the appropriate class, it eventu-
ally picks up on the relevant constraint, with the
legal-illegal difference increasing apparently with-
out bound over training. Unrestricted learners take
longer to reach this point, but they reach it reliably.
On the other hand, looking at the legal-illegal dif-
ferences for learners in the wrong class, we see
that they asymptote to a small number and stop
improving.

These results demonstrate that our simple
method for PFA induction does succeed in induc-
ing certain simple structures relevant for modeling
phonotactics in a small, controlled setting. Next,
we turn to induction of phonotactics from corpus
data.

4 Corpus experiments

We evaluate our learner by training it on dictionary
forms from Quechua and Navajo and then studying
its ability to predict attested forms that were held
out in training in addition to artificially constructed
nonce forms which probe the ability of the model
to represent nonlocal constraints.

4.1 Training parameters

All training parameters are as in Section 3.3, except
that we train for 100, 000 steps, and control the
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Figure 1: Difference in log probabilities for legal and illegal forms over the course of PFA induction for toy
languages. A large positive value indicates that the relevant constraint has been learned.
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Figure 2: Reference automata for the 2-SL language
characterized by the constraint *ab (top) and the 2-SP
language characterized by the constraint *a...b (bot-
tom). Arcs are annotated with symbols emitted and
their corresponding emission probabilities.

succession of minibatches to be the same across
models within the same language.

4.2 Dataset

The proposed learner is applied to the datasets of
Navajo and Quechua (Gouskova and Gallagher,
2020), in which nonlocal phonotactics are attested.

In Navajo, the co-occurrence of alveolar and
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palatal strident is illegal. The learning data of
Navajo includes 6, 279 Navajo phonological words;
we divide this data into a training set of 5,023
forms and a held-out set of 1,256 forms. The
nonce testing data of Navajo consists of 5, 000 gen-
erated nonce words, which were labelled as illegal
(N = 3,271) and legal (N = 1,729) based on
whether the nonlocal phonotactics are satisfied.

In Quechua, any stop cannot be followed by an
ejective or aspirated stop at any distance. The learn-
ing data of Quechua includes 10,804 phonolog-
ical words, which we separate into 8,643 train-
ing forms and 2, 160 held-out forms. The testing
data of Quechua (Gouskova and Gallagher, 2020)
consists of 24, 352 nonce forms which were man-
ually classified as legal (N = 18,502) and ille-
gal (N = 5,810, including stop-aspirate and stop-
ejective pairs).

4.3 Dependent Variables

For the linguistic performance of the classifier, we
study two main dependent variables. First, the
average held-out negative log likelihood (NLL)
indicates the ability of the model to assign high
probabilities to unseen but attested forms—Ilow
NLL indicates higher probabilities. Second, us-
ing our nonce forms dataset, we measure the ex-
tent to which the model can differentiate the legal
forms from the illegal forms using the difference
in log likelihood for the legal forms minus the il-
legal forms. This is the same as the legal-illegal
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difference described in Section 3.1, but now as an
average over many legal—illegal nonce pairs instead
of a difference for one pair.

4.4 Results

Unrestricted PFA induction Figure 3 shows re-
sults from induction of unrestricted PFAs with var-
ious numbers of states. We find that show the av-
erage NLL of forms in the heldout data, as well as
‘overfitting’, defined as the average held-out NLL
minus the average training set NLL. This number
shows the extent to which the model assigns higher
probabilities to forms in the training set as opposed
to the held-out set, an index of overfitting. We find
that automata with more states fit the data better,
but are also more prone to overfitting to the training
set.

In Figure 3 (bottom two rows) we also show the
measured nondeterminism N of the induced au-
tomata throughout training, for different values of
the regularization parameter « (see Section 2.4).
We find that, even without an explicit constraint
for determinism, the induced PFAs tend towards
determinism over time, with N reaching around
1.5 bits by the final training step. Explicit regu-
larization (with o = 1) makes this process faster,
with NV reaching around 0.5 bits. Regularization
for determinism has only a minimal effect on the
NLL values.

Linguistic performance and restricted models
Figure 4 shows held-out NLL and the legal—illegal
difference for both languages, comparing the SL
automaton, the SP automaton, the product SP +
SL automaton, and a PFA with 1,024 states and
a=0.

In terms of the ability to predict attested held-
out forms, the best model is consistently the unre-
stricted PFA, with the SP automaton performing
the worst. However, in terms of predicting the ill-
formedness of artificial forms violating nonlocal
phonotactic constraints, the best model is either
the SP automaton or the SP 4 SL product automa-
ton. Both of these automata successfully induce
the nonlocal constraint.

On the other hand, the unrestricted PFA learner
shows no evidence at all of having learned the dif-
ference between legal and illegal forms in the arti-
ficial data, despite having the capacity to do so in
theory, and despite succeeding in inducing a 2-SP
language in Section 3.
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4.5 Discussion

We find that an unrestricted PFA learner performs
most accurately when predicting real held-out
forms, while an SP learner is most effective in learn-
ing certain nonlocal constraints. In fact, in terms
of its ability to model the nonlocal constraints, the
PFA learner ends up comparable to an SL learner,
which cannot learn the constraints at all. Mean-
while, the SP learner, which is unable to model
local constraints, fares much worse than even the
SL learner on predicting held-out forms. The prod-
uct SP + SL learner combines the strengths of both
restricted learners, but still does not assign as high
probability to the real held-out forms as the unre-
stricted PFA learner.

This pattern of performance suggests that the
PFA learner is using most of its states to model
local constraints beyond those captured in a 2-SL
language. These constraints are important for pre-
dicting real held-out forms. The SP automaton
is unable to achieve strong performance on held-
out forms without the ability to model these local
constraints. On the other hand, the unrestricted
PFA tends to overfit to its training data, perhaps
explaining its failure to detect nonlocal constraints
which are picked up by the appropriate restricted
automata.

5 Conclusion

We introduced a framework for phonotactic learn-
ing based on simple induction of probabilistic finite-
state automata by stochastic gradient descent. We
showed how this framework can be used to learn
unrestricted PFAs, in addition to PFAs restricted
to certain formal language classes such as Strictly
Local and Strictly Piecewise, via constraints on
the transition matrices that define the automata.
Furthermore, we showed that the framework is suc-
cessful in learning some phonotactic phenomena,
with unrestricted automata performing best in a
wide-coverage evaluation on attested but held-out
forms, and Strictly Piecewise automata perform-
ing best in a targeted evaluation using nonce forms
focusing on nonlocal constraints.

Our results leave open the question of whether
the unrestricted learner or one of the restricted
learners is ‘best’ for learning phonotactics, since
they perform differently on different metrics. A key
question for future work is whether there might be
some model that could do well in inducing both
local and nonlocal constraints simultaneously, and



performing well on both the held-out evaluation
and the nonce form evaluation. Such a model could
come in the form of another restricted language
class such as Tier-Based Strictly Local languages
(Heinz et al., 2011; Jardine and Heinz, 2016; Mc-
Mullin, 2016; Jardine and McMullin, 2017), or
perhaps in the form of a regularization term in the
training objective which enforces an inductive bias
that favors certain nonlocal interactions.

The code for this project is available
at http://github.com/hutengdai/
PFA-learner.
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Abstract

Total reduplication is common in natural lan-
guage phonology and morphology. However,
formally as copying on reduplicants of un-
bounded size, unrestricted total reduplication
requires computational power beyond context-
free, while other phonological and morpholog-
ical patterns are regular, or even sub-regular.
Thus, existing language classes characterizing
reduplicated strings inevitably include typo-
logically unattested context-free patterns, such
as reversals. This paper extends regular lan-
guages to incorporate reduplication by intro-
ducing a new computational device: finite
state buffered machine (FSBMs). We give
its mathematical definitions and discuss some
closure properties of the corresponding set of
languages. As a result, the class of regular
languages and languages derived from them
through a copying mechanism is characterized.
Suggested by previous literature (Gazdar and
Pullum, 1985), this class of languages should
approach the characterization of natural lan-
guage word sets.

1 The Puzzle of (Total) Reduplication

Formal language theory (FLT) provides computa-
tional mechanisms characterizing different classes
of abstract languages based on their inherent struc-
tures. Following FLT in the study of human lan-
guages, in principle, researchers would expect a
hierarchy of grammar formalisms that matches em-
pirical findings: more complex languages in such a
hierarchy are supposed to be 1) less common in nat-
ural language typology; and 2) harder for learners
to learn.

The classical Chomsky Hierarchy (CH) puts for-
mal languages into four levels with increasing com-
plexity: regular, context-free, context-sensitive, re-
cursively enumerable (Chomsky, 1956; Jiger and
Rogers, 2012). Does the CH notion of formal
complexity have the desired empirical correlates?

Several findings suggest that those four levels do
not align with natural languages precisely, some
leading to major refinements on the CH. First,
the unbounded crossing dependencies in Swiss-
German case marking (Shieber, 1985) facilitated
attempts to characterize mildly context-sensitive
languages (MCS), which extend context-free lan-
guages (CFLs) but still preserve some useful prop-
erties of CFLs (e.g., Joshi, 1985; Seki et al., 1991;
Stabler, 1997). Secondly, it is generally accepted
that phonology is regular (e.g. Johnson, 1972; Ka-
plan and Kay, 1994). However, being regular is
argued to be an unrestrictive property for phonolog-
ical well-formed strings: for example, a language
whose words are sensitive to an even or odd num-
ber of certain sounds is unattested (Heinz, 2018).
With strong typological evidence, the sub-regular
hierarchy was further developed, which continues
to be an active area of research (e.g., McNaughton
and Papert, 1971; Simon, 1975; Heinz, 2007; Heinz
et al., 2011; Chandlee, 2014; Graf, 2017).

In this paper, we analyze another mismatch be-
tween existing well-known language classes and
empirical findings: reduplication, which involves
copying operations on certain base forms (Inkelas
and Zoll, 2005). The reduplicated phonological
strings are either of total identity (fotal reduplica-
tion) or of partial identity (partial reduplication) to
the base forms. Table 1 provides examples showing
the difference between total reduplication and par-
tial reduplication: in Dyirbal, the pluralization of
nominals is realized by fully copying the singular
stems, while in Agta examples, plural forms only
copy the first CVC sequence of the corresponding
singular forms (Healey, 1960; Marantz, 1982).

Reduplication is common cross-linguistically.
According to Rubino (2013) and Dolatian and
Heinz (2020), 313 out of 368 natural languages
exhibit productive reduplication, in which 35 lan-
guages only have total reduplication, but not partial
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Total reduplication: Dyirbal plurals (Dixon, 1972, 242)

Singular  Gloss Plural Gloss
midi ‘little, small’ midi-midi ‘lots of little ones’
gulgiri ‘prettily painted men’  gulgiri-gulgiti  ‘lots of prettily painted men’

Partial reduplication: Agta plurals (Healey, 1960,7)

Singular  Gloss Plural Gloss
labang ‘patch’ lab-labang ‘patches’
takki ‘leg’ tak-takki ‘legs’

Table 1: Total reduplication: Dyirbal plurals (top); partial reduplication: Agta plurals (bottom).

o
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Figure 1: Crossing dependencies in Dyirbal total redu-
plication ‘midi-midi’ (top) versus nesting dependencies
in unattested string reversal ‘midi-idim’ (bottom)

reduplication. As a comparison, it is widely rec-
ognized that context-free string reversals are rare
in phonology and morphology (Marantz, 1982)
and appear to be confined to language games
(Bagemihl, 1989).

Unrestricted total reduplication, or unbounded
copying, can be abstracted as Ly, = {ww |w €
¥*}, a well-known non-context free language
(Culy, 1985; Hopcroft and Ullman, 1979).1 Its non-
context-freeness comes from the incurred crossing
dependencies among symbols, similar to Swiss-
German case marking constructions. However,
the typologically-rare string reversals ww’ demon-
strate nesting dependencies, which are context-free
(see Fig. 1 as an illustration).

Given most phonological and morphological pat-
terns are regular, how can one fit in reduplicated
strings without including reversals? Gazdar and
Pullum (1985, 278) made the remark that

!"Total reduplication does not immediately guarantee un-
boundedness. When the set of bases is finite, i.e, {ww | w €
L} when L is finite, total reduplication can be squeezed in
languages described by 1 way finite state machines (Chandlee,
2017), though doing so eventually leads to state explosion
(Roark and Sproat, 2007; Dolatian and Heinz, 2020). Com-
putationally, only total reduplication with infinite number of
potential reduplicants is true unbounded copying. With care-
ful treatment, unbounded copying, externalizing a primitive
copying operation, can be justified as a model of reduplication
in natural languages. More in-depth discussion of 1): bounded
versus unbounded and 2): copying as a primitive operation
can be found in Clark and Yoshinaka (2014); Chandlee (2017);
Dolatian and Heinz (2020).

Figure 2: The class of regular with copying languages
in CH

We do not know whether there exists an
independent characterization of the class
of languages that includes the regular
sets and languages derivable from them
through reduplication, or what the time
complexity of that class might be, but
it currently looks as if this class might
be relevant to the characterization of NL
word-sets.

Motivated by Gazdar and Pullum (1985), this
article aims to give a formal characterization of
regular with copying languages. Specifically, it ex-
amines what minimal changes can be brought to
regular languages to include stringsets with two ad-
jacent copies, while excluding some typologically
unattested context-free patterns, such as reversals,
shown in Fig. 2. One possible way to probe such
a language class is by adding copying to the set of
operations whose closure defines regular languages.
Instead, the approach we take in this paper is to
add reduplication to finite state automata (FSAs),
which compute regular languages.
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Various attempts followed this vein:?> one ex-

ample is finite state registered machine in Cohen-
Sygal and Wintner (2006) (FSRAs) with finitely
many registers as its memory, limited in the way
that it only models bounded copying. The state-of-
art finite state machinery that computes unbounded
copying elegantly and adequately is 2-way finite
state transducers (2-way FSTs), capturing redupli-
cation as a string-to-string mapping (w — ww)
(Dolatian and Heinz, 2018a,b, 2019, 2020). To
avoid the mirror image function (w — wwt),
Dolatian and Heinz (2020) further developed sub-
classes of 2-way FSTs which cannot output any-
thing during right-to-left passes over the input (cf.
rotating transducers: Baschenis et al., 2017).

It should be noted that the issue addressed by 2-
way FSTs is a different one: reduplication is mod-
eled as a function (w — ww), while this paper fo-
cuses on a set of languages containing identical sub-
strings (ww). The stringset question is non-trivial
and well-motivated for reasons of both formal as-
pects and its theoretical relevance. Firstly, since
the studied 2-way FSTs are not readily invertible,
how to get the inverse relation ww — w remains
an open question, as acknowledged in Dolatian and
Heinz (2020). Although this paper does not directly
address this morphological analysis problem, rec-
ognizing which strings are reduplicated and belong
to Ly, or any other copying languages may be an
important first step.

As for the theoretical aspects, there are some
attested forms of meaning-free reduplication in
natural languages.Zuraw (2002) proposes aggres-
sive reduplication in phonology: speakers are
sensitive to phonological similarity between sub-
strings within words and reduplication-like struc-
tures are attributed to those words. It is still ar-
guable whether those meaning-free reduplicative
patterns of unbounded strings are generated via a
morphological function or not. Overall, it is de-
sirable to have models that help to detect the sub-
string identity within surface strings when those
sub-strings are in the regular set.

This paper introduces a new computational de-
vice: finite state buffered machine (FSBMs). They

2Some other examples, pursuing more linguistically sound
and computationally efficient finite state techniques, are
Walther (2000), Beesley and Karttunen (2000) and Hulden
(2009). However, they fail to model unbounded copying.
Roark and Sproat (2007), Cohen-Sygal and Wintner (2006)
and Dolatian and Heinz (2020) provide more comprehensive
reviews.

3Thanks to the reviewer for bringing this point up.

are two-taped finite state automata, sensitive to
copying activities within strings, hence able to de-
tect identity between sub-strings. This paper is
organized as follows: Section 2 provides a defi-
nition of FSBMs with examples. Then, to better
understand the copying mechanism, complete-path
FSBMs, which recognize exactly the same set of
languages as general FSBMs, are highlighted. Sec-
tion 3 examines the computational and mathemat-
ical properties of the set of languages recognized
complete-path FSBMs. Section 4 concludes with
discussion and directions for future research.

2 Finite State Buffered Machine
2.1 Definitions

FSBMs are two-taped automata with finite-state
core control. One tape stores the input, as in normal
FSAs; the other serves as an unbounded memory
buffer, storing reduplicants temporarily for future
identity checking. Intuitively, FSBMs is an ex-
tension to FSRAs but equipped with unbounded
memory. In theory, FSBMs with a bounded buffer
would be as expressive as an FSRA and therefore
can be converted to an FSA.

The buffer interacts with the input in restricted
ways: 1) the buffer is queue-like; 2) the buffer
needs to work on the same alphabet as the input,
unlike the stack in a pushdown automata (PDA),
for example; 3) once one symbol is removed from
the buffer, everything else must also be wiped off
before the buffer is available for other symbol ad-
dition. These restrictions together ensure the ma-
chine does not generate string reversals or other
non-reduplicative non-regular patterns.

There are three possible modes for an FSBM M
when processing an input: 1) in normal (N) mode,
M reads symbols and transits between states, func-
tioning as a normal FSA; 2) in buffering (B) mode,
besides consuming symbols from the input and tak-
ing transitions among states, it adds a copy of just-
read symbols to the queue-like buffer, until it exits
buffering (B) mode; 3) after exiting buffering (B)
mode, M enters emptying (E) mode, in which M
matches the stored symbols in the buffer against in-
put symbols. When all buffered symbols have been
matched, M switches back to normal (N) mode for
another round of computation. Under the current
augmentation, FSBMs can only capture local redu-
plication with two adjacent, completely identical
copies. It cannot handle non-local reduplication,
nor multiple reduplication.
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Definition 1. A Finite-State Buffered Machine
(FSBM) is a 7-tuple (3, Q, I, F, G, H, 0) where

¢ QQ: a finite set of states
e I C @Q: initial states
e F C @Q: final states

e (G C Q: states where the machine must enter
buffering (B) mode

e H C @Q: states visited while the machine is
emptying the buffer

e GNH=0

* 0: @ x (X U{e}) x @Q: the state transitions
according to a specific symbol

Specifying G and H states allows an FSBM to
control what portions of a string are copied. To
avoid complications, G and H are defined to be
disjoint. In addition, states in H identify certain
special transitions. Transitions between two H
states check input-memory identity and consume
symbols in both the input and the buffer. By con-
trast, transitions with at least one state not in H can
be viewed as normal FSA transitions. In all, there
are effectively two types of transitions in 9.

Definition 2. A configuration of an FSBM D =
(u,q,v,t) € ¥* x Q x ¥* x {N, B, E}, where u is
the input string; v is the string in the buffer; g is the
current state and ¢ is the current mode the machine
is in.

Definition 3. Given an FSBM M and z € (X U
{€}), u,w,v € ¥*, we define that a configuration
D yields a configuration Ds in M (D; Fpp D)
as the smallest relation such that: 4

» For every transition (g1, x, g2) with at least
one state of q1,qo ¢ H
(xu, q1, €, N) Far (u, g2, €, N) with ¢1 ¢ G
(xu, q1, v, B) Far (u, g2, v, B) with go ¢ G

* For every transition (g1, z,q2) and ¢1,q2 € H
(zu, q1, v, E) Fas (u, g2, v, E)

* Foreveryq € G
(u, q, €, N) Far (u, g, €, B)

* Foreveryq € H
(u, q, v, B) Far (u, q, v, E)
(u, q, €, B) Far (u, g, €, N)

“Note that a machine cannot do both symbol consumption
and mode changing at the same time.
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Figure 3: An FSBM M; with G = {¢; } (diamond) and
H = {¢3} (square); dashed arcs are used only for the
emptying process. L(M;) = {ww |w € {a,b}*}
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Figure 4: An FSBM M with G = {¢;} and H = {q4}.
L(M3) = {a't’a’t’ |i,j > 1}
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Definition 4. A run of FSBM M on w is a se-
quence of configurations Dg, D1, D5 ... D,, such
that 1): 3qo € I, Do = (w, qo, €, N); 2): 3 g5 € F,
Dy, =(6,q7,€6,N);3): V0 <1 <m, D; by Diya.
The language recognized by an FSBM M is de-
noted by L(M). w € L(M) iff there’s a run of M
on w.

2.2 Examples

In all illustrations, G states are drawn with dia-
monds and [ states are drawn with squares. The
special transitions between H states are dashed.

Example 1. Total reduplication Figure 3 offers
an FSBM M; for L,,,, with any arbitrary strings
made out of an alphabet ¥ = {a, b} as candidates
of bases.

L 1s the simplest representation of unbounded
copying, but this language is somewhat structurally
dull. For the rest of the illustration, we focus on
the FSBM M5 in Figure 4. M, recognizes the non-
context free {a’t/a’b’ |4,j > 1}. This language
can be viewed as total reduplication added to the
regular language {a’t’ |i,j > 1} (recognized by
the FSA Mj in Figure 5).

State g; is an initial state and more importantly a
G state, forcing M5 to enter B mode before it takes
any arcs and transits to other states. Then, My in
B mode always keeps a copy of consumed input

Start— @ 6 8» Accept

Figure 5: An FSA My with L(Mg)= {a’b’ |i,j > 1}




symbols until it proceeds to ¢4, an H state. State
q4 requires My to stop buffering and switch to E
mode in order to check for string identity. Using the
special transitions between H states (in this case,
a and b loops on State q4), Mo checks whether the
stored symbols in the buffer matches the remaining
input. If so, after emitting out all symbols in the
buffer, M5 with a blank buffer can switch to N
mode. It eventually ends at State g4, a legal final
state. Figure 6 gives a complete run of M5 on the
string “abbabb”. Figure 7 shows M, rejects the
non-total reduplicated string “ababb’ since a final
configuration cannot be reached.

Example 3. Partial reduplication Assume Y =
{b,t,k,ng,l,i,a}, the FSBM M; in Figure 8
serves as a model of two Agta CVC reduplicated
plurals in Table 1.

Given the initial state ¢; is in G, M3 has to enter
B mode before it takes any transitions. In B mode,
M3 transits to a plain state g2, consuming an input
consonant and keeping it in the buffer. Similarly,
M3 transits to a plain state g3 and then to g4. When
M3 first reaches q4, the buffer would contain a
CVC sequence. gy, an H state, urges M3 to stop
buffering and enter E mode. Using the special
transitions between H states (in this case, loops
on q4), M3 matches the CVC in the buffer with the
remaining input. Then, M3 with a blank buffer can
switch to N mode at g4. M3 in N mode loses the
access to loops on g4, as they are available only
in E mode. It transits to g5 to process the rest of
the input by the normal transitions between ¢5. A
successful run should end at g5, the only final state.
Figure 9 gives a complete run of M3 on the string
“taktakki”.

2.3 Complete-path FSBMs

As shown in the definitions and the examples above,
an FSBM is supposed to end in N mode to process
an input. There are two possible scenarios for a run
to meet this requirement: either never entering B
mode or undergoing full cycles of N, B, E, N mode
changes. The corresponding languages reflect ei-
ther no copying (functioning as plain FSAs) or full
copying, respectively.

In any specific run, it is the states that inform an
FSBM M of its modality. The first time M reaches
a G state, it has to enter B mode and keeps buffering
when it transits between plain states. The first time
when it reaches an H state, M is supposed to enter
E mode and transit only between H states in E
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mode. Hence, to go through full cycles of mode
changes, once M reaches a GG state and switches
to B mode, it has to encounter some H states later
to be put in E mode. To allow us to only reason
about only the “useful” arrangements of G and H
states, we impose an ordering requirement on G
and H states along a path in a machine and define
a complete path.

Definition 5. A path s from an initial state to a
final state in a machine is said to be complete if

1. for one H state in s, there is always a preced-

ing G state;

. once one G state is in s, $ must contain must
contain at least one H following that GG state

. in between G and the first H are only plain
states.

Schematically, with P representing those non-G,
non-H plain states and I, F' representing initial,
final states respectively, the regular expression de-
noting the state information in a path s should be
of the form: [(P*GP*HH*P*| P*)*F.

Definition 6. A complete-path finite state
buffered machine is an FSBM in which all possible
paths are complete.

Example FSBMs we provide so far (Figure 3,
Figure 4 and in Figure 8) are complete-path FSBMs.
For the rest of this section, we describe several
cases of an incomplete path in a machine M.

No H states When a G state does not have any
reachable H state following it, there is no complete
run, since M always stays in B mode.

No H states in between two G states When a G
state go has to transit to another G state ¢, before
any H states, M cannot go to ¢p, for M would
enter B mode at gg while transiting to another G
state in B mode is ill-defined.

H states first When M has to follow a path con-
taining two consecutive H states before any G state,
it would clash in the end, because the transitions
among two H states can only be used in E mode.
However, it is impossible to enter E mode without
entering B mode enforced by some G states.

It should be emphasized that M in N mode can
pass through one (and only one) H state to another
plain state. For instance, the language of the FSBM



Used Arc  State Info  Configuration
1. N/A q el (abbabb, q, €, N)
2. NA q G (abbabb, q1, €, B) Buffering triggered by ¢; and empty buffer
3. (q.a,q¢) ¢@¢G  (bbabb, g, a,B)
4. (g2, b,q3) (babb, qs3, ab, B)
5. (g3,b,q3) (abb, q3, abb, B)
6. (g3,6 qq) (abb, q4, abb, B)  Emptying triggered by g4
7. NA (abb, q4, abb, E)
8. (qa, 2, qa) (bb, q4, bb, E)
9. (qa,b,qa) (b, g4, b, E)
10. (q4,b,q1) q€ H (€, q4, €, E) Normal triggered by g4 and empty buffer
11. NA q €F (€, q4, €, N)
Figure 6: M- in Figure 4 accepts abbabb
Used Arc  State Info  Configuration

1. NA q €l (ababb, q1, €, N)

2. N/A q €G (ababb, qi, €, B) Buffering triggered by ¢; and empty buffer

3. (quaqp) @¢G (babb, q2, a, B)

4. (g2,b,q3) qzs€ H (abb, q3, ab, B)

6. (g3, € qq) (abb, q4, ab, B)  Emptying triggered by g4

5. N/A (abb, qq4, ab, E)

6. (q4,8,q4) (bb, q4, b, E)

7. (q4,b,q4) q € H (b, q4, €, E) Normal triggered by ¢4 and empty buffer

8. NA (b, q4, €, N)

Clash

Figure 7: M5 in Figure 4 rejects ababb

i b, t,k,ng,l,i,a

’
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t-- 2

\

Start—> Q ba t7 k? ng~l@ ?,a @ b7t7kang7l q4 € ACCCpt
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P
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b,t,k,ng,l

Figure 8: An FSBM M3 for Agta CVC-reduplicated plurals: G = {q; } and H = {q4}

Used Arc  State Info  Configuration
1. NA @ €G (taktakki, q1, €, N)  Buffering triggered by ¢; and empty buffer
2. N/A (taktakki, q1, €, B)
3. (gt @¢EG (aktakki, q2, t, B)
4. (g2, a, q3) (ktakki, qs, ta, B)
5. (g3, k,q0) qu€eH (takki, q4, tak, B) ~ Emptying triggered by g4
6. N/A (takki, q4, tak, E)
7. (qast, qa) (akki, q4, ak, E)
8. (1,2 ,q4) (kki, g4, k, E)
9. (g4, k,q0) qu€eH (ki, q4, €, E) Normal triggered by g4 and empty buffer
10. N/A (ki, q4, €, N)
1. (g4, € g5) (ki, g5, €, N)
12. (g5, k, q5) (@, g5, €, N)
13. (g5,%,95) ¢qs €F (€, g5, €, N)

Figure 9: M3 in Figure 8 accepts taktakki
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Start—>@—a> q2 —b>@—b> q4 —“»@—»Accept

Figure 10: An incomplete FSBM M, with G = () and
H={q,q}; L(My) = {abba}

Figure 11: An FSA (or an FSBM with G = () and H =
()) whose language is equivalent as M, in Figure 10

M, in Figure 10 is equivalent to the language rec-
ognized by the FSA in Figure 11. M, remains to
be an incomplete FSBM because it doesn’t have
any G state preceding the H states ¢ and q4.

The languages recognized by complete-path FS-
BMs are precisely the languages recognized by
general FSBMs. One key observation is the lan-
guage recognized by the new machine is the union
of the languages along all possible paths. Then, the
validity of such a statement builds on different in-
complete cases of G and H states along a path: they
either recognize the empty-set language or show
equivalence to finite state machines. Therefore, the
language along an incomplete path of the machine
is still in the regular set. Only a complete path
containing at least one well-arranged G ... H H*
sequence uses the copying power and extends the
regular languages. Therefore, in the next section,
we focus on complete-path FSBMs.

3 Some closure properties of FSBMs

In this section, we show some closure properties of
complete-path FSBM-recognizable languages and
their linguistic relevance. Section 3.1 discusses its
closure under intersection with regular languages;
Section 3.2 shows it is closed under homomor-
phism; Section 3.3 briefly mentions union, con-
catenation, Kleene star. These operations are of
special interests because they are regular opera-
tions defining regular expressions (Sipser, 2013,
64). That complete-path FSBMs are closed under
regular operations leads to a conjecture that the
set of languages recognized by the new automata
is equivalent to the set of languages denoted by a
version of regular expression with copying added.

Noticeably, given FSBMs are FSAs with a copy-
ing mechanism, the proof ideas in this section
are similar to the corresponding proofs for FSAs,
which can be found in Hopcroft and Ullman (1979)
and Sipser (2013).

3.1 Intersection with FSAs

Theorem 1. If L is a complete-path FSBM-
recognizable language and Lo is a regular
language, then Ly N Lo is a complete-path
FSBM-recognizable language.

In other words, if L; is a language rec-
ognized by a complete-path FSBM M; =
(Q1,%, 11, F1,G1, Hy,01), and Lo is a language
recognized by an FSA My = (Q2, X, Iz, Fy, d2),
then L; N Loy is a language recognizable by an-
other complete-path FSBM. It is easy to con-
struct an intersection machine M where M =
(Q,X,I,F,G,H,d) with 1) Q = Q1 X Q2; 2)
IZIl XIQ;3)F:F1 XF2;4)G:G1 XQQ;
5) H = Hy x Q2;6) ((q1,41),7, (g2, 45)) € 0 iff
(q1,2,q2) € 01 and (¢}, x,q5) € d2. Paths in M
would inherit the completeness from M7 given the
current construction. Then, L(M) = Ly N Lo, as
M simulates Ly N Lo by running M7 and My si-
multaneously. M accepts w if and only if both M;
and My accept w.

In nature, FSAs can be viewed as FSBMs with-
out copying: they can be converted to an FSBM
with an empty G set, an empty H set and trivially
no special transitions between [ states.

That FSBM-recognizable languages are closed
under intersection with regular languages is of great
relevance to phonological theory: assume a natu-
ral language X imposes backness vowel harmony,
which can be modeled by an FSA My g. In ad-
dition, this language also requires phonological
strings of certain forms to be reduplicated, which
can be modeled by an FSBM Mpggp. One hereby
can construct another FSBM Mgrppv g to en-
force both backness vowel harmony and the total
identity of sub-strings in those forms. Not lim-
ited to harmony systems, phonotactics other than
identity of sub-strings are regular (Heinz, 2018),
indicating almost all phonological markedness con-
straints can be modeled by FSAs. When FSBMs in-
tersect with FSAs computing those phonotactic re-
strictions, the resulting formalism is still an FSBM
but not other grammar with higher computational
power. Thus, FSBMs can model natural language
phonotactics once including recognizing surface
sub-string identity.
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Start— @L @L Q5 é})— Accept

Figure 12: An FSBM M5 on the alphabet {C, V'} such
that L(M5) = h(L(Ms)) with M3 in Figure 8

3.2 Homomorphism and inverse alphabetic
homomorphism

Definition 7. A (string) homomorphism is a func-
tion mapping one alphabet to strings of another
alphabet, written h : ¥ — A*. We can extend h
to operate on strings over ¥* such that 1) h(eyx)
=ep; 2) Va € X, h(a) € A% 3) for w =
ajaz...a, € ¥, h(w) = h(ai)h(az)...h(ay)
where each a; € Y. An alphabetic homomorphism
hg is a special homomorphism with hg: X — A.

Definition 8. Given a homomorphism h: ¥ —
A* and Ly C ¥*, Ly C A¥*, define h(L)
= {h(w)|w € L} C A* and h™1(Ly) =
{w|h(w) =v € Ly} CX*.

Theorem 2. The set of complete-path FSBM-
recognizable languages is closed under homomor-
phisms.

Theorem 2. can be proved by constructing a
new machine M}, based on M. The informal in-
tuition goes as follows: relabel the odd arcs to
mapped strings and add states to split the arcs so
that there is only one symbol or € on each arc in M.
When there are multiple symbols on normal arcs,
the newly added states can only be plain non-G,
non-H states. For multiple symbols on the special
arcs between two H states, the newly added states
must be H states. Again, under this construction,
complete paths in M lead to newly constructed
complete paths in Mj,.

The fact that complete-path FSBMs guarantee
the closure under homomoprhism allows theorists
to perform analyses at certain levels of abstraction
of certain symbol representations. Consider two al-
phabets ¥ = {b,t,k,ng,l,i,a} and A = {C,V'}
with a homomorphism A mapping every consonant
(b, t, k,ng,l) to C and mapping every vowel (¢, a)
to V. As illustrated by M3 on alphabet ¥ (Fig-
ure 8) and M35 on alphabet A (Figure 12), FSBM-
definable patterns on > would be another FSBM-
definable patterns on A.

We conjecture that the set of languages
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recognized by complete-path FSBMs is not
closed under inverse alphabetic homomorphisms
and thus inverse homomorphism. Consider a
complete-path FSBM-recognizable language L =
{a'ba’V’ |i,j > 1} (cf. Figure 4). Consider an
alphabetic homomorphism A : {0, 1,2} — {a,b}*
such that 2(0) = a, h(1) = a and h(2) = b. Then,
h=Y(L) = {(0]1)%27(0[1)%27 | i,j > 1} seems to
be challenging for FSBMs. Finite state machines
cannot handle the incurred crossing dependencies
while the augmented copying mechanism only con-
tributes to recognizing identical copies, but not
general cases of symbol correspondence.

3.3 Other closure properties

Union Assume there are complete-path FSBMs
M; and My such that L(M;) = Ly and L(Ms) =
Lo, then Ly U Lo is a complete-path FSBM-
recognizable language. One can construct a new
machine M that accepts an input w if either M;
or My accepts w. The construction of M keeps
M and M5 unchanged, but adds a new plain state
qo- Now, qo becomes the only initial state, branch-
ing into those previous initial states in My and Mo
with e-arcs. In this way, the new machine would
guess on either M7 or My accepts the input. If one
accepts w, M will accept w, too.

Concatenation Assume there are complete-path
FSBMs M; and Ms such that L(M;) = L; and
L(Ms3) = Lo, then there is a complete-path FSBM
M that can recognize L; o Ly by normal concate-
nation of two automata. The new machine adds
a new plain state gyp and makes ¢g the only initial
state, branching into those previous initial states
in M, with e-arcs. All final states in M are the
only final states in M. Besides, the new machine
adds e-arcs from any old final states in M; to any
possible initial states in M>. A path in the resulting
machine is guaranteed to be complete because it
is essentially the concatenation of two complete
paths.

Kleene Star Assume there is a complete-path
FSBM M; such that L(M;) = Li, L] is a
complete-path FSBM-recognizable language. A
new automaton M is similar to M with a new ini-
tial state gg. qo is also a final state, branching into

The statement on the inverse homomorphism closure is
left as a conjecture. We admit that a more formal and rigor-
ous mathematical proof proving A~ (L) is not complete-path
FSBM-recognizable should be conducted. To achieve this
goal, a more formal tool, such as a developed pumping lemma
for the corresponding set of languages, is important.



old initial states in M. In this way, M accepts the
empty string €. qg is never a G state nor an H state.
Moreover, to make sure M can jump back to an
initial state after it hits a final state, e-arcs from any
final state to any old initial states are added.

4 Discussion and conclusion

In summary, this paper provides a new computa-
tional device to compute unrestricted total redu-
plication on any regular languages, including the
simplest copying language L., where w can be
any arbitrary string of an alphabet. As a result, it
introduces a new class of languages incomparable
to CFLs. This class of languages allows unbounded
copying without generating non-reduplicative non-
regular patterns: we hypothesize context-free string
reversals are excluded since the buffer is queue-like.
Meanwhile, the MCS Swiss-German cross-serial
dependencies, abstracted as {a‘b’'c'd’ |i,j > 1},
is also excluded, since the buffer works on the same
alphabet as the input tape and only matches identi-
cal sub-strings.

Following the sub-classes of 2-way FSTs in
Dolatian and Heinz (2018a,b, 2019, 2020), which
successfully capture unbounded copying as func-
tions while exclude the mirror image mapping,
complete-path FSBMs successfully capture the
total-reduplicated stringsets while exclude string
reversals. Comparison between the characterized
languages in this paper and the image of functions
in Dolatian and Heinz (2020) should be further car-
ried out to build the connection. Moreover, one
natural next step is to extend FSBMs as acceptors
to finite state buffered transducers (FSBT). Our
intuition is FSBTs would be helpful in handling
the morphological analysis question (ww — w),
a not-yet solved problem in the 2-way FSTs that
Dolatian and Heinz (2020) study. After reading the
first w in input and buffering this chunk of string
in the memory, the transducer can output € for each
matched symbol when transiting among H states.

Another potential area of research is applying
this new machinery to Primitive Optimality Theory
(Eisner, 1997; Albro, 1998). Albro (2000, 2005)
used weighted finite state machine to model con-
straints while represented the set of candidates by
Multiple Context Free Grammars to enforce base-
reduplicant correspondence (McCarthy and Prince,
1995). Parallel to Albro’s way, given complete-
path FSBM s are intersectable with FSAs, it is pos-
sible to computationally implement the reduplica-
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tive identity requirement by complete-path FSBMs
without using the full power of mildly context sen-
sitive formalisms. To achieve this goal, future work
should consider developing an efficient algorithm
that intersects complete-path FSBMs with weighted
FSAs.

The present paper is the first step to recognize
reduplicated forms in adequate yet more restric-
tive models and techniques compared to MCS
formalisms. There are some limitations of the
current approach on the whole typology of redu-
plication. Complete-path FSBMs can only cap-
ture local reduplication with rwo adjacent identical
copies. As for non-local reduplication, the modi-
fication should be straightforward: the machines
need to allow the filled buffer in N mode (or in
another newly-defined memory holding mode) and
match strings only when needed. As for multi-
ple reduplication, complete-path FSBMs can eas-
ily be modified to include multiple copies of the
same base form ({w"|w € ¥*,n € N}) but
cannot be easily modified to recognize the non-
semilinear language containing copies of the copy
({w?" |w € ¥*,n € N}). It remains to be an open
question on the computational nature of multiple
reduplication. Last but not the least, as a reviewer
points out, recognizing non-identical copies can
be achieved by either storing or emptying not ex-
actly the same input symbols, but mapped sym-
bols according to some function f. Under this
modification, the new automata would recognize
{a™"|n € N} with f(a) = b but still exclude
string reversals. In all, detailed investigations on
how to modify complete-path FSBMs should be
the next step to complete the typology.
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Abstract

This paper presents a finite-state morpholog-
ical analyzer for the Gitksan language. The
analyzer draws from a 1250-token Eastern di-
alect wordlist. It is based on finite-state tech-
nology and additionally includes two exten-
sions which can provide analyses for out-of-
vocabulary words: rules for generating pre-
dictable dialect variants, and a neural guesser
component. The pre-neural analyzer, tested
against interlinear-annotated texts from multi-
ple dialects, achieves coverage of (75-81%),
and maintains high precision (95-100%). The
neural extension improves coverage at the cost
of lowered precision.

1 Introduction

Endangered languages of the Americas are typi-
cally underdocumented and underresourced. Com-
putational tools like morphological analyzers
present the opportunity to speed up ongoing docu-
mentation efforts by enabling automatic and semi-
automatic data analysis. This paper describes the
development of a morphological analyzer for Gitk-
san, an endangered Indigenous language of West-
ern Canada. The analyzer is capable of providing
the base form and morphosyntactic description of
inflected word forms: a word gupdiit ‘they ate’ is
annotated gup—TR-3PL.

Our Gitksan analyzer is based on two core
documentary resources: a wordlist spanning ap-
proximately 1250 tokens, and an 18,000 token
interlinear-annotated text collection. Due to the
scarcity of available lexical and corpus resources,
we take a rule-based approach to modeling of mor-
phology which is less dependent on large datasets
than machine learning methods. Our analyzer is
based on finite-state technology (Beesley and Kart-
tunen, 2003) using the foma finite-state toolkit
(Hulden, 2009Db).

Proceedings of the Seventeenth SIGMORPHON Workshop on Computational Research

Garrett Nicolai’
AUniversity of British Columbia

188

Miikka Silfverberg”

first.last@ubc.ca

Our work has three central goals: (1) We want
to build a flexible morphological analyzer to sup-
plement lexical and textual resources in support of
language learning. Such an analyzer can support
learners in identifying the base-form of inflected
words where the morpheme-to-word ratio might be
particularly high, in a way not addressed by a tradi-
tional dictionary. It may also productively generate
inflected forms of words. (2) We want to facilitate
ongoing efforts to expand the aforementioned 1250
token wordlist into a broad-coverage dictionary of
the Gitksan language. Running our analyzer on
Gitksan texts, we can rapidly identify word forms
whose base-form has not yet been documented. An
analyzer can also help automate the process of iden-
tifying sample sentences for dictionary words, the
addition of which substantially increases the value
of the dictionary. (3) We want to use the model to
further our understanding of Gitksan morphology.
Unanalyzeable and erroneously analyzed forms can
help us identify shortcomings in our description of
the morphological system and can thus feed back
into the documentation effort of the language.

The Gitksan-speaking community recognizes
two dialects: Eastern (Upriver) and Western
(Downriver). Our analyzer is based on resources
which mainly represent the Eastern dialect. Con-
sequently, our base analyzer achieves higher cov-
erage of 71% for the Eastern dialect as measured
on a manually annotated test set. For the West-
ern dialect, coverage is lower at 53%. In order
to improve coverage on the Western variety, we
explore two extensions to our analyzer. First, we
implement a number of dialectal relaxation rules
which model the orthographic variation between
Eastern and Western dialects. This leads to siz-
able improvements in coverage for the Western
dialect (around 9%-points on types and 6%-points
on tokens). Moreover, the precision of our ana-
lyzer remains high both for the Eastern and West-
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ern dialects even after applying dialect rules. Sec-
ondly, we extend our FST morphological analyzer
by adding a data-driven neural guesser which fur-
ther improves coverage both for the Eastern and
Western varieties.

2 The Gitksan Language

The Gitxsan are one of the indigenous peoples of
British Columbia, Canada. Their traditional territo-
ries consist of upwards of 50,000 square kilometers
of land along the Skeena River in the BC northern
interior. The Gitksan language is the easternmost
member of the Tsimshianic family, which spans the
entirety of the Skeena and Nass River watersheds
to the Pacific Coast. Today, Gitksan is the most
vital Tsimshianic language, but is still critically
endangered with an estimated 300-850 speakers
(Dunlop et al., 2018).

The Tsimshianic family can be broadly under-
stood as a dialect continuum, with each village
along these rivers speaking somewhat differently
from its neighbors up- or downstream, and the two
endpoints being mutually unintelligible. The six
Gitxsan villages are commonly divided into two
dialects: East/Upriver and West/Downriver. The
dialects have some lexical and phonological dif-
ferences, with the most prominent being a vowel
shift. Consider the name of the Skeena River: Xsan,
Ksan (Eastern) vs Ksen (Western).

2.1 Morphological description

The Gitksan language has strict VSO word order
and multifunctional, fusional morphology (Rigsby,
1986). It utilizes prefixation, suffixation, and both
pro- and en-cliticization. Category derivation and
number marking are prefixal, while markers of ar-
gument structure, transitivity, and person/number
agreement are suffixal.

The Tsimshianic languages have been described
as having word-complexity similar to German (Tar-
pent, 1987). The general structure of a noun or
verb stem is presented in the template in Figure
1. A stem consists of minimally a root (typically
CVC); an example is monomorphemic gup ‘eat’.
Stems may also include derivational prefixes or
transitivity-related suffixes; compare gupxw ‘be
eaten; be edible’.

In sentential context, stems are inflected for fea-
tures like transitivity and person/number. Our an-
alyzer is concerned primarily with stem-external
inflection and cliticization. The structure of stem-
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external morphology for the most complex word
type, a transitive verb, is schematized in the tem-
plate in Figure 2; an example word with all these
slots filled would be 'naagask’otsdiitgathl “appar-
ently they cut.PL open (common noun)’

On the left edge of the stem can appear any num-
ber of modifying ‘proclitics’. These contribute
locative, adjectival, and manner-related informa-
tion to a noun or verb, often producing semi- or non-
compositional idioms in a similar fashion to Ger-
manic particle verbs.! It is often unclear whether
these proclitics constitute part of the root or stem,
or if they are distinct words entirely. The ortho-
graphic boundaries on this edge are consequently
sometimes fuzzy. Sometimes clear contrasts are
presented, as with the sequence lax-yip ‘on-earth’:
we see compositional lax yip ‘on the ground’ ver-
sus lexicalized laxyip ‘land, territory’. However,
the boundary between compositional and idiomatic
is not always so obvious, as in examples like (1).

(D) saa-"witxw (away-come, ‘come from’)
k’ali-aks (upstream-water, ‘upriver’)
xsi-ga’a (out-see, ‘choose’)

luu-no’o (in-hole, ‘annihilate’)

&0 o

Inflectional morphology largely appears on the
right edge of the stem. The main complexity of
Gitksan inflection involves homophony and opac-
ity: a similar or identical wordform often has mul-
tiple possible analyses. For example, a word like
gubin transparently involves a stem gup ‘eat’ and
a 2SG suffix -n, but the intervening vowel i might
be analyzed as epenthetic, as transitive inflection
(TR), or as a specially-induced transitivizing suffix
(T), resulting in three possible analyses in (2). Sim-
ilarly, a word gupdiit involves the same stem gup
‘eat’ and a 3PL suffix -diiz, but this suffix is able
to delete preceding transitive suffixes, resulting in
four possible analyses as in (3).

) gubin
a. gup-2SG
b. gup-TR-2SG
c. gup-T-25G
3) gupdiit
a. gup-3PL
b. gup-TR-3PL
c. gup-T-3PL
d. gup-T-TR-3PL

'E.g. nachslagen ’look up’ in German.



’ Derivation— ‘ Proclitics— ‘ Plural- ‘ Root ‘ —Argument Structure

Figure 1: Morphological template of a complex nominal or verbal stem

Proclitics— ‘ Stem ‘ —Transitive ‘ —Person/Number ‘ =Epistemic | =Next Noun Class

Figure 2: Morphological template of modification, inflection, and cliticization for a transitive verbal predicate

Running speech in Gitksan is additionally rife
with clitics, which pose a more complex problem
for morphological modeling. First, there are a set
of ergative ‘flexiclitics’, which are able to either
procliticize or encliticize onto a subordinator or
auxiliary, or stand independently. The same combi-
nation of host and clitic might result in sequences
like n=ii (1SG=and), ii=n (and=1SG), or ii na
(and 1SG) (Stebbins, 2003; Forbes, 2018).

Second, all nouns are introduced with a noun-
class clitic that attaches to the preceding word, as
illustrated by the VSO sentence in (4). Here, the
proper noun clitic =s attaches to the verb but is syn-
tactically associated with Mary, and the common
noun clitic =Al attaches to Mary but is associated
with gayt ‘hat’.

(@) Giigwis Maryhl gayt.
giikkw-i-t =s Mary =hl gayt
buy-TR-3.11 =PN Mary =CN hat
‘Mary bought a hat.’

Any word able to precede a noun phrase is a possi-
ble host for one of these clitics (hence their appear-
ance on transitive verbs in Figure 2).

Finally, there are several sentence-final and
second-position clitics. whose distribution is based
on prosodic rather than strictly categorial proper-
ties; these attach on the right edge of subordina-
tors/auxiliaries, predicates, and argument phrases,
depending on the structure of the sentence.

A large part of Gitksan’s unique morphological
complexity therefore arises not in nominal or verbal
inflection, but in the flexibility of multiple types of
clitics used in connected speech, and the logic of
which possible sequences can appear with which
wordforms.

2.2 Resources

The Gitksan community orthography was designed
and documented in the Hindle and Rigsby (1973)
wordlist (H&R). Though it originally reflected
only the single dialect of one of the authors (Git-
an’maaxs, Eastern), this orthography is in broad
use today across the Gitxsan community for all di-
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alects, as well as neighboring Nisga’a, with some
variations. Given the relatively short period that
this orthography has been in use, orthographic con-
ventions can vary widely across dialects and writ-
ers. In producing this initial analyzer, we attempt to
mitigate the issue by working with a small number
of more-standardized sources: the original H&R
and an annotated, multidialectal text collection.

We worked with a digitized version of the H&R
wordlist (Mother Tongues Dictionaries, 2020). The
original wordlist documents only the Git-an’maaxs
Eastern dialect; our version adds a small number
of additional dialect variants, and fifteen common
verbs and subordinators. In total, the list contains
approximately 1250 lexemes and phrases, plus
noted variants and plural forms.

The analyzer was informed by descriptive work
on both Gitksan and its mutually intelligible neigh-
bor Nisga’a. This work details many aspects of
Gitksan inflection, including morphological opac-
ity and the complex interactions of certain suffixes
and clitics (Rigsby, 1986; Tarpent, 1987; Hunt,
1993; Davis, 2018; Brown et al., 2020).

A text collection of approximately 18,000 words
was also used in the development and evaluation
of the analyzer. This collection consists of oral
narratives given by three speakers from different
villages: Ansbayaxw (Eastern), Gijigyukwhla’a
(Western), and Git-anyaaw (Western) (cf. Forbes
et al., 2017). It includes multiple genres: personal
anecdotes, traditional tales (ant’imahlasxw), histo-
ries of ownership (adaawk), recipes, and explana-
tions of cultural practice. The collection is fully
annotated in the ‘interlinear gloss’ format with free
translation, exemplified in (5).

5) Ii  al’algaltgathl get,

ii ~ CVC-algal-t=gat=hl get
CCNJ PL-watch-3.II=REPORT=CN people
‘And they stood by and watched,’

The analyzed corpus provides insight into the use of
clitics in running speech, and is the dataset against
which we test the results of the analyzer.



3 Related Work

While considering different approaches to compu-
tational modeling of Gitksan morphology, finite-
state morphology arose as a natural choice. At the
present time, finite-state methods are quite widely
applied for Indigenous languages of the Americas.
Chen and Schwartz (2018) present a morpholog-
ical analyzer for St. Lawrence Island / Central
Siberian Yupik for aid in language preservation and
revitalization work. Strunk (2020) present another
analyzer for Central Alaskan Yupik. Snoek et al.
(2014) present a morphological analyzer for Plains
Cree nouns and Harrigan et al. (2017) present one
for Plains Cree verbs. Littell (2018) build a finite-
state analyzer for Kwak’wala. All of the above
are languages which present similar challenges to
the ones encountered in the case of Gitksan: word
forms consisting of a large number of morphemes,
both prefixing and suffixing morphology and mor-
phophonological alternations. Finite-state morphol-
ogy is well-suited for dealing with these challenges.
It is noteworthy that similarly to Gitksan, a number
of the aforementioned languages are also undergo-
ing active documentation efforts.

While we present the first morphological ana-
lyzer for Gitksan which is capable of productive
inflection, this is not the first electronic lexical re-
source for the Gitksan language. Littell et al. (2017)
present an electronic dictionary interface Waldayu
for endangered languages and apply it to Gitksan.
The model is capable of performing fuzzy dictio-
nary search which is an important extension in the
presence of orthographic variation which widely
occurs in Gitksan. While this represents an impor-
tant development for computational lexicography
for Gitksan, the method cannot model productive
inflection which is important particularly for lan-
guage learners who might not be able to easily
deduce the base-form of an inflected word (Hunt
et al., 2019). As mentioned earlier, our model can
analyze inflected forms of lexemes.

We extend the coverage of our finite-state an-
alyzers by incorporating a neural morphological
guesser which can be used to analyze word forms
which are rejected by the finite-state analyzer. Simi-
lar mechanisms have been explored for other Amer-
ican Indigenous languages. Micher (2017) use
segmental recurrent neural networks (Kong et al.,
2015) to augment a finite-state morphological an-
alyzer for Inuktitut.> These jointly segment the

>The Uquailaut morphological analyzer:
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input word into morphemes and label each mor-
pheme with one or more grammatical tags. Very
silmilarly to the approach that we adopt, Schwartz
et al. (2019) and Moeller et al. (2018) use atten-
tional LSTM encoder-decoder models to augment
morphological analyzers for extending morpholog-
ical analyzers for St. Lawrence Island / Central
Siberian Yupik and Arapaho, respectively.

4 The Model

Our morphological analyzer was designed with sev-
eral considerations in mind. First, given the small
amount of data at our disposal, we chose to con-
struct a rule-based finite state transducer, built from
a predefined lexicon and morphological description.
The dependence of this type of analyzer on a lexi-
con supports one of the major goals of this project:
lexical discovery from texts. Words which cannot
be analyzed will likely be novel lemmas that have
yet to be documented. Furthermore, the process
of constructing a morphological description allows
for the refinement of our understanding of Gitksan
morphology and orthographic standards. For exam-
ple, there is a common post-stem rounding effect
that generates variants such as jogat, jogot ‘those
who live’; the project helps us identify where this
effect occurs. Our analyzer can also later serve as a
tool to explore of the behavior of less-documented
constructions (e.g. distributive, partitive), as gram-
matical and pedagogical resources continue to be
developed.

Our general philosophy was to take a maximal-
segmentation approach to inflection and cliticiza-
tion: morphemes were added individually, and in-
teractions between morphemes (e.g. deletion) were
derived through transformational rules based on
morphological and phonological context. Most
interactions of this kind are strictly local; there
are few long-distance dependencies between mor-
phemes. The only exception to the minimal chunk-
ing rule is a specific interaction between noun-class
clitics and verbal agreement: when these clitics
append to verbal agreement suffixes, they either
agglutinate with (6-a) or delete them (6-b) depend-
ing on whether the agreement and noun-class mor-
pheme are associated with the same noun (Tarpent,
1987; Davis, 2018). That is, the conditioning factor
for this alternation is syntactic, not morphophono-
logical.

http://www.inuktitutcomputing.ca/
Ugailaut



(6) Realizations of gup-i-t=hl (eat-TR-3=CN)
a.  gubithl ‘he/she ate (common noun)’
b.  gubihl ‘(common noun) ate’

The available set of resources further constrained
our options for the analyzer’s design and our means
of evaluating it. The H&R wordlist is quite small,
and of only a single dialect, while the corpus for
testing was multidialectal. We therefore aimed
to produce a flexible analyzer able to recognize
orthographic variation, to maximize the value of its
small lexicon.

4.1 FST implementation

Our finite-state analyzer was written in lexc
and xfst format and compiled using foma (Hulden,
2009b). Finite-state analyzers like this one are
constructed from a dictionary of stems, with af-
fixes added left-to-right, and morpho-phonological
rewrite rules applied to produce allomorphs and
contextual variation. The necessary components of
the analyzer are therefore a lexicon, a morphotac-
tic description, and a set of morphophonological
transformations, as illustrated in Figure 3.

Our analyzer’s lexicon is drawn from the H&R
wordlist. As a first step, each stem from that list
was assigned a lexical category to determine its
inflectional possibilities. The resulting 1506 word
+ category pairs were imported to category-specific
groups in the morphotactic description.

Any of the major stem categories could be used
to start a word; modifiers, preverbs, and prenouns
could also be used as verb/noun prefixes. Each
categorized group flowed to a series of category-
specific sections which appended the appropriate
part of speech, and then listed various derivational
or inflectional affixes that could be appended. A
morphological group would terminate either with a
hard stop (#) or by flowing to a final group “Word’,
where clitics were appended.

Finally, forms were subject to a sequence
of orthographic transformations reflecting mor-
phophonological rules. Some examples included
the deletion of adjacent morphemes which could
not co-occur, processes of vowel epenthesis or dele-
tion, vowel coloring by rounded and back conso-
nants, and prevocalic stop voicing.

A sample form produced by the FST for the
word saabisbisdiithl ‘they tore off (pl. common
noun)’ is in example (7). This form involves a
preverb saa being affixed directly to a transitive
verb bisbis, a reduplicated plural form of the verb

which was listed directly in the H&R wordlist (the
symbol ~ marks morpheme boundaries).? After
the verb, we find two inflectional suffixes and one
clitic. Ultimately, rewrite rules are used to delete
the transitive suffix and segmentation boundaries

(8).

@) saa’bisbis”i1i"diit"hl
saa+PVB-bisbis+VT-TR-3PL=CN
(8) saabisbisdiithl

4.2 Analyzer iterations

We built and evaluated four iterations of the Gitk-
san morphological analyzer based upon the foun-
dation presented in Section 4.1: the v1. Lexical
FST, v2. Complete FST, v3. Dialectal FST and
v4. FST+Neural. Each iteration cumulatively ex-
pands the previous one by incorporating additional
vocabulary items, rules or modeling components.

The first analyzer (v1: Lexical FST) included
only the open-class categories of verbs, nouns,
modifiers, and adverbs which made up the bulk
of the H&R wordlist. The main focus of the
morphotactic description was transitive inflection,
person/number-agreement, and cliticization for
these categories. Some semi-productive argument
structural morphemes (e.g. the passive -xw or an-
tipassive -asxw) were also included.

The second analyzer (v2: Complete FST) in-
corporated functional and closed-class morphemes
such as subordinators, pronouns, prepositions, quo-
tatives, demonstratives, and aspectual particles, in-
cluding additional types of clitics.

The third analyzer (v3: Dialectal FST) further
incorporated predictable stem-internal variation,
such as the vowel shift and dorsal stop lenition/-
fortition seen across dialects. In order to apply the
vowel shift in a targeted way, all items in the lex-
icon were marked for stress using the notation $.
Parses prior to rule application now appear as in
(9) (compare to (7)).

) s$Saa"bisb$is”i"diit"hl

Finally, we seek to expand the coverage of the
analyzer through machine learning, namely neu-
ral architectures (v4: FST+Neural). Our FST ar-
chitecture allows for the automatic extraction of
surface-analysis pairs; this enables us to create

3The FST has no component to productively handle redu-
plication but this would be possible to implement given a
closed lexicon Hulden (2009a, Ch. 4).
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LEXICON N

Deletion before -3PL:

LEXTICON RootN +N: NInfl ;

maa’y N ; LEXICON NInfl i — 0/ _"diit

smax N ; -ATTR:"m # ;

LEXICON RootVI -SX:"it  Word ; Vowel insertion:

yee VI ; Agr_II ; 0 —i/C" _ Sonorant #

t’aa VI ; Word ;

LEXICON RootPrenoun LEXICON Prenoun Prevocalic voicing:

lax_ Prenoun ; +PNN: # p.tts.kk —b,dj.gg/_V
(a) Lexicon +PNN: RootN ; (c) Rewrite rules

(b) Morphotactic description

Figure 3: Three main components of the FST (simplified)

a training set for the neural models. We experi-
ment with two alternative neural architectures - the
Hard-Attentional model over edit actions (HA) de-
scribed by Makarov and Clematide (2018), and the
transformer model (Vaswani et al., 2017), as imple-
mented in Fairseq (Fairseq) (Ott et al., 2019). Un-
like the FST, the neural models can extend morpho-
logical patterns beyond a defined series of stems,
analyzing forms that the FST cannot recognize.

For both models, we extract 10,000 random anal-
ysis pairs, with replacement; early stopping for
both models uses a 10% validation set extracted
from the training, with no overlap between train-
ing and validation sets (although stem overlap is
allowed). The best checkpoint is chosen based on
validation accuracy. The HA model uses a Chi-
nese Restaurant Process alignment model, and is
trained for 60 epochs, with 10 epochs patience; the
encoder and decoder both have hidden dimension
200, and are trained with 50% dropout on recurrent
connections. The Transformer model is a 3-layer,
4-head transformer trained for 50 epochs. The en-
coders and decoders each have an embedding size
of 512, and feed-forward size of 1024, with 50%
dropout and 30% attentional dropout. We optimize
using Adam (0.9, 0.98), and cross-entropy with
20% label-smoothing as our objective.

Any wordform which received no analysis from
the FST was provided a set of five possible analyses
each from the HA and Fairseq models.

5 Evaluation

5.1 FST Coverage

The analyzers were run on two 2000-token datasets
drawn from the multidialectal corpus: an Eastern
Gitksan dataset (1 speaker), and a Western Gitksan

dataset (2 speakers and dialects). Token and type
coverage for the three FSTs is provided in Table
1, representing the percentage of wordforms for
which each analyzer was able to provide one or
more possible parses.

Types  Tokens

East Lexical 63.12% 54.17%
Complete 71.10% 81.48%
Dialectal 71.10% 81.48%

West Lexical 45.49% 38.09%
Complete 53.20% 70.12%
Dialectal 62.35% 75.98%

Table 1: Analyzer coverage on 2000-token datasets

The effect of adding function-word coverage to
the second ‘Complete’ analyzer was broadly sim-
ilar across dialects, increasing type coverage by
about 8% and token coverage by 27-32%, demon-
strating the relative importance of function words
to lexical coverage.

The first two analyzers performed substantially
better on the Eastern dataset which more closely
matched the dialect of the wordlist/lexicon. The
third ‘Dialectal’ analyzer incorporated four types
of predictable stem-internal allomorphy to generate
Western-style variants. These transformations had
no effect on coverage for the Eastern dataset, but
increased type and token coverage for the Western
dataset by 9% and 6% respectively.

5.2 FST precision

While our analyzer manipulates vocabulary items
at the level of the stem seen in the lexicon, the cor-
pus used for evaluation is annotated to the level of
the root and was not always comparable (e.g. ih-
lee’etxw ‘red’ vs ihlee’e-xw ‘blood-VAL’). Accu-
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racy evaluation therefore had to be done manually
by comparing the annotated analysis in the corpus
to the parse options produced by the FST (10).

(10)  japhl
a. make[-3.II]=CN (Corpus)
b. JSap+N=CN
j$ap+N-3=CN
jSap+VT-3=CN (FSTv3)

We evaluated the accuracy of the Dialectal FST on
two smaller datasets: 150 tokens Eastern, and 250
tokens Western. These datasets included 85 and
180 unique wordform/annotation pairs respectively.
The same wordform might have multiple attested
analyses, depending on its usage. The performance
of the Dialectal analyzer on each dataset is sum-
marized in Table 2. Precision is calculated as the
percentage of word/annotation pairs for which the
analyzer produced a parse matching the context-
sensitive annotation in the corpus.* Other analyses
produced by the FST were ignored. For example in
(10), the token would be evaluated as correct given
the final parse, which uses the appropriate stem
(jap ‘make’) and matching morphology; the other
parses using a different stem (jap ‘box trap’) and/or
different morphology could not qualify the token
as correctly parsed. Only parsable wordforms were
considered (i.e. English words and names are ex-
cluded).

East West

Coverage 71.76% 68.89%

(61/85) (124/180)
Correct parse 71.76% (61) 64.44% (116)
Incorrect parse ~ 0.00% (0) 2.78% (5)
Name, English 2.5% (2) 3.33% (6)
No parse 27.5% (22)  29.44% (53)
Precision 100.00% 95.87%

(61/61) (116/121)

Table 2: Accuracy evaluation for dialectal analyzer (v3)
on small datasets

The Western dataset was larger, and consisted of
two distinct dialects, in contrast to the smaller and
more homogeneous Eastern dataset. Regardless,
analyzer coverage between the two datasets was
comparable (68-72%) and precision was very high
(95-100%). When this analyzer was able to provide
a possible parse, one was almost always correct.

“Note that precision is computed only on word forms
which received at least one analysis from the FST.

To further understand the analyzer’s limitations,
we categorized the reasons for erroneous and miss-
ing analyses, listed in Table 3. In addition to the
small datasets, for which all words were checked,
we also evaluated the 100 most-frequent word/anal-
ysis pairs in the larger datasets.

The majority of erroneous and absent analyses
were due to the use of new lemmas not in the lexi-
con, or novel variants not captured by productive
stem-alternation rules. Novel lemmas made up
about 18% each of the small datasets, and 4-8%
of the top-100 most frequent types. Some func-
tional items had specific dialectal realizations; for
example, all three speakers used a different locative
preposition (goo-, go’o-, ga’a-), only one of which
was recognized. a

There were also a few errors attributable to
the morphotactic rules encoded in the parser.
For example, there were several instances in the
dataset of supposed ‘preverb’ modifiers combin-
ing with nouns (e.g. t’ip-no’o=si, sharply.down-
hole=PROX, ‘this steep-sided hole’), which the
parser could not recognize. This category combi-
nation flags the need for further documentation of
certain ‘preverbs’. As a second example, numbers
attested without agreement were not recognized
because the analyzer expected that they would al-
ways agree. This could be fixed by updating the
morphotactic description for numbers (e.g. to more
closely match intransitive verbs).

5.3 FST + Neural performance

The addition of the neural component signifi-
cantly increased the analyzer’s coverage (mean HA:
+21%, Fairseq: +17%), but at the expense of pre-
cision (mean -15% for both). The results of the
manual accuracy evaluation are presented in Fig-
ure 4. There remained several forms for which the
neural analyzers produced no analyses.

Both analyzers performed better on the 100-
most-frequent types datasets, where they tended
to accurately identify dialectal variants of com-
mon words (e.g. t’ihlxw from tk’ihixw ‘child’, diye
from diya ‘3=QUOT (third person quotative)’). In
the small datasets of running text, these models
were occasionally able to correctly identify un-
known noun and verb stems that had minimal in-
flection. However, they struggled with identify-
ing categories, and often failed to identify correct
inflection. These difficulties stem from category-
flexibility and homophony in Gitksan. Nouns and
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East

150 tokens (22) Top-100 (17) 250 tokens (58)

New lemma 15
New function word 1
Lexical variant 3
Functional variant 2
Morphotactic error 1

West
Top-100 (23)
2 30 2
2 4 6
8 6 5
3 9 9
2 9 1

Table 3: Categorization of erroneous and absent analyses for dialectal analyzer (FSTv3)

East 150 tok East top-100 tok

West 250 tokens West top-100 tok

0.75
0.25

1
0.75
0.5
0.25
0

FST FST+HA FST+FairSeq FST

0

0.75

0.25

FST+HA FST+FairSeq

1

0.75

0.5

05

0.25

0 0
F:

ST

FST+HA FST+FairSeq

FST

FST+HA FST+FairSeq

Figure 4: Proportion of forms which receive the correct analysis from each of our models (indicated in blue) and
the number of forms which receive only incorrect analyses from our models (indicated in red). The remaining

forms received no analyses.

verbs use the exact same inflection and clitics, mak-
ing the category itself difficult to infer. Short in-
flectional sequences have a large number of ho-
mophonous parses, and even more differ only by a
character or two.

Qualitatively, the HA model tended to produce
more plausible predictions, often producing the cor-
rect stem or else a mostly-plausible analysis that
could map to the same surface form, but with incor-
rect categories or inflection. In contrast, the Fairseq
model often introduced stem changes or inflec-
tional sequences which could not ultimately map
to the surface form. Example (11) provides a sam-
ple set of incorrect predictions (surface-plausible
analyses are starred).

ksimaasdiit ksi+PVB-m$Saas+VT-TR-3PL

HA model
xsim$aas+N-3PL (¥)
xsim$aas+N-T-3PL (*)
xsim$Saas+NUM-3PL (*?)
xsim$aast+N-T-3PL

1D

a.

Fairseq model
xsim$aast+N-3PL
xsim$aast+N=RESEM
xsim$Saast+N-SX=PN
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xsim$as+N-3PL

Further work can be done to improve the per-
formance of the neural addition, such as training
the model on attested tokens instead of, or in addi-
tion to, tokens randomly generated from the FST
analyzer.

6 Discussion and Conclusions

The grammatically-informed FST is able to han-
dle many of Gitksan’s morphological complexi-
ties with a high degree of precision, including ho-
mophony, contextual deletion, and position-flexible
clitics. The FST analyzer’s patchy coverage can
be attributed to its small lexicon. Unknown lexi-
cal items and variants comprised roughly 18% of
each small dataset. Notably, errors and unidenti-
fied forms in the FST analyzer signal the current
limits of morphotactic descriptions and lexical doc-
umentation. The analyzer can therefore serve as a
useful part of a documentary linguistic workflow
to quickly and systematically identify novel lexical
items and grammatical rules from texts, facilitating
the expansion of lexical resources. It can also be
used as a pedagogical tool to identify word stems
in running text, or to generate morphological exer-



cises for language learners.

The neural system, with its expanded coverage,
can serve as part of a feedback system with a hu-
man in the loop, informing future iterations of the
annotation process. While its precision is lower
than the FST, it can still inform annotators on words
that the FST does not analyze. Newly-annotated
data can then be used to enlarge the FST coverage.
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Abstract

Traditionally, character-level transduction
problems have been solved with finite-state
models designed to encode structural and
linguistic knowledge of the underlying pro-
cess, whereas recent approaches rely on the
power and flexibility of sequence-to-sequence
models with attention. Focusing on the less
explored unsupervised learning scenario, we
compare the two model classes side by side
and find that they tend to make different types
of errors even when achieving comparable
performance. We analyze the distributions of
different error classes using two unsupervised
tasks as testbeds: converting informally
romanized text into the native script of its lan-
guage (for Russian, Arabic, and Kannada) and
translating between a pair of closely related
languages (Serbian and Bosnian). Finally, we
investigate how combining finite-state and
sequence-to-sequence models at decoding
time affects the output quantitatively and
qualitatively.'

1 Introduction and prior work

Many natural language sequence transduction tasks,
such as transliteration or grapheme-to-phoneme
conversion, call for a character-level parameteriza-
tion that reflects the linguistic knowledge of the un-
derlying generative process. Character-level trans-
duction approaches have even been shown to per-
form well for tasks that are not entirely character-
level in nature, such as translating between related
languages (Pourdamghani and Knight, 2017).
Weighted finite-state transducers (WFSTs) have
traditionally been used for such character-level
tasks (Knight and Graehl, 1998; Knight et al.,
2006). Their structured formalization makes it eas-
ier to encode additional constraints, imposed either

!Code will be published at https://github.com/
ryskina/error—analysis-sigmorphon2021

Proceedings of the Seventeenth SIGMORPHON Workshop on Computational Research
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3to to4no mana belagitu
FIT TV NNl
9TO TOYHO WD 3PN

tehnicko 1 stru¢no obrazovanje
JOPTTTY T VNN

TEXHUYKA U CTPYYHA HACTaBa

Figure 1: Parallel examples from our test sets
for two character-level transduction tasks: con-
verting informally romanized text to its original
script (top; examples in Russian and Kannada)
and translating between closely related languages
(bottom; Bosnian—Serbian). Informal romaniza-
tion is idiosyncratic and relies on both visual (u
— 4) and phonetic (T — t) character similarity,
while translation is more standardized but not fully
character-level due to grammatical and lexical dif-
ferences (‘mactaBa’ — ‘obrazovanje’) between
the languages. The lines show character alignment
between the source and target side where possible.

by the underlying linguistic process (e.g. mono-
tonic character alignment) or by the probabilis-
tic generative model (Markov assumption; Eisner,
2002). Their interpretability also facilitates the in-
troduction of useful inductive bias, which is crucial
for unsupervised training (Ravi and Knight, 2009;
Ryskina et al., 2020).

Unsupervised neural sequence-to-sequence
(seq2seq) architectures have also shown impressive
performance on tasks like machine transla-
tion (Lample et al., 2018) and style transfer (Yang
et al., 2018; He et al., 2020). These models are
substantially more powerful than WFSTs, and they
successfully learn the underlying patterns from
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monolingual data without any explicit information
about the underlying generative process.

As the strengths of the two model classes dif-
fer, so do their weaknesses: the WFSTs and the
seq2seq models are prone to different kinds of
errors. On a higher level, it is explained by the
structure—power trade-off: while the seq2seq mod-
els are better at recovering long-range dependen-
cies and their outputs look less noisy, they also
tend to insert and delete words arbitrarily because
their alignments are unconstrained. We attribute
the errors to the following aspects of the trade-oft:

Language modeling capacity: the statistical
character-level n-gram language models (LMs) uti-
lized by finite-state approaches are much weaker
than the RNN language models with unlimited left
context. While a word-level LM can improve the
performance of a WEST, it would also restrict the
model’s ability to handle out-of-vocabulary words.

Controllability of learning: more structured mod-
els allow us to ensure that the model does not at-
tempt to learn patterns orthogonal to the underlying
process. For example, domain imbalance between
the monolingual corpora can cause the seq2seq
models to exhibit unwanted style transfer effects
like inserting frequent target side words arbitrarily.

Search procedure: WFSTs make it easy to per-
form exact maximum likelihood decoding via
shortest-distance algorithm (Mohri, 2009). For the
neural models trained using conventional methods,
decoding strategies that optimize for the output
likelihood (e.g. beam search with a large beam
size) have been shown to be susceptible to favoring
empty outputs (Stahlberg and Byrne, 2019) and
generating repetitions (Holtzman et al., 2020).

Prior work on leveraging the strength of the two
approaches proposes complex joint parameteriza-
tions, such as neural weighting of WEST arcs or
paths (Rastogi et al., 2016; Lin et al., 2019) or
encoding alignment constraints into the attention
layer of seq2seq models (Aharoni and Goldberg,
2017; Wu et al., 2018; Wu and Cotterell, 2019;
Makarov et al., 2017). We study whether perfor-
mance can be improved with simpler decoding-
time model combinations, reranking and product
of experts, which have been used effectively for
other model classes (Charniak and Johnson, 2005;
Hieber and Riezler, 2015), evaluating on two un-
supervised tasks: decipherment of informal roman-

ization (Ryskina et al., 2020) and related language
translation (Pourdamghani and Knight, 2017).

While there has been much error analysis for
the WEST and seq2seq approaches separately, it
largely focuses on the more common supervised
case. We perform detailed side-by-side error analy-
sis to draw high-level comparisons between finite-
state and seq2seq models and investigate if the
intuitions from prior work would transfer to the
unsupervised transduction scenario.

2 Tasks

We compare the errors made by the finite-state and
the seq2seq approaches by analyzing their perfor-
mance on two unsupervised character-level trans-
duction tasks: translating between closely related
languages written in different alphabets and con-
verting informally romanized text into its native
script. Both tasks are illustrated in Figure 1.

2.1 Informal romanization

Informal romanization is an idiosyncratic transfor-
mation that renders a non-Latin-script language in
Latin alphabet, extensively used online by speak-
ers of Arabic (Darwish, 2014), Russian (Paulsen,
2014), and many Indic languages (Sowmya et al.,
2010). Figure 1 shows examples of romanized Rus-
sian (top left) and Kannada (top right) sentences
along with their “canonicalized” representations in
Cyrillic and Kannada scripts respectively. Unlike
official romanization systems such as pinyin, this
type of transliteration is not standardized: charac-
ter substitution choices vary between users and are
based on the specific user’s perception of how sim-
ilar characters in different scripts are. Although
the substitutions are primarily phonetic (e.g. Rus-
sian H /n/ — n), i.e. based on the pronunciation
of a specific character in or out of context, users
might also rely on visual similarity between glyphs

(e.g. Russian u /tfi/ — 4), especially when the
associated phoneme cannot be easily mapped to
a Latin-script grapheme (e.g. Arabic ¢ /) — 3).
To capture this variation, we view the task of de-
coding informal romanization as a many-to-many
character-level decipherment problem.

The difficulty of deciphering romanization also
depends on the type of the writing system the
language traditionally uses. In alphabetic scripts,
where grapheme-to-phoneme correspondence is
mostly one-to-one, there tends to be a one-to-one
monotonic alignment between characters in the ro-
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manized and native script sequences (Figure 1, top
left). Abjads and abugidas, where graphemes corre-
spond to consonants or consonant-vowel syllables,
increasingly use many-to-one alignment in their
romanization (Figure 1, top right), which makes
learning the latent alignments, and therefore decod-
ing, more challenging. In this work, we experiment
with three languages spanning over three major
types of writing systems—Russian (alphabetic),
Arabic (abjad), and Kannada (abugida)—and com-
pare how well-suited character-level models are for
learning these varying alignment patterns.

2.2 Related language translation

As shown by Pourdamghani and Knight (2017)
and Hauer et al. (2014), character-level models can
be used effectively to translate between languages
that are closely enough related to have only small
lexical and grammatical differences, such as Ser-
bian and Bosnian (Ljubesi¢ and Klubicka, 2014).
We focus on this specific language pair and tie the
languages to specific orthographies (Cyrillic for
Serbian and Latin for Bosnian), approaching the
task as an unsupervised orthography conversion
problem. However, the transliteration framing of
the translation problem is inherently limited since
the task is not truly character-level in nature, as
shown by the alignment lines in Figure 1 (bottom).
Even the most accurate transliteration model will
not be able to capture non-cognate word transla-
tions (Serbian ‘macrTasa’ [nastava, ‘education, teach-
ing’] — Bosnian ‘obrazovanje’ [‘education’]) and the
resulting discrepancies in morphological inflection
(Serbian -a endings in adjectives agreeing with
feminine ‘macTasa’ map to Bosnian -o represent-
ing agreement with neuter ‘obrazovanje’).

One major difference with the informal roman-
ization task is the lack of the idiosyncratic orthogra-
phy: the word spellings are now consistent across
the data. However, since the character-level ap-
proach does not fully reflect the nature of the trans-
formation, the model will still have to learn a many-
to-many cipher with highly context-dependent char-
acter substitutions.

3 Data

Table 1 details the statistics of the splits used for
all languages and tasks. Below we describe each
dataset in detail, explaining the differences in data
split sizes between languages. Additional prepro-
cessing steps applied to all datasets are described
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in §3.4.2

3.1 Informal romanization

Source: de el menu:)
Filtered: de el menu<...>
Target: <.>all o
Gloss: “This is the menu’

Figure 2: A parallel example from the LDC BOLT
Arabizi dataset, written in Latin script (source) and
converted to Arabic (target) semi-manually. Some
source-side segments (in red) are removed by an-
notators; we use the version without such segments
(filtered) for our task. The annotators also stan-
dardize spacing on the target side, which results in
difference with the source (in blue).

Arabic We use the LDC BOLT Phase 2 cor-
pus (Bies et al., 2014; Song et al., 2014) for training
and testing the Arabic transliteration models (Fig-
ure 2). The corpus consists of short SMS and chat
in Egyptian Arabic represented using Latin script
(Arabizi). The corpus is fully parallel: each mes-
sage is automatically converted into the standard-
ized dialectal Arabic orthography (CODA; Habash
etal., 2012) and then manually corrected by human
annotators. We split and preprocess the data accord-
ing to Ryskina et al. (2020), discarding the target
(native script) and source (romanized) parallel sen-
tences to create the source and target monolingual
training splits respectively.

Russian We use the romanized Russian dataset
collected by Ryskina et al. (2020), augmented with
the monolingual Cyrillic data from the Taiga cor-
pus of Shavrina and Shapovalova (2017) (Figure 3).
The romanized data is split into training, validation,
and test portions, and all validation and test sen-
tences are converted to Cyrillic by native speaker
annotators. Both the romanized and the native-
script sequences are collected from public posts and
comments on a Russian social network vk . com,
and they are on average 3 times longer than the
messages in the Arabic dataset (Table 1). However,
although both sides were scraped from the same
online platform, the relevant Taiga data is collected
primarily from political discussion groups, so there
is still a substantial domain mismatch between the
source and target sides of the data.

?Links to download the corpora and other data sources
discussed in this section can be found in Appendix A.



Train (source)  Train (target) Validation Test

Sent. Char. Sent. Char. Sent. Char. Sent. Char.
Romanized Arabic 5K 104K 49K 935K 301 8K 1K 20K
Romanized Russian 5K 319K 307K 111M 227 15K 1K 72K
Romanized Kannada 10K IM 679K 64M 100 11K 100 10K
Serbian—Bosnian 160K O9M 136K I9IM 16K 923K 100 9K
Bosnian—Serbian 136K O9M 160K 9M 16K 908K 100 10K

Table 1: Dataset splits for each task and language. The source and target train data are monolingual, and
the validation and test sentences are parallel. For the informal romanization task, the source and target
sides correspond to the Latin and the original script respectively. For the translation task, the source and
target sides correspond to source and target languages. The validation and test character statistics are

reported for the source side.

Annotated
Source: proishodit s prirodoy 4to to very very bad
Filtered:  proishodit s prirodoy 4to to <...>
Target: MPOUCXOAUT C IPUPOION UTO-TO <...>
Gloss: ‘Something very very bad is happening to
the environment’
Monolingual
Source: —
Target: ®TO BUICOPOJUKA CO Cbe3ga map-
Tvu “Enuras Poccusa”
Gloss: ‘These are the videos from the “United Rus-

sia” party congress’

Figure 3: Top: A parallel example from the roman-
ized Russian dataset. We use the filtered version
of the romanized (source) sequences, removing the
segments the annotators were unable to convert to
Cyrillic, e.g. code-switched phrases (in red). The
annotators also standardize minor spelling varia-
tion such as hyphenation (in blue). Bottom: a
monolingual Cyrillic example from the vk .com
portion of the Taiga corpus, which mostly consists
of comments in political discussion groups.

Kannada Our Kannada data (Figure 4) is taken
from the Dakshina dataset (Roark et al., 2020),
a large collection of native-script text from
Wikipedia for 12 South Asian languages. Unlike
the Russian and Arabic data, the romanized portion
of Dakshina is not scraped directly from the users’
online communication, but instead elicited from
native speakers given the native-script sequences.
Because of this, all romanized sentences in the
data are parallel: we allocate most of them to the
source side training data, discarding their original
script counterparts, and split the remaining anno-
tated ones between validation and test.
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Target: B 78 IY DDRICHI, 09D
Source: moola saaketnalli ddr3yannu balasalu
Gloss: ‘to use DDR3 in the source circuit’

Figure 4: A parallel example from the Kannada por-
tion of the Dakshina dataset. The Kannada script
data (target) is scraped from Wikipedia and man-
ually converted to Latin (source) by human anno-
tators. Foreign target-side characters (in red) get
preserved in the annotation but our preprocessing
replaces them with UNK on the target side.

Serbian:  cBako nMma IpaBoO HA KUBOT, CI000IY
u 6e30eqHOCT JIMYHOCTH.

Bosnian: svako ima pravo na Zivot, slobodu i osobnu
sigurnost.

Gloss: ‘Everyone has the right to life, liberty and

security of person.’

Figure 5: A parallel example from the Serbian—
Cyrillic and Bosnian—-Latin UDHR. The sequences
are not entirely parallel on character level due to
paraphrases and non-cognate translations (in blue).

3.2 Related language translation

Following prior work (Pourdamghani and Knight,
2017; Yang et al., 2018; He et al., 2020), we train
our unsupervised models on the monolingual data
from the Leipzig corpora (Goldhahn et al., 2012).
We reuse the non-parallel training and synthetic par-
allel validation splits of Yang et al. (2018), who gen-
erated their parallel data using the Google Trans-
lation API. Rather than using their synthetic test
set, we opt to test on natural parallel data from the
Universal Declaration of Human Rights (UDHR),
following Pourdamghani and Knight (2017).

We manually sentence-align the Serbian—



Cyrillic and Bosnian—Latin declaration texts and
follow the preprocessing guidelines of Pour-
damghani and Knight (2017). Although we strive
to approximate the training and evaluation setup
of their work for fair comparison, there are some
discrepancies: for example, our manual alignment
of UDHR yields 100 sentence pairs compared to
104 of Pourdamghani and Knight (2017). We use
the data to train the translation models in both di-
rections, simply switching the source and target
sides from Serbian to Bosnian and vice versa.

3.3 Inductive bias

As discussed in §1, the WEST models are less pow-
erful than the seq2seq models; however, they are
also more structured, which we can use to introduce
inductive bias to aid unsupervised training. Follow-
ing Ryskina et al. (2020), we introduce informative
priors on character substitution operations (for a de-
scription of the WFST parameterization, see §4.1).
The priors reflect the visual and phonetic similar-
ity between characters in different alphabets and
are sourced from human-curated resources built
with the same concepts of similarity in mind. For
all tasks and languages, we collect phonetically
similar character pairs from the phonetic keyboard
layouts (or, in case of the translation task, from the
default Serbian keyboard layout, which is phonetic
in nature due to the dual orthography standard of
the language). We also add some visually similar
character pairs by automatically pairing all sym-
bols that occur in both source and target alphabets
(same Unicode codepoints). For Russian, which
exhibits a greater degree of visual similarity than
Arabic or Kannada, we also make use of the Uni-
code confusables list (different Unicode codepoints
but same or similar glyphs).’

It should be noted that these automatically gen-
erated informative priors also contain noise: key-
board layouts have spurious mappings because
each symbol must be assigned to exactly one key in
the QWERTY layout, and Unicode-constrained vi-
sual mappings might prevent the model from learn-
ing correspondences between punctuation symbols
(e.g. Arabic question mark § — ?).

3.4 Preprocessing

We lowercase and segment all sequences into char-
acters as defined by Unicode codepoints, so dia-

3Links to the keyboard layouts and the confusables list can
be found in Appendix A.

critics and non-printing characters like ZWJ are
also treated as separate vocabulary items. To filter
out foreign or archaic characters and rare diacritics,
we restrict the alphabets to characters that cover
99% of the monolingual training data. After that,
we add any standard alphabetical characters and
numerals that have been filtered out back into the
source and target alphabets. All remaining filtered
characters are replaced with a special UNK symbol
in all splits except for the target-side test.

4 Methods

We perform our analysis using the finite-state and
seq2seq models from prior work and experiment
with two joint decoding strategies, reranking and
product of experts. Implementation details and
hyperparameters are described in Appendix B.

4.1 Base models

Our finite-state model is the WFST cascade in-
troduced by Ryskina et al. (2020). The model is
composed of a character-level n-gram language
model and a script conversion transducer (emis-
sion model), which supports one-to-one character
substitutions, insertions, and deletions. Charac-
ter operation weights in the emission model are
parameterized with multinomial distributions, and
similar character mappings (§3.3) are used to cre-
ate Dirichlet priors on the emission parameters.
To avoid marginalizing over sequences of infinite
length, a fixed limit is set on the delay of any path
(the difference between the cumulative number of
insertions and deletions at any timestep). Ryskina
et al. (2020) train the WFST using stochastic step-
wise EM (Liang and Klein, 2009), marginalizing
over all possible target sequences and their align-
ments with the given source sequence. To speed
up training, we modify their training procedure
towards ‘hard EM’: given a source sequence, we
predict the most probable target sequence under
the model, marginalize over alignments and then
update the parameters. Although the unsupervised
WEST training is still slow, the stepwise training
procedure is designed to converge using fewer data
points, so we choose to train the WFST model
only on the 1,000 shortest source-side training se-
quences (500 for Kannada).

Our default seq2seq model is the unsupervised
neural machine translation (UNMT) model of Lam-
ple et al. (2018, 2019) in the parameterization
of He et al. (2020). The model consists of an
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Arabic Russian Kannada
CER WER BLEU CER WER BLEU CER WER BLEU
WEST 405 .86 2.3 202 .58 148 359 71 12.5
Seq2Seq 571 .85 4.0 229 .38 483 559 .79 11.3
Reranked WFST 398 .85 2.8 195 57 16.1 358 .71 12.5
Reranked Seq2Seq .538 .82 4.6 216 .39 456 545 78 12.6
Product of experts 470 .88 2.5 178 .50 229 543 .93 7.0

Table 2: Character and word error rates (lower is better) and BLEU scores (higher is better) for the
romanization decipherment task. Bold indicates best per column. Model combinations mostly interpolate
between the base models’ scores, although reranking yields minor improvements in character-level and
word-level metrics for the WFST and seq2seq respectively. Note: base model results are not intended as a
direct comparison between the WFST and seq2seq, since they are trained on different amounts of data.

srp—bos bos—srp
CER WER BLEU CER WER BLEU
WEST 314 50 253 319 52 25.5
Seq2Seq 375 .49 345 395 49 36.3
Reranked WFST 314 49 263 317 .50 28.1
Reranked Seq2Seq 376 48 35.1 401 47 37.0
Product of experts 329 54 244 352 .66 20.6
(Pourdamghani and Knight, 2017) — — 42.3 — — 39.2
(He et al., 2020) .657 .81 56 .693 .83 4.7

Table 3: Character and word error rates (lower is better) and BLEU scores (higher is better) for the related
language translation task. Bold indicates best per column. The WFST and the seq2seq have comparable
CER and WER despite the WFST being trained on up to 160x less source-side data (§4.1). While none
of our models achieve the scores reported by Pourdamghani and Knight (2017), they all substantially
outperform the subword-level model of He et al. (2020). Note: base model results are not intended as a
direct comparison between the WFST and seq2seq, since they are trained on different amounts of data.

trained to translate in both directions simultane-
ously. Therefore, we reuse the same seq2seq model
for both directions of the translation task, but train
a separate finite-state model for each direction.

LSTM (Hochreiter and Schmidhuber, 1997) en-
coder and decoder with attention, trained to map
sentences from each domain into a shared latent
space. Using a combined objective, the UNMT
model is trained to denoise, translate in both direc-
tions, and discriminate between the latent represen-
tation of sequences from different domains. Since
the sufficient amount of balanced data is crucial
for the UNMT performance, we train the seq2seq
model on all available data on both source and tar-
get sides. Additionally, the seq2seq model decides

4.2 Model combinations

The simplest way to combine two independently
trained models is reranking: using one model to
produce a list of candidates and rescoring them ac-
cording to another model. To generate candidates

on early stopping by evaluating on a small parallel
validation set, which our WFST model does not
have access to.

The WFST model treats the target and source
training data differently, using the former to train
the language model and the latter for learning the
emission parameters, while the UNMT model is

with a WFST, we apply the n—shortest paths algo-
rithm (Mohri and Riley, 2002). It should be noted
that the n—best list might contain duplicates since
each path represents a specific source—target char-
acter alignment. The length constraints encoded in
the WEST also restrict its capacity as a reranker:
beam search in the UNMT model may produce
hypotheses too short or long to have a non-zero
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Input

Ground truth

CBAKO MMa MPAaBO 1a CIODOIHO yUEeCTBYje y KyJTYPHOM sKMBOTY 3ajeqHUIE, Ha YKUBA
Y YMETHOCTU U Oa yYEeCTBYj€ Yy HAYYHOM HAIIPETKY M y JOOPOOUTHU KOja OTYIa
IPOUCTHUYE.

svako ima pravo da slobodno sudjeluje u kulturnom Zivotu zajednice, da uZiva u umjetnosti i da
ucestvuje u znanstvenom napretku i u njegovim koristima.

WEST

Reranked WFST
Seq2Seq

Reranked Seq2Seq

Product of experts

Subword Seq2Seq

svako ima pravo da slobodno ucestvuje u kulturnom Zivotu sjednice , da uZiva u m etnosti i da
ucestvuje u nau¢nom napretku i u dobrobiti koja otuda pristice .

svako ima pravo da slobodno ucestvuje u kulturnom Zivotu sjednice , da uZiva u ‘'metnosti i da
ucestvuje u nauénom napretku i u dobrobiti koja otuda pr istice .

svako ima pravo da slobodno ucestvuje u kulturnom Zivotu zajednice , da

ucestvuje u naucnom napretku i u dobrobiti koja otuda proistice .

svako ima pravo da slobodno ucestvuje u kulturnom Zivotu zajednice , da uziva u umjetnosti i da
ucestvuje u naucnom napretku i u dobrobiti koja otuda proistice

svako ima pravo da slobodno ucestvuje u kulturnom za u sajednice , da Ziva u umjetnosti i da
ucestvuje u nauc¢nom napretku i u dobroj i koja otuda proisti

sami ima pravo da slobodno utice na srpskom nivou vlasti da razgovaraju u bosne i da djeluje u
medunarodnom turizmu i na buducnosti koja muZa decisno .

Table 4: Different model outputs for a srp—bos translation example. Prediction errors are highlighted
in red. Correctly transliterated segments that do not match the ground truth (e.g. due to paraphrasing)
are shown in yellow. Here the WEFST errors are substitutions or deletions of individual characters, while
the seq2seq drops entire words from the input (§5 #4). The latter problem is solved by reranking with a
WEST for this example. The seq2seq model with subword tokenization (He et al., 2020) produces mostly
hallucinated output (§5 #2). Example outputs for all other datasets can be found in the Appendix.

probability under the WEST.

Our second approach is a product-of-experts-
style joint decoding strategy (Hinton, 2002):
we perform beam search on the WFST lattice,
reweighting the arcs with the output distribution of
the seq2seq decoder at the corresponding timestep.
For each partial hypothesis, we keep track of the
WEST state s and the partial input and output se-
quences x1.; and yl;t.“ When traversing an arc
with input label i € {x1, €} and output label o,
we multiply the arc weight by the probability of
the neural model outputting o as the next character:
pseq2seq(yt+1 = O‘IL’, yl;t). Transitions with o = €
(i.e. deletions) are not rescored by the seq2seq. We
group hypotheses by their consumed input length
k and select n best extensions at each timestep.

4.3 Additional baselines

For the translation task, we also compare to prior
unsupervised approaches of different granularity:
the deep generative style transfer model of He et al.
(2020) and the character- and word-level WFST
decipherment model of Pourdamghani and Knight
(2017). The former is trained on the same training
set tokenized into subword units (Sennrich et al.,
2016), and we evaluate it on our UDHR test set
for fair comparison. While the train and test data

“Due to insertions and deletions in the emission model, k
and ¢ might differ; epsilon symbols are not counted.

of Pourdamghani and Knight (2017) also use the
same respective sources, we cannot account for
tokenization differences that could affect the scores
reported by the authors.

5 Results and analysis

Tables 2 and 3 present our evaluation of the two
base models and three decoding-time model com-
binations on the romanization decipherment and
related language translation tasks respectively. For
each experiment, we report character error rate,
word error rate, and BLEU (see Appendix C). The
results for the base models support what we show
later in this section: the seq2seq model is more
likely to recover words correctly (higher BLEU,
lower WER), while the WFST is more faithful on
character level and avoids word-level substitution
errors (lower CER). Example predictions can be
found in Table 4 and in the Appendix.

Our further qualitative and quantitative findings
are summarized in the following high-level take-
aways:

#1: Model combinations still suffer from search
issues. We would expect the combined decod-
ing to discourage all errors common under one
model but not the other, improving the performance
by leveraging the strengths of both model classes.
However, as Tables 2 and 3 show, they instead
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mostly interpolate between the scores of the two
base models. In the reranking experiments, we find
that this is often due to the same base model er-
ror (e.g. the seq2seq model hallucinating a word
mid-sentence) repeating across all the hypotheses
in the final beam. This suggests that successful
reranking would require a much larger beam size
or a diversity-promoting search mechanism.

Interestingly, we observe that although adding
a reranker on top of a decoder does improve per-
formance slightly, the gain is only in terms of the
metrics that the base decoder is already strong at—
character-level for reranked WFST and word-level
for reranked seq2seq—at the expense of the other
scores. Overall, none of our decoding strategies
achieves best results across the board, and no model
combination substantially outperforms both base
models in any metric.

#2: Character tokenization boosts performance
of the neural model. In the past, UNMT-style
models have been applied to various unsupervised
sequence transduction problems. However, since
these models were designed to operate on word or
subword level, prior work assumes the same tok-
enization is necessary. We show that for the tasks
allowing character-level framing, such models in
fact respond extremely well to character input.
Table 3 compares the UNMT model trained on
characters with the seq2seq style transfer model
of He et al. (2020) trained on subword units. The
original paper shows improvement over the UNMT
baseline in the same setting, but simply switching
to character-level tokenization without any other
changes results in a 30 BLEU points gain for ei-
ther direction. This suggests that the tokenization
choice could act as an inductive bias for seq2seq
models, and character-level framing could be use-
ful even for tasks that are not truly character-level.
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Figure 6: Highest-density sub-
matrices of the two base mod-
els’ character confusion matrices,
computed in the Russian roman-
ization task. White cells repre-
sent zero elements. The WFST
confusion matrix (left) is notice-
ably sparser than the seq2seq one
(right), indicating more repetitive
errors. # symbol stands for UNK.

This observation also aligns with the findings of
the recent work on language modeling complex-
ity (Park et al., 2021; Mielke et al., 2019). For
many languages, including several Slavic ones re-
lated to the Serbian—Bosnian pair, a character-level
language model yields lower surprisal than the one
trained on BPE units, suggesting that the effect
might also be explained by the character tokeniza-
tion making the language easier to language-model.

#3: WFST model makes more repetitive errors.
Although two of our evaluation metrics, CER and
WER, are based on edit distance, they do not dis-
tinguish between the different types of edits (sub-
stitutions, insertions and deletions). Breaking them
down by the edit operation, we find that while both
models favor substitutions on both word and char-
acter levels, insertions and deletions are more fre-
quent under the neural model (43% vs. 30% of all
edits on the Russian romanization task). We also
find that the character substitution choices of the
neural model are more context-dependent: while
the total counts of substitution errors for the two
models are comparable, the WEST is more likely
to repeat the same few substitutions per character
type. This is illustrated by Figure 6, which visual-
izes the most populated submatrices of the confu-
sion matrices for the same task as heatmaps. The
WEST confusion matrix is noticeably more sparse,
with the same few substitutions occurring much
more frequently than others: for example, WFST
often mistakes s for a and rarely for other char-
acters, while the neural model’s substitutions of
s are distributed closer to uniform. This suggests
that the WFST errors might be easier to correct
with rule-based postprocessing. Interestingly, we
did not observe the same effect for the translation
task, likely due to a more constrained nature of the
orthography conversion.



Seq2Se .

WEST 4-5¢q Figure 7: Character error rate per
u L word for the WEST (left) and seq2seq

800 800 . .
P (right) bos—srp translation outputs.
§ 600 600 The predictions are segmented us-
5 ing Moses tokenizer (Koehn et al.,
f.g 400 400 2007) and aligned to ground truth
3 with word-level edit distance. The in-
200 200 ﬂ creased frequency of CER=1 for the
0 W ‘ | 0 ‘ ‘ ‘ ‘ seq2seq model as compared to the
0 06 12 18 24 0 06 12 18 24 WEST indicates that it replaces entire

CER per word CER per word words more often.

#4: Neural model is more sensitive to data dis-
tribution shifts. The language model aiming to
replicate its training data distribution could cause
the output to deviate from the input significantly.
This could be an artifact of a domain shift, such as
in Russian, where the LM training data came from
a political discussion forum: the seq2seq model fre-
quently predicts unrelated domain-specific proper
names in place of very common Russian words, e.g.
JKU3HD [Zizn, ‘life’] — 310raHoB [Zjuganov, ‘Zyuganov
(politician’s last name)’] Or 9TO [eto, ‘this’] — Ennuas
Poccust [Edinaja Rossija, ‘United Russia (political party)’],
presumably distracted by the shared first character
in the romanized version. To quantify the effect of
a mismatch between the train and test data distri-
butions in this case, we inspect the most common
word-level substitutions under each decoding strat-
egy, looking at all substitution errors covered by the
1,000 most frequent substitution ‘types’ (ground
truth—prediction word pairs) under the respective
decoder. We find that 25% of the seq2seq substitu-
tion errors fall into this category, as compared to
merely 3% for the WFST—notable given the rela-
tive proportion of in-vocabulary words in the mod-
els’” outputs (89% for UNMT vs. 65% for WEST).

Comparing the error rate distribution across out-
put words for the translation task also supports this
observation. As can be seen from Figure 7, the
seq2seq model is likely to either predict the word
correctly (CER of 0) or entirely wrong (CER of
1), while the the WFST more often predicts the
word partially correctly—examples in Table 4 illus-
trate this as well. We also see this in the Kannada
outputs: WFST typically gets all the consonants
right but makes mistakes in the vowels, while the
seq2seq tends to replace the entire word.

6 Conclusion

We perform comparative error analysis in finite-
state and seq2seq models and their combinations
for two unsupervised character-level tasks, infor-
mal romanization decipherment and related lan-
guage translation. We find that the two model types
tend towards different errors: seq2seq models are
more prone to word-level errors caused by distribu-
tional shifts while WFSTs produce more character-
level noise despite the hard alignment constraints.

Despite none of our simple decoding-time com-
binations substantially outperforming the base mod-
els, we believe that combining neural and finite-
state models to harness their complementary ad-
vantages is a promising research direction. Such
combinations might involve biasing seq2seq mod-
els towards WFST-like behavior via pretraining or
directly encoding constraints such as hard align-
ment or monotonicity into their parameterization
(Wu et al., 2018; Wu and Cotterell, 2019). Al-
though recent work has shown that the Transformer
can learn to perform character-level transduction
without such biases in a supervised setting (Wu
et al., 2021), exploiting the structured nature of the
task could be crucial for making up for the lack of
large parallel corpora in low-data and/or unsuper-
vised scenarios. We hope that our analysis provides
insight into leveraging the strengths of the two ap-
proaches for modeling character-level phenomena
in the absence of parallel data.
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A Data download links

The romanized Russian and Arabic data and pre-
processing scripts can be downloaded here. This
repository also contains the relevant portion of the
Taiga dataset, which can be downloaded in full at
this link. The romanized Kannada data was down-
loaded from the Dakshina dataset.

The scripts to download the Serbian and Bosnian
Leipzig corpora data can be found here. The
UDHR texts were collected from the corresponding
pages: Serbian, Bosnian.

The keyboard layouts used to construct the
phonetic priors are collected from the following
sources: Arabic 1, Arabic 2, Russian, Kannada,
Serbian. The Unicode confusables list used for the
Russian visual prior can be found here.

B Implementation

WFST We reuse the unsupervised WFST imple-
mentation of Ryskina et al. (2020),> which utilizes
the OpenFst (Allauzen et al., 2007) and Open-
Grm (Roark et al., 2012) libraries. We use the
default hyperparameter settings described by the
authors (see Appendix B in the original paper). We
keep the hyperparameters unchanged for the trans-
lation experiment and set the maximum delay value
to 2 for both translation directions.

UNMT We use the PyTorch UNMT implementa-
tion of He et al. (2020)° which incorporates im-
provements introduced by Lample et al. (2019)
such as the addition of a max-pooling layer. We
use a single-layer LSTM (Hochreiter and Schmid-
huber, 1997) with hidden state size 512 for both
the encoder and the decoder and embedding dimen-
sion 128. For the denoising autoencoding loss, we
adopt the default noise model and hyperparameters
as described by Lample et al. (2018). The autoen-
coding loss is annealed over the first 3 epochs. We
predict the output using greedy decoding and set
the maximum output length equal to the length of
the input sequence. Patience for early stopping is
set to 10.

Model combinations Our joint decoding imple-
mentations rely on PyTorch and the Pynini finite-
state library (Gorman, 2016). In reranking, we
rescore n = 5 best hypotheses produced using

Shttps://github.com/ryskina/
romanization-decipherment

*https://github.com/cindyxinyiwang/
deep-latent-sequence-model

210

beam search and n—shortest path algorithm for the
UNMT and WEST respectively. Product of experts
decoding is also performed with beam size 5.

C Metrics

The character error rate (CER) and word error rate

(WER) as measured as the Levenshtein distance

between the hypothesis and reference divided by

reference length:
ER(h, 1) = dist(h,r)

len(r)

with both the numerator and the denominator mea-

sured in characters and words respectively.

We report BLEU-4 score (Papineni et al., 2002),
measured using the Moses toolkit script.” For both
BLEU and WER, we split sentences into words
using the Moses tokenizer (Koehn et al., 2007).

"https://github.com/moses—smt/
mosesdecoder/blob/master/scripts/
generic/multi-bleu.perl



Input

Ground truth

kongress ne odobril biudjet dlya osuchestvleniye
"bor’bi s kommunizmom" v yuzhniy amerike.
KOHI'DecC He 0n00pui O mKeT s
ocymrecTBiieHus "00PLOBI ¢ KOMMYHU3MOM"
B IOKHOW aMepUKe.

kongress ne odobril bjudzet dlja osuscestvlenija
"bor’by s kommunizmom" v juznoj amerike.

WEST

Reranked WFST

Seq2Seq

Reranked Seq2Seq

Product of experts

KOHT'DECC He 0m00pmiI BUY O €T IIa
ocycuecTBIEHUEL e "Oop#HOU C
KOMMYHHU3MOM" B Yy3HaHU aMEPUKeE.
KOHI'pDecC He 040OpUI BH I ET Keira
ocylcuecTBIIeHUEI € "Cop#Oum ¢
KOMMYHHU3MOM" B [yY3HAHI aMepUKe.
KOHI'DECC He 0100puir

OBl yAUBUTEIHLHO @
KOMMYHU3MOM" B IOKHBIU aMepPUKe.
KOHI'DecC He omo0pui O mKeT s
ocymiecTBiieHn e "OOPLOBI C KOMMYHU3MOM"
B IOKHBI aMepUKe.

KOHT'PEeCcC He o0mo0puy OmMmer s a
OCYIIEeCTBICHUEL € "GOPLOLI ¢
KOMMYHHU3MOM" B YY3HHUK aMepu

kongress ne odobril viud et dla osusCestvleniy e
"bor#bi s kommunizmom" v uuznani amerike.

kongress ne odobril vid et dela osus€estvleniy e
"bor#bi s kommunizmom" v wuznani amerike.

kongress ne odobril by udivite]’no
s kommunizmom" v juZnyj amerike.

kongress ne odobril bjudzet dlja osuscestvlenie
"bor’by s kommunizmom" v juznyj amerike.

kongress ne odobril bid et dlja a osuscestvleniy e
"bor’by s kommunizmom" v uuznnik ameri

Table 5: Different model outputs for a Russian transliteration example (left column—Ciyrillic, right—
scientific transliteration). Prediction errors are shown in red. Correctly transliterated segments that do not
match the ground truth because of spelling standardization in annotation are in yellow. # stands for UNK.

Input
Ground truth

ana h3dyy 3lek bokra 3la 8 kda
o,\YSJ:- 35 dde gasls Ul

AnA H>Edy Elyk bkrp E1Y 8 kdh

WEST 0 8Y K el g s Ul
Reranked WEST 18 <ol o bl
Seq2Seq 01 dj“;’ eu;‘ d’L. i
Reranked Seq2Seq oSl djif ] &JL L

Product of experts

a8 NI 1S L el oo Ul

AnAHd yy lkbkr 1> 8 kdh
AnA Hd yy lkbkr 1> 8 kdh
AnA b>dy >x1k Hr >wl 1 kdh
AnA b>dy >x1k Hr >wl 1 kdh
AnA dy 1kb krA >1A 8 kdh

Table 6: Different model outputs for an Arabizi transliteration example (left column—Arabic, right—
Buckwalter transliteration). Prediction errors are highlighted in red in the romanized versions. Correctly
transliterated segments that do not match the ground truth because of spelling standardization during
annotation are highlighted in yellow.

Input kshullaka baalina avala horaatavannu adu vivarisuttade.

Ground truth BHOT RII 0IY éfaeoaéjdm&@m cDﬁ@r\"béCg. ksullaka balina avala horatavannu adu
vivarisuttade.

WEST BDBRUYSS LRI 0¥ BRTTHI, W IO kuhiillakhe balinu vala
horatavannu adu vivarisuttade.

Reranked WFST BDBRUYES 2RI T BRTTIR, BT IFORITH. Kuhillakhe balina ‘valu
hioratavannu @du vivarisuttade.

Seq2Seq BHOTE, 20I0N° BV BRCTHEB/R, BT IFOISE. kaluhulla bavirg illavé horatavannu
idu vivarisuttade.

Reranked Seq2Seq  BROTOF, 2008 B 53¢ BRTEIFT, FWO IRWOROTH.  Kaluhulla bavirita illave horatavannu

Product of experts

idu vivarisuttade.
kalla bakalinna vala horatatvannu

5%{2 mséw&mm mcoa&da%m&cb «Je00ROTT

du vivarisuttada

Table 7: Different model outputs for a Kannada transliteration example (left column—Kannada, right—
ISO 15919 transliterations). The ISO romanization is generated using the Nisaba library (Johny et al.,
2021). Prediction errors are highlighted in red in the romanized versions.
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Abstract

Shupamem, a language of Western Cameroon,
is a tonal language which also exhibits the
morpho-phonological process of full redupli-
cation. This creates two challenges for a finite-
state model of its morpho-syntax and morpho-
phonology: how to manage the full reduplica-
tion, as well as the autosegmental nature of
lexical tone. Dolatian and Heinz (2020) ex-
plain how 2-way finite-state transducers can
model full reduplication without an exponen-
tial increase in states, and finite-state trans-
ducers with multiple tapes have been used
to model autosegmental tiers, including tone
(Wiebe, 1992; Dolatian and Rawski, 2020a;
Rawski and Dolatian, 2020). Here we synthe-
size 2-way finite-state transducers and multi-
tape transducers, resulting in a finite-state for-
malism that subsumes both, to account for
the full reduplicative processes in Shupamem
which also affect tone.

1 Introduction

Reduplication is a very common morphological
process cross-linguistically. Approximately 75%
of world languages exhibit partial or total redupli-
cation (Rubino, 2013). This morphological pro-
cess is particularly interesting from the compu-
tational point of view because it introduces chal-
lenges for 1-way finite-state transducers (FSTs).
Even though partial reduplication can be modelled
with 1-way FSTs (Roark and Sproat, 2007; Chan-
dlee and Heinz, 2012), there is typically an ex-
plosion in the number of states. Total reduplica-
tion, on the other hand, is the only known morpho-
phonological process that cannot be modelled with
1-way FSTs because the number of copied ele-
ments, in principle, has no upper bound. Dolatian
and Heinz (2020) address this challenge with 2-
way FSTs, which can move back and forth on the
input tape, producing a faithful copy of a string.

Deterministic 2-way FSTs can model both partial
and full segmental reduplication in a compact way.

However, many languages that exhibit reduplica-
tive processes also are tonal, which often means
that tones and segments act independently from
one another in their morpho-phonology. For in-
stance, in Shupamem, a tonal language of Western
Cameroon, nddp ‘house’ — ndap ndap ‘houses’
(Markowska, 2020).

tones H HLL
segments ndap ndap ndap

Pioneering work in autosegmental phonology
(Leben, 1973; Williams, 1976; Goldsmith, 1976)
shows tones may act independently from their tone-
bearing units (TBUs). Moreover, tones may ex-
hibit behavior that is not typical for segments (Hy-
man, 2014; Jardine, 2016), which brings yet an-
other strong argument for separating them from
segments in their linguistic representations. Such
autosegmental representations can be mimicked
using finite-state machines, in particular, Multi-
Tape Finite-State Transducers (MT FSTs) (Wiebe,
1992; Dolatian and Rawski, 2020a; Rawski and
Dolatian, 2020). We note that McCarthy (1981)
uses the same autosegmental representations in
the linguistic representation to model templatic
morphology, and this approach has been modeled
for Semitic morphological processing using multi-
tape automata (Kiraz, 2000; Habash and Rambow,
2006).

This paper investigates what finite-state machin-
ery is needed for languages which have both redu-
plication and tones. We first argue that we need
a synthesis of the aforementioned transducers, i.e.
1-way, 2-way and MT FSTs, to model morphol-
ogy in the general case. The necessity for such
a formal device will be supported by the morpho-
phonological processes present in Shupamem nom-
inal and verbal reduplication. We then discuss an
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alternative, in which we use the MT FST to han-
dle both reduplication and tones. It is important
to emphasize that all of the machines we discuss
are deterministic, which serves as another piece of
evidence that even such complex processes like full
reduplication can be modelled with deterministic
finite-state technology (Chandlee and Heinz, 2012;
Heinz, 2018).

This paper is structured as follows. First, we
will briefly summarize the linguistic phenomena
observed in Shupamem reduplication (Section 2).
We then provide a formal description of the 2-way
(Section 3) and MT FSTs (Section 4). We propose
a synthesis of the 1-way, 2-way and MT FSTs in
Section 5 and further illustrate them using rele-
vant examples from Shupamem in Section 6. In
Section 7 we discuss a possible alternative to the
model which uses only MT FSTs. Finally, in Sec-
tion 8 we show that the proposed model works for
other tonal languages as well, and we conclude our
contributions.

2 Shupamem nominal and verbal
reduplication

Shupamem is an understudied Grassfields Bantu
language of Cameroon spoken by approximately
420,000 speakers (Eberhard et al., 2021). It ex-
hibits four contrastive surface tones (Nchare, 2012):
high (H; we use diacritic V on a vowel as an or-
thographic representation), low (L; diacritic V),
rising (LH; diacritic \7)’ and falling (HL; diacritic
V). Nouns and verbs in the language reduplicate
to create plurals and introduce semantic contrast,
respectively. Out of 13 nouns classes, only one
exhibits reduplication. Nouns that belong to that
class are monosyllabic and carry either H or L lexi-
cal tones. Shupamem verbs are underlyingly H or
rising (LH). Table 1 summarizes the data adapted
from Markowska (2020).

In both nouns and verbs, the first item of the redu-
plicated phrase is the base, while the reduplicant is
the suffix. We follow the analysis in Markowska
(2020) and summarize it here. The nominal redu-
plicant is toneless underlyingly, while the verbal
reduplicant has an H tone. Furthermore, the rule of
Opposite Tone Insertion explains the tonal alterna-
tion in the base of reduplicated nouns, and Default
L-Insertion accounts for the L tone on the suffix.
Interestingly, more tonal alternations are observed
when the tones present in the reduplicated phrase
interact with other phrasal/grammatical tones. For

Transl. Lemma Red form
H HL L

Nouns ‘crab’ kam kam kam
" L LHL

‘game’ kam kam kam
H H'H
“fry’ ka kd k*a
Verbs LU LH'H
‘peel’ ka ka k*a

Table 1: Nominal and verbal reduplication in Shu-

pamem

the purpose of this paper, we provide only a sum-
mary of those tonal alternations in Table 2.

Red. tones Output
Nouns HLL HL H

LHL LHH
Verbs H'H H'H

LH'H HL LH

Table 2: Tonal alternations: interaction of tones for
reduplicated forms (“Red. tones”) with grammatical H
tones

The underlined tones indicate changes triggered
by the H grammatical/phrasal tone. In the obser-
vance of H tone associated with the right edge of
the subject position in Shupamem, the L tone that is
present on the surface in the suffix of reduplicated
nouns (recall Table 1), now is represented with an
H tone. Now it should be clear that the noun redu-
plicant should, in fact, be toneless in the underlying
representation (UR). While the presence of H tone
directly preceding the reduplicated verb does not
affect H-tone verbs, such as kd ‘fry’, it causes ma-
jor tonal alternations in rising reduplicated verbs.
Let us look at a particular example representing the
final row in Table 2:

p3 ‘PASTII + ka kd ‘peel. CONTR’ — pd ka ka

The H tone associated with the tense marker
introduces two tonal changes to the reduplicated
verb: it causes tonal reversal on the morphological
base, and it triggers L-tone insertion to the left edge
of the reduplicant.

The data in both Table 1 and 2 show that 1)
verbs and nouns in Shupamem reduplicate fully
at the segmental level, and 2) tones are affected
by phonological rules that function solely at the
suprasegmental level. Consequently, a finite-state
model of the language must be able to account for
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(d,d,4-1)
(X, +1) Q (X, A1)
q1

W‘“@ \D/
(k,k,+1)

(@x—1) (4,4,4+1)
4]\ (X~ 1) 4]\ (X A +1)
é\.zJ \6)/ :
(kA —1) (k.k,+1)

Figure 1: 2-way FST for total reduplication of kd ‘fry.IMP — kd k4 ‘fry.IMP as opposed to boiling’

those factors. In the next two sections, we will pro-
vide a brief formal introduction to 2-way FSTs and
MT-FSTs, and explain how they correctly model
full reduplication and autosegmental representa-
tion, respectively.

In this paper, we use an orthographic represen-
tation for Shupamem which uses diacritics to in-
dicate tone. Shupamem does not actually use this
orthography; however, we are interested in model-
ing the entire morpho-phonology of the language,
independently of choices made for the orthography.
Furthermore, many languages do use diacritics to
indicate tone, including the Volta-Niger languages
Yoruba and Igbo, as well as Dschang, a Grassfields
language closely related to Shupamem. (For a dis-
cussion of the orthography of Cameroonian lan-
guages, with a special consideration of tone, see
(Bird, 2001).) Diacritics are also used to write
tone in non-African languages, such as Vietnamese.
Therefore, this paper is also relevant to NLP ap-
plications for morphological analysis and genera-
tion in languages whose orthography marks tones
with diacritics: the automata we propose could be
used to directly model morpho-phonological com-
putational problems for the orthography of such
languages.

3 2-way FSTs

As Roark and Sproat (2007) point out, almost all
morpho-pholnological processes can be modelled
with 1-way FSTs with the exception of full redu-
plication, whose output is not a regular language.
One way to increase the expressivity of 1-way FST
is to allow the read head of the machine to move
back and forth on the input tape. This is exactly
what 2-way FST does (Rabin and Scott, 1959), and
Dolatian and Heinz (2020) explain how these trans-
ducers model full reduplication not only effectively,
but more faithfully to linguistic generalizations.
Similarly to a 1-way FST, when a 2-way FST
reads an input, it writes something on the output
tape. If the desired output is a fully reduplicated

string, then the FST faithfully ‘copies’ the input
string while scanning it from left to right. In con-
trast, while scanning the string from right to left,
it outputs nothing (), and it then copies the string
again from left to right.

Figure 1 illustrates a deterministic 2-way FST
that reduplicates kd ‘fry.IMP’; readers are referred
to Dolatian and Heinz (2020) for formal defini-
tions. The key difference between deterministic
1-way FSTs and deterministic 2-way FSTs are the
addition of the ‘direction” parameters {+1,0, —1}
on the transitions which tell the FST to advance to
the next symbol on the input tape (+1), stay on the
same symbol (0), or return to the previous symbol
(-1). Deterministic 1-way FSTs can be thought of
as deterministic 2-way FSTs where transitions are
all (+1).

The input to this machine is xkdx. The x and
X symbols mark beginning and end of a string, and
~ indicates the boundary between the first and the
second copy. None of those symbols are essen-
tial for the model, nevertheless they facilitate the
transitions. For example, when the machine reads
X, it transitions from state ¢; to g2 and reverses
the direction of the read head. After outputting
the first copy (state ¢;) and rewinding (state q2),
the machine changes to state g3 when it scans the
left boundary symbol x and outputs ~ to indicate
that another copy will be created. In this partic-
ular example, not marking morpheme boundary
would not affect the outcome. However, in Section
5, where we propose the fully-fledged model, it
will be crucial to somehow separate the first from
second copy.

4 Multitape FSTs

Multiple-tape FSTs are machines which operate in
the exact same was as 1-way FST, with one key
difference: they can read the input and/or write the
output on multiple tapes. Such a transducer can
operate in an either synchronous or asynchronous
manner, such that the input will be read on all tapes
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and an output produced simultaneously, or the ma-
chine will operate on the input tapes one by one.
MT-FST can take a single (‘linear’) string as an
input and output multiple strings on multiple tapes
or it can do the reverse (Rabin and Scott, 1959;
Fischer, 1965).

To illustrate this idea, let us look at Shupamem
noun mapam ‘coat’. It has been argued that Shu-
pamem nouns with only L surface tones will have
the L tone present in the UR (Markowska, 2019,
2020). Moreover, in order to avoid violating the
Obligatory Contour Principle (OCP) (Leben, 1973),
which prohibits two identical consecutive elements
(tones) in the UR of a morpheme, we will assume
that only one L tone is present in the input. Con-
sequently, the derivation will look as shown in Ta-
ble 3.

Input: T-tape L
Input: S-tape mapam
Output: Single tape mapam

Table 3: Representation of MT-FST for mapam ‘coat’

Separating tones from segments in this manner,
i.e. by representing tones on the T(one)-tape and
segments on the S(segmental)-tape, faithfully re-
sembles linguistic understanding of the UR of a
word. The surface form mapam has only one L
tone present in the UR, which then spreads to all
TBUs, which happen to be vowels in Shupamem,
if no other tone is present.

An example of a multi-tape machine is pre-
sented in Figure 2. For better readability, we
introduce a generalized symbols for vowels (V)
and consonants (C), so that the input alphabet is
Y. ={(C,V),(L,H)} U{x, x}, and the output
alphabet is I' = {C, V, V'}. The machine operates
on 2 input tapes and writes the output on a single
tape. Therefore, we could think of such machine
as a linearizer. The two input tapes represent the
Tonal and Segmental tiers and so we label them T
and S, respectively. We illustrate the functioning
of the machine using the example (mapam, L) —
mapam ‘coat’. While transitioning from state g to
q1, the output is an empty string since the left edge
marker is being read on both tapes simultaneously.
In state ¢;, when a consonant is being read, the
machine outputs the exact same consonant on the
output tape. However, when the machine reaches a
vowel, it outputs a vowel with a tone that is being
read at the same time on the T-tape (in our exam-
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ple, (L, V) — V) and transitions to state ¢ (if the
symbol on the T-tape is H) or g3 (for L, as in our ex-
ample). In states g2 and g3, consonants are simply
output as in state g, but for vowels, one of three
conditions may occur: the read head on the Tonal
tape may be H or L, in which case the automaton
transitions (if not already there) to g2 (for H) or g3
(for L), and outputs the appropriate orthographic
symbol. But if on the Tonal tape the read head is
on the right boundary marker x, we are in a case
where there are more vowels in the Segmental tape
than tones in the Tonal tape. This is when the OCP
determines the interpretation: all vowels get the
tone of the last symbol on the Tone tier (which we
remember as states g2 and ¢3). In our example,
this is an L. Finally, when the Segmental tape also
reaches the right boundary marker x, the machine
transitions to the final state g4. This (‘linearizing’)
MT-FST consists of 4 states and shows how OCP
effects can be handled with asynchronous multi-
tape FSTs. Note that when there are more tones
on the Tonal tier than vowels on the Segmental tier,
they are simply ignored. We refer readers to Dola-
tian and Rawski (2020b) for formal definitions of
these MT transducers.

We are also interested in the inverse process —
that is, a finite-state machine that in the example
above would take a single input string [mapam]
and produce two output strings [L] and [mapam].
While multitape FSTs are generally conceived as
relations over n-ary relations over strings, Dolatian
and Rawski (2020b) define their machines deter-
ministically with n input tapes and a single output
tape. We generalize their definition below.

Similarly to spreading processes described
above, separating tones from segments give us a lot
of benefits while accounting for tonal alternations
taking place in nominal and verbal reduplication in
Shupamem. First of all, functions such as Opposite
Tone Insertion (OTI) will apply solely at the tonal
level, while segments can be undergoing other op-
erations at the same time (recall that MT-FSTs can
operate on some or all tapes simultaneously). Sec-
ondly, representing tones separately from segments
make tonal processes local, and therefore all the
alternations can be expresses with less powerful
functions (Chandlee, 2017).

Now that we presented the advantages of MT-
FSTs, and the need for utilizing 2-way FSTs to
model full reduplication, we combine those ma-
chines to account for all morphophonological pro-



T:(H,+1) T:(H,0)

S:(VAl)  SiC.l)

o:v 0:C

T:(x,+1)
S:(x,+1)

O:\

T:H+)  T:(HO)
S:(V4l)  S:(Cal)
0:vV 0:C
T:(x,0)  T(x,0)
S:(Vi+l)  S:xCHl)
0:vV 0:C

T:(x,+1)
S:(x,+1)

O:)

T:(L+1)  T:(L,0)
S:(Vi+1)  S:(C+1)
o:v 0:C

Ti(X,+1)

S:(x,+1)
O:\

T:(L+1)  T:(L0)

S:(V,+1) S:(C+1)

0:V 0:C

T:(x,0)  T:(x,0)

S:(V,+1) S:(C+1)

0:V 0:C

Figure 2: MT-FST: linearize
C and V are notational meta-symbols for consonants and vowels, resp.; T indicates the tone tape, S, the

segmental tape, and O the output tape.

cesses described in Section 2.

S Deterministic 2-Way Multi-tape FST

Before we define Deterministic 2-Way Multi-tape
FST (or 2-way MT FST for short) we introduce
some notation. An alphabet X is a finite set of
symbols and >* denotes the set of all strings of
finite length whose elements belong to 3. We use
A to denote the empty string. For each n € N, an
n-string is a tuple (wy, ... w,) where each wj is
a string belonging to ¥¥(1 < ¢ < n). These n
alphabets may contain distinct syrrlpols or not. We
write W0 to indicate a n-string and \ to indicate the
n-string where each w; = A. We also write 3 to
denote a tuple of n alphabets: ¥ = ¥ x ---3X,,.
Elements of 3 are denoted &

If @ and T belong to 3 * then the pointwise con-
catenation of w0 and ¥ is denoted W ¥ and equals
(Wi, .o W) (U1, .. ) = (Wiv1, ... WHYy). We
are interested in functions that map n-strings to
m-strings with n, m € N. In what follows we gen-

erally use the index ¢ to range from 1 to n and the
index j to range from 1 to m.

We define Deterministic 2-Way n, m Multitape
FST (2-way (n, m) MT FST for short) for n, m €
N by synthesizing the definitions of Dolatian and
Heinz (2020) and Dolatian and Rawski (2020b);
n, m refer to the number of input tapes and output
tapes, respectively. A Deterministic 2-Way n, m
Multitape FST is a six-tuple (Q, f, f‘: qo, F’,9),
where

o« X = (31 ...%,) is a tuple of n input alpha-
bets that include the boundary symbols, i.e.,
{N,K}CEZ‘, 1< <n,

e Tisa tuple of m output alphabets I'; (1 <
j<m),

e ):(Q X Y Q x T* x D is the transition
function. D is an alphabet of directions equal
to {—1,0,+1} and D is an n-tuple. T* is a
m-tuple of strings written to each output tape.
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H
Input: 1-way
~—>
ndap MT FST

Splitter

Opposite Tone
Insertion

2-way

1-way
MTFST |

Linearizer

/

Output:
ndap ndap

ndap o—m» ndap~ndap

Reduplication

- 22MTFST

Figure 3: Synthesis of 2-way FST and MT-FST

We understand §(q, ) = (r, U, g) as follows. It
means that if the transducer is in state ¢ and the
n read heads on the input tapes are on symbols
(01,...0,) = O, then several actions ensue. The
transducer changes to state r and pointwise concate-
nates ¥ to the m output tapes. The n read heads
then move according to the instructions d € D.
For each read head on input tape ¢, it moves back
one symbol iff d; = —1, stays where itisiff d; = 0,
and advances one symbol iff d; = +1. (If the read
head on an input tape “falls off” the beginning or
end of the string, the computation halts.)

The function recognized by a 2-way (n, m) MT
FST is defined as follows. A configuration of a
n, m-MT-FST T is a 4-tuple (5*, ¢, ©*, T *). The
meaning of the configuration (0, q, 7, u) is that
the input to 7" is @ 7 and the machine is currently
in state g with the n read heads on the first symbol
of each z; (or has fallen off the right edge of the
i-th input tape if z; = \) and that % is currently
written on the m output tapes.

If the current configuration is (W, q, 7, u) and
5(q, @) = (r, U, d) then the next configuration is

—>/

(W', r, 7', 4V, where for each i, 1 < i < n:

o W= (wj...up)and T = (2...a}) (1<
i <n);

[ ’w; = wW; andx; = Ty lffdl :0;

e w, = w;o and z, = ! iff d; = +1 and there
exists o € 3;, 2/ € Xf such that z; = ox;

e w, = w, and =} = ox; iff d; = —1 and there
exists o € 3;, w!’ € XF such that w; = ow.

We write (@0,q,7,u) — (W,r, 7, d7V). Ob-
serve that since d is a function, there is at most one
next configuration (i.e., the system is deterministic).
Note there are some circumstances where there is
no next configuration. For instance if d; = +1 and
x; = A then there is no place for the read head to
advance. In such cases, the computation halts.

The transitive closure of — is denoted with —.
Thus, if ¢ — ¢ then there exists a finite sequence
of configurations cy, ca . .. ¢, with m > 1 such that
c=c —cg—...—>cp,=C.

At last we define the function that a 2-way (n, m)
MT FST T computes. The input strings are aug-
mented with word boundaries on each tape. Let

N :
XWX = (Xw1K,... X wyX). For each n-string
— = —> — =g .

w € X fr(w) = ¥ € T provided there

exists gy € F such that (X, qo, XWX, X) —T
(Wi, qf, X, ).

If fr(W) = W then ¥ is unique because the
sequence of configurations is determined determin-
istically. If the computation of a 2-way MT-FST T’
halts on some input w0 (perhaps because a subse-
quent configuration does not exist), then we say T’
is undefined on 0.

The 2-way FSTs studied by Dolatian and Heinz
(2020) are 2-way 1,1 MT FST. The n-MT-FSTs
studied by Dolatian and Rawski (2020b) are 2-way
n,1 MT FST where none of the transitions con-
tain the —1 direction. In this way, the definition
presented here properly subsumes both.

Figure 4 shows an example of a 1,2 MT FST that
“splits” a phonetic (or orthographic) transcription of
a Shupamem word into a linguistic representation
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with a tonal and segmental tier by outputting two
output strings, one for each tier.
LI:(C+1)

L:(4,+1) I:(a+1)

T:\ T:H T:L

S:C S:a S:a

S \ S:a
start @ S P @
L:(x,+1) U L:(x,+1)
T:\ T:\
S:A S:A

Figure 4: MT-FST: split
ndap — (ndap, H) ‘house’, C and V are notational
meta-symbols for consonants and vowels, resp.; T
indicates the output tone tape, S — the segmental
output tape, and I — the input.

6 Proposed model

As presented in Figure 3, our proposed model, i.e.
2-way 2,2 MT FST, consists of 1-way and 2-way
deterministic transducers, which together operate
on two tapes. Both input and output are represented
on two separate tapes: Tonal and Segmental Tape.
Such representation is desired as it correctly mim-
ics linguistic representations of tonal languages,
where segments and tones act independently from
each other. On the T-tape, a 1-way FST takes the
H tone associated with the lexical representation of
nddp ‘house’ and outputs HL~ by implementing
the Opposite Tone Insertion function. On the S-
tape, a 2-way FST takes ndap as an input, and out-
puts a faithful copy of that string (ndap ndap). The
~ symbol significantly indicates the morpheme
boundary and facilitates further output lineariza-
tion. A detailed derivation of nddp — nddp ndap
is shown in Table 4.

Figure 3 also represents two additional ‘trans-
formations’: splitting and linearizing. First, the
phonetic transcription of a string (nddp) is split
into tones and segments with a 1,2 MT FST. The
output (H, ndap) serves as an input to the 2-way 2,2
MT FST. After the two processes discussed above
apply, together acting on both tapes, the output is
then linearized with an 2,1 MT FST. The composi-
tion of those three machines, i.e. 1,2 MT, 2-way 2,2
MT FST, and 2,1 MT FSTs is particularly useful
in applications where a phonetic or orthographic
representations needs to be processed.
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As was discussed in Section 2, the tone on the
second copy is dependent on whether there was an
H tone preceding the reduplicated phrase. If there
was one, the tone on the reduplicant will be H.
Otherwise, the L-Default Insertion rule will insert
L tone onto the toneless TBU of the second copy.
Because those tonal changes are not part of the
reduplicative process per se, we do not represent
them either in our model in Figure 3, or in the
derivation in Table 4. Those alternations could be
accounted for with 1-way FST by simply inserting
H or L tone to the output of the composed machine
represented in Figure 3.

Modelling verbal reduplication and the tonal pro-
cesses revolving around it (see Table 2) works in
the exact same way as described above for nominal
reduplication. The only difference are the functions
applied to the T-tape.

7 An Alternative to 2-Way Automata

2-way n,m MT FST generalize regular functions
(Filiot and Reynier, 2016) to functions from n-
strings to m-strings. It is worth asking however,
what each of these mechanisms brings, especially
in light of fundamental operations such as func-
tional composition.

1-way FST
H — HL

e ™~

MT FST 1-way FST MT FST
A ~— —> A
ndap ndap ndap ndap

™~ e

1-way FST
ndap

Figure 5: An alternative model for Shupamem redupli-
cation

For instance, it is clear that 2-way 1,1 MT FSTs
can handle full reduplication in contrast to 1-way
1,1 MT FSTs which cannot. However, full redupli-
cation can also be obtained via the composition of
a l-way 1,2 MT FST with a 1-way 2,1 MT FST.
To illustrate, the former takes a single string as an
input, e.g. ndap, and ‘splits’ it into two identical
copies represented on two separate output tapes.
Then the 2-string output by this machines becomes
the input to the next 1-way 2,1 MT FST. Since
this machine is asynchronous, it can linearize the



State  Segment-tape Tone-tape S-output T-output
qo Xndapx X H X A A

Q1 xndapx S:x:+1  xHx T:x:+1 n HL
q xndapx S:n:+1  xHx T:H:+1 nd HL~
il xndapx S:d:+1 xHx T:x:0 nda HL~
q xndapx S:a:+1  xHx T:x:0  ndap HL~
Q1 xndapx S:p:+1 xHx T:x:0  ndap~ HL~
q2 xndapx S:x:-1  xHx T:x:0  ndap~ HL~
q2 xndapx S:p:-1 xHx T:x:0  ndap~ HL~
q2 xndapx S:a:-1 xHx T:x:0  ndap~ HL~
Q2 xndapx S:d:-1 xHx T:x:0  ndap~ HL~
q2 xndapx Sn:-1 - xHx T:x:0  ndap~ HL~
q3 xndapx S:x:+1  xHx T:x:0  ndap~n HL~
q3 xndapx Sn:+1 xHx T:x:0  ndap~nd HL~
q3 xndapx S:d:+1 xHx T:x:0  ndap~nda HL~
q3 xndapx S:a:+1  xHx T:x:0  ndap~ndap HL~
q3 xndapx S:p:+1  xHx T:x:0  ndap~ndap HL~

Table 4: Derivation of nddp — ndap ndap ‘houses’
This derivation happens in the two automata in the center of Figure 3. The FST for the Segmental tier is
the one shown in Figure 1, and the states in the table above refer to this FST.

2-string (e.g. (ndap, ndap)) to a 1-string (ndap
ndap) by reading along one of these input tapes
(and writing it) and reading the other one (and writ-
ing it) only when the read head on the first input
tape reaches the end. Consequently, an alternative
way to model full reduplication is to write the ex-
act same output on two separate tapes, and then
linearize it. Therefore, instead of implementing
Shupamem tonal reduplication with 2-way 2,2 MT
FST, we could use the composition of two 1-way
MT-FST: 1,3 MT-FST and 3,1 MT-FST as shown
in Figure 5. (We need three tapes, two Segmental
tapes to allow reduplication as just explained, and
one Tonal tape as discussed before.)

This example shows that additional tapes can
be understood as serving a similar role to regis-
ters in register automata (Alur and Cerny, 2011;
Alur et al., 2014). Alur and his colleagues have
shown that deterministic 1-way transducers with
registers are equivalent in expressivity to 2-way
deterministic transducers (without registers).

8 Beyond Shupamem

The proposed model is not limited to modeling
full reduplication in Shupamem. It can be used for
other tonal languages exhibiting this morphological
process. We provide examples of the applicability
of this model for the three following languages:
Adhola, Kikerewe, and Shona. And we predict that
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other languages could also be accounted for.

All three languages undergo full reduplication
at the segmental level. What differs is the tonal
pattern governing this process. In Adhola (Ka-
plan, 2006), the second copy is always represented
with a fixed tonal pattern H.HL, where ‘.’ indi-
cates syllable boundary, irregardless of the lexi-
cal tone on the non-reduplicated form. In the fol-
lowing examples, unaccented vowels indicate low
tone. For instance, tiju ‘work’ — tija tija ‘work
too much’, tfemé ‘eat’ — tfemd t[*éma ‘eat too
much’. In Kikerewe (Odden, 1996), if the first
(two) syllable(s) of the verb are marked with an
H tone, the H tone would also be present in the
first two syllables of the reduplicated phrase. On
the other hand, if the last two syllables of the non-
reduplicated verb are marked with an H tone, the
H tone will be present on the last two syllables of
the reduplicated phrase. For instance, biba ‘plant’
s biba biba ‘plant carelessly, here and there’, bib-
i1é “planted (yesterday)’ — bibile bibilé ‘planted
(yesterday) carelessly, here and there’. Finally, in
KiHehe (Odden and Odden, 1985), if an H tone ap-
pears in the first syllable of the verb, the H tone will
also be present in the first syllable of the second
copy, for example déongoleesa ‘roll’ — dongolesa
ddongoleesa ‘roll a bit’.

The above discussed examples can be modelled
in a similar to Shupamem way, such that, first,



the input will be output on two tapes: Tonal and
Segmental, then some (morpho-)phonological pro-
cesses will apply on both level. The final step is
the ‘linearization’, which will be independent of
the case. For example, in Kikerewe, if the first tone
that is read on the Tonal tape is H, and a vowel
is read on the Segmental tape, the output will be
a vowel with an acute accent. If the second tone
is L, as in bi'ba, this L tone will be ‘attached’ to
every remaining vowel in the reduplicated phrase.
While Kikerewe provides an example where there
are more TBUs than tones, Adhola presents the
reverse situation, where there are more tones than
TBU (contour tones). Consequently, it is crucial to
mark syllable boundaries, such that only when °.
or the right edge marker () is read, the FST will
output the ‘linearized’ element.

9 Conclusion

In this paper we proposed a deterministic finite-
state model of total reduplication in Shupamem.
As it is typical for Bantu languages, Shupamem is
a tonal language in which phonological processes
operating on a segmental level differ from those on
suprasegmental (tonal) level. Consequently, Shu-
pamem introduces two challenges for 1-way FSTs:
language copying and autosegmental representa-
tion. We addressed those challenges by proposing
a synthesis of a deterministic 2-way FST, which
correctly models total reduplication, and a MT FST,
which enables autosegmental representation. Such
a machine operates on two tapes (Tonal and Seg-
mental), which faithfully replicate the linguistic
analysis of Shupamem reduplication discussed in
Markowska (2020). Finally, the outputs of the 2-
way 2,2 MT FST is linearized with a separate 2,1
MT FST outputting the desired surface representa-
tion of a reduplicated word. The proposed model
is based on previously studied finite-state models
for reduplication (Dolatian and Heinz, 2020) and
tonal processes (Dolatian and Rawski, 2020b,a).
There are some areas of future research that we
plan to pursue. First, we have suggested that we
can handle reduplication using the composition
of 1-way deterministic MT FSTs, dispensing with
the need for 2-way automata altogether. Further
formal comparison of these two approaches is war-
ranted. More generally, we plan to investigate the
closure properties of classes of 2-way MT FSTs. A
third line of research is to collect more examples
of full reduplication in tonal languages and to in-

220

clude them in the RedTyp database (Dolatian and
Heinz, 2019) so a broader empirical typology can
be studied with respect to the formal properties of
these machines.
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Abstract

Pronunciation lexicons and prediction models
are a key component in several speech synthe-
sis and recognition systems. We know that
morphologically related words typically fol-
low a fixed pattern of pronunciation which can
be described by language-specific paradigms.
In this work we explore how deep recurrent
neural networks can be used to automatically
learn and exploit this pattern to improve the
pronunciation prediction quality of words re-
lated by morphological inflection. We propose
two novel approaches for supplying morpho-
logical information, using the word’s morpho-
logical class and its lemma, which are typi-
cally annotated in standard lexicons. We re-
port improvements across a number of Euro-
pean languages with varying degrees of phono-
logical and morphological complexity, and
two language families, with greater improve-
ments for languages where the pronunciation
prediction task is inherently more challenging.
We also observe that combining bidirectional
LSTM networks with attention mechanisms is
an effective neural approach for the computa-
tional problem considered, across languages.
Our approach seems particularly beneficial in
the low resource setting, both by itself and in
conjunction with transfer learning.

1 Introduction

Morphophonology is the study of interaction be-
tween morphological and phonological processes
and mostly involves description of sound changes
that take place in morphemes (minimal meaningful
units) when they combine to form words. For ex-
ample, the plural morpheme in English appears as
‘-s’ or ‘-es’ in orthography and as [s], [z], and [1Z]

*Part of the work was done when D.S., N.C. and A.B.
were at Google.
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in phonology, e.g. in cops, cogs and courses. The
different forms can be thought to be derived from a
common plural morphophoneme which undergoes
context dependent transformations to produce the
correct phones.

A pronunciation model, also known as a
grapheme to phoneme (G2P) converter, is a sys-
tem that produces a phonemic representation of a
word from its written form. The word is converted
from the sequence of letters in the orthographic
script to a sequence of phonemes (sound symbols)
in a pre-determined transcription, such as IPA or
X-SAMPA. It is expensive and possibly, say in
morphologically rich languages with productive
compounding, infeasible to list the pronunciations
for all the words. So one uses rules or learned mod-
els for this task. Pronunciation models are impor-
tant components of both speech recognition (ASR)
and synthesis (text-to-speech, TTS) systems. Even
though end-to-end models have been gathering re-
cent attention (Graves and Jaitly, 2014; Sotelo et al.,
2017), often state-of-the-art models in industrial
production systems involve conversion to and from
an intermediate phoneme layer.

A single system of morphophonological rules
which connects morphology with phonology is
well-known (Chomsky and Halle, 1968). In fact
computational models for morphology such as the
two-level morphology of Koskenniemi (1983); Ka-
plan and Kay (1994) have the bulk of the machinery
designed to handle phonological rules. However,
the approach involves encoding language-specific
rules as a finite-state transducer, a tedious and ex-
pensive process requiring linguistic expertise. Lin-
guistic rules are augmented computationally for
small corpora in Ermolaeva (2018), although scala-
bility and applicability of the approach across lan-
guages is not tested.

We focus on using deep neural models to im-
prove the quality of pronunciation prediction using
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morphology. G2P fits nicely in the well-studied se-
quence to sequence learning paradigms (Sutskever
etal., 2014), here we use extensions that can handle
supplementary inputs in order to inject the morpho-
logical information. Our techniques are similar to
Sharma et al. (2019), although the goal there is to
lemmatize or inflect more accurately using pronun-
ciations. Taylor and Richmond (2020) consider
improving neural G2P quality using morphology,
our work differs in two respects. First, we use
morphology class and lemma entries instead of
morpheme boundaries for which annotations may
not be as readily available. Secondly, they con-
sider BiLSTMs and Transformer models, but we
additionally consider architectures which combine
BiLSTMs with attention and outperform both. We
also show significant gains by morphology injec-
tion in the context of transfer learning for low re-
source languages where sufficient annotations are
unavailable.

2 Background and related work

Pronunciation prediction is often studied in settings
of speech recognition and synthesis. Some recent
work explores new representations (Livescu et al.,
2016; Sofroniev and Coltekin, 2018; Jacobs and
Mailhot, 2019), but in this work, a pronunciation
is a sequence of phonemes, syllable boundaries
and stress symbols (van Esch et al., 2016). A lot of
work has been devoted to the G2P problem (e.g. see
Nicolai et al. (2020)), ranging from those focused
on accuracy and model size to those discussing ap-
proaches for data-efficient scaling to low resource
languages or multilingual modeling (Rao et al.,
2015; Sharma, 2018; Gorman et al., 2020).
Morphology prediction is of independent interest
and has applications in natural language generation
as well as understanding. The problems of lemma-
tization and morphological inflection have been
studied in both contextual (in a sentence, which
involves morphosyntactics) and isolated settings
(Cohen and Smith, 2007; Faruqui et al., 2015; Cot-
terell et al., 2016; Sharma et al., 2019).
Morphophonological prediction, by which we
mean viewing morphology and pronunciation pre-
diction as a single task with several related inputs
and outputs, has received relatively less attention as
a language-independent computational task, even
though the significance for G2P has been argued
(Coker et al., 1991). Sharma et al. (2019) show
improved morphology prediction using phonology,
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and Taylor and Richmond (2020) show the reverse.
The present work aligns with the latter, but instead
of requiring full morphological segmentation of
words we work with weaker and more easily anno-
tated morphological information like word lemmas
and morphological categories.

3 Improved pronunciation prediction

We consider the G2P problem, i.e. prediction of
the sequence of phonemes (pronunciation) from
the sequence of graphemes in a single word. The
G2P problem forms a clean, simple application of
seq2seq learning, which can also be used to cre-
ate models that achieve state-of-the-art accuracies
in pronunciation prediction. Morphology can aid
this prediction in several ways. One, we could
use morphological category as a non-sequential
side input. Two, we could use the knowledge of
the morphemes of the words and their pronuncia-
tions which may be possible with lower amounts
of annotation. For example, the lemma (and its
pronunciation) may already be annotated for an
out-of-vocabulary word. Often standard lexicons
list the lemmata of derived/inflected words, lemma-
tizer models can be used as a fallback. Learning
from the exact morphological segmentation (Tay-
lor and Richmond, 2020) would need more precise
models and annotation (Demberg et al., 2007).

Given the spelling, language specific models
can predict the pronunciation by using knowledge
of typical grapheme to phoneme mappings in the
language. Some errors of these models may be
fixed with help from morphological information as
argued above. For instance, homograph pronun-
ciations can be predicted using morphology but
it is impossible to deduce correctly using just or-
thography.! The pronunciation of ‘read’ (/1i:d/ for
present tense and noun, /1ed/ for past and partici-
ple) can be determined by the part of speech and
tense; the stress shifts from first to second syllable
between ‘project’ noun and verb.

3.1 Dataset

We train and evaluate our models for five lan-
guages to cover some morphophonological diver-
sity: (American) English, French, Russian, Span-
ish and Hungarian. For training our models, we
use pronunciation lexicons (word-pronunciation
pairs) and morphological lexicons (containing lex-

"Homographs are words which are spelt identically but
have different meanings and pronunciations.



ical form, i.e. lemma and morphology class) of
only inflected words of size of the order of 10*
for each language (see Table 5 in Appendix A).
For the languages discussed, these lexicons are ob-
tained by scraping® Wiktionary data and filtering
for words that have annotations (including pronun-
ciations available in the IPA format) for both the
surface form and the lexical form. While this or-
der of data is often available for high-resource lan-
guages, in Section 3.3 we discuss extension of our
work to low-resource settings using Finnish and
Portuguese for illustration where the Wiktionary
data is about an order of magnitude smaller.

Word (language) | Morph. Class Pron. LS LP

masseuses (fr) n-f-pl /ma.sgz/ masseur | /ma.sceB/
fagylaltozom (hu)|v-fp-s-in-pr-id|/'fojloltozom/|fagylaltozik |/ fpjloltozik/

Table 1: Example annotated entries. (v-fp-s-in-pr-id:
Verb, first-person singular indicative present indefinite)

We keep 20% of the pronunciation lexicons
aside for evaluation using word error rate (WER)
metric. WER measures an output as correct if the
entire output pronunciation sequence matches the
ground truth annotation for the test example.

3.1.1 Morphological category

The morphological category of the word is ap-
pended as an ordinal encoding to the spelling, sepa-
rated by a special character. That is, the categories
of a given language are appended as unique inte-
gers, as opposed to one-hot vectors which may be
too large in morphologically rich languages.

3.1.2 Lemma spelling and pronounciation

Information about the lemma is given to the mod-
els by appending both, the lemma pronouncia-
tion (LP) and lemma spelling (1LS) to the word
spelling (Ws), all separated by special characters,
like, (Ws)§(LP)9(LS). Lemma spelling can po-
tentially help in irregular cases, for example ‘be’
has past forms ‘gone’ and ‘were’, so the model
can reject the lemma pronunciation in this case by
noting that the lemma spellings are different (but
potentially still use it for ‘been’).

3.2 Model details

The models described below are implemented in
OpenNMT (Klein et al., 2017).

*kaikki.org/dictionary/

3.2.1 Bidirectional LSTM networks

LSTM (Hochreiter and Schmidhuber, 1997) allows
learning of fixed length sequences, which is not a
major problem for pronunciation prediction since
grapheme and phoneme sequences (represented as
one-hot vectors) are often of comparable length,
and in fact state-of-the-art accuracies can be ob-
tained using bidirectional LSTM (Rao et al., 2015).
We use single layer BiLSTM encoder - decoder
with 256 units and 0.2 dropout to build a charac-
ter level RNN. Each character is represented by a
trainable embedding of dimension 30.

3.2.2 LSTM based encoder-decoder networks
with attention (BiLSTM+Attn)

Attention-based models (Vaswani et al., 2017,
Chan et al., 2016; Luong et al., 2015; Xu et al.,
2015) are capable of taking a weighted sample of
input, allowing the network to focus on different
possibly distant relevant segments of the input ef-
fectively to predict the output. We use the model
defined in Section 3.2.1 with Luong attention (Lu-
ong et al., 2015).

3.2.3 Transformer networks

Transformer (Vaswani et al., 2017) uses self-
attention in both encoder and decoder to learn
rich text representaions. We use a similar architec-
ture but with fewer parameters, by using 3 layers,
256 hidden units, 4 attention heads and 1024 di-
mensional feed forward layers with relu activation.
Both the attention and feedforward dropout is 0.1.
The input character embedding dimension is 30.

3.3 Transfer learning for low resource G2P

Both non-neural and neural approaches have been
studied for transfer learning (Weiss et al., 2016)
from a high-resource language for low resource
language G2P setting using a variety of strategies
including semi-automated bootstrapping, using
acoustic data, designing representations suitable
for neural learning, active learning, data augmen-
tation and multilingual modeling (Maskey et al.,
2004; Davel and Martirosian, 2009; Jyothi and
Hasegawa-Johnson, 2017; Sharma, 2018; Ryan and
Hulden, 2020; Peters et al., 2017; Gorman et al.,
2020). Recently, transformer-based architectures
have also been used for this task (Engelhart et al.,
2021). Here we apply a similar approach of us-
ing representations learned from the high-resource
languages as an additional input for low-resource
models but for our BILSTM+Attn architecture. We
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Model Inputs en fr ru es hu

BiLSTM (b/+c/+1) | (39.7/39.4/37.1) | (8.69/8.94/7.94) | (5.26/4.87/5.60) | (1.13/1.44/1.30) | (6.96/5.85/7.21)
BIiLSTM+Attn (b/+c/+1) | (36.9/36.1/31.0) | (4.45/4.20/4.12) | (5.06/3.80/4.04) | (0.32/0.32/0.29) | (1.78/1.31/1.12)
Transformer (b/+c/+1) | (40.2/39.3/37.7) | (8.19/7.11/10.6) | (6.57/6.38/5.36) | (2.29/1.62/2.20) | (8.20/4.93/8.11)

Table 2: Models and their Word Error Rates (WERSs).

‘b’ corresponds to baseline (vanilla G2P), ‘“+c’ refers to

morphology class injection (Sec. 3.1.1) and ‘+1” to addition of lemma spelling and pronunciation (Sec. 3.1.2).

evaluate our model for two language pairs — hu
(high) - fi (low) and es (high) and pt (low) (results
in Table 3). We perform morphology injection us-
ing lemma spelling and pronunciation (Sec. 3.1.2)
since it can be easier to annotate and potentially
more effective (per Table 2). fi and pt are not really
low-resource, but have relatively fewer Wiktionary
annotations for the lexical forms (Table 5).

Model fi fi+hu | pt | pt+es
BIiLSTM+Attn (base) | 18.53 | 9.81 | 62.65 | 58.87
BiLSTM+Attn (+lem) | 9.27 | 8.45 | 59.63 | 55.48

Table 3: Transfer learning for vanilla G2P (base) and
morphology augmented G2P (+lem, Sec. 3.1.2).

4 Discussion

We discuss our results under two themes — the
efficacy of the different neural models we have
implemented, and the effect of the different ways
of injecting morphology that were considered.

We consider three neural models as described
above. To compare the neural models, we first
note the approximate number of parameters of each
model that we trained:

e BiLSTM: ~1.7M parameters,
* BiLSTM+Attn: ~3.5M parameters,
* Transformer: ~5.2M parameters.

For BiLSTM and BiLSTM+Attn, the parameter
size is based on neural architecture search i.e. we
estimated sizes at which accuracies (nearly) peaked.
For transformer, we believe even larger models can
be more effective and the current size was chosen
due to computational restrictions and for “fairer”
comparison of model effectiveness. Under this set-
ting, BILSTM+Attn models seem to clearly outper-
form both the other models, even without morphol-
ogy injection (cf. Gorman et al. (2020), albeit it is
in the multilingual modeling context). Transformer
can beat BiLSTM in some cases even with the sub-
optimal model size restriction, but is consistently
worse when the sequence lengths are larger which
is the case when we inject lemma spellings and
pronunciations.
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We also look at how adding lexical form infor-
mation, i.e. morphological class and lemma, helps
with pronunciation prediction. We notice that the
improvements are particularly prominent when the
G2P task itself is more complex, for example in
English. In particular, ambiguous or exceptional
grapheme subsequence (e.g. ough in English)
to phoneme subsequence mappings, may be re-
solved with help from lemma pronunciations. Also
morphological category seems to help for example
in Russian where it can contain a lot of informa-
tion due to the inherent morphological complexity
(about 25% relative error reduction). See Appendix
B for more detailed comparison and error analysis
for the models.

Our transfer learning experiments indicate that
morphology injection gives even more gains in low
resource setting. In fact for both the languages
considered, adding morphology gives almost as
much gain as adding a high resource language to
the BiLSTM+Attn model. This could be useful for
low resource languages like Georgian where a high
resource language from the same language family
is unavailable. Even with the high resource aug-
mentation, using morphology can give a significant
further boost to the prediction accuracy.

5 Conclusion

We note that combining BiLSTM with attention
seems to be the most attractive alternative in get-
ting improvements in pronunciation prediction by
leveraging morphology, and hence correspond to
the most appropriate ‘model bias’ for the prob-
lem from among the alternatives considered. We
also note that all the neural network paradigms
discussed are capable of improving the G2P predic-
tion quality when augmented with morphological
information. Since our approach can potentially
support partial/incomplete data (using appropriate
(MISSING) or (N/A) tokens), one can use a sin-
gle model which injects morphology class and/or
lemma pronunciation as available. For languages
where neither is available, our results suggest build-
ing word-lemma lists or utilizing effective lemma-



tizers (Faruqui et al., 2015; Cotterell et al., 2016).

6 Future work

Our work only leverages the inflectional morphol-
ogy paradigms for better pronunciation prediction.
However in addition to inflection, morphology also
results in word formation via derivation and com-
pounding. Unlike inflection, derivation and com-
pounding could involve multiple root words, so
an extension would need a generalization of the
above approach along with appropriate data. An
alternative would be to learn these in an unsuper-
vised way using a dictionary augmented neural net-
work which can efficiently refer to pronunciations
in a dictionary and use them to predict pronunci-
ations of polymorphemic words using pronuncia-
tions of the base words (Bruguier et al., 2018). It
would be interesting to see if using a combination
of morphological side information and dictionary-
augmentation results in a further accuracy boost.
Developing non-neural approaches for the mor-
phology injection could be interesting, although
as noted before, the neural approaches are the state-
of-the-art (Rao et al., 2015; Gorman et al., 2020).

One interesting application of the present work
would be to use the more accurate pronunciation
prediction for morphologically related forms for ef-
ficient pronunciation lexicon development (useful
for low resource languages where high-coverage
lexicons currently don’t exist), for example anno-
tating the lemma pronunciation should be enough
and the pronunciation of all the related forms can
be predicted with high accuracy. This is hugely
beneficial for languages where there are hundreds
or even thousands of surface forms associated with
the same lemma. Another concern for reliably us-
ing the neural approaches is explainability (Molnar,
2019). Some recent research looks at explaining
neural models with orthographic and phonological
features (Sahai and Sharma, 2021), an extension
for morphological features should be useful.
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Model Inputs en de

es ru avg. rel. gain

BiLSTM (b/+c/+1) | (31.0/30.5/25.2)
BIiLSTM+Attn (b/+c/+1) | (29.0/27.1/21.3)

(17.7/15.5/12.3)
(12.0/11.6/11.6)

(8.1/7.9/6.7) | (18.4/15.6/15.9)
(4.9/2.6/2.4) | (14.1/13.6/13.1)

(-1+7.9%/+20.0%)
(-/415.1%/+22.0%)

Table 4: Number of total Wiktionary entries, and inflected entries with pronunciation and morphology annotations,

for the languages considered.

Appendix
A On ssize of data

We record the size of data scraped from Wiktionary
in Table 5. There is marked inconsistency in the
number of annotated inflected words where the pro-
nunciation transcription is available, as a fraction of
the total vocabulary, for the languages considered.

In the main paper, we have discussed results
on the publicly available Wiktionary dataset. We
perform more experiments on a larger dataset (10°-
10 examples of annotated inflections per language)
using the same data format and methodology for
(American) English, German, Spanish and Russian
(Table 4). We get very similar observations in this
regime as well in terms of relative gains in model
performances using our techniques, but these re-
sults are likely more representative of word error
rates for the whole languages.

Language Total senses Annotated inflections

en 1.25M 7543

es 0.93M 28495

fi 0.24M 3663

fr 0.46M 24062
hu 77.7K 31486

pt 0.39M 2647

ru 0.47M 20558

Table 5: Number of total Wiktionary entries, and in-
flected entries with pronunciation and morphology an-
notations, for the languages considered.

B Error analysis

Neural sequence to sequence models, while highly
accurate on average, make “silly” mistakes like
omitting or inserting a phoneme which are hard
to explain. With that caveat in place, there are
still reasonable patterns to be gleaned when com-
paring the outputs of the various neural models
discussed here. BILSTM+Attn model seems to not
only be making fewer of these “silly” mistakes,
but also appears to be better at learning the gen-
uinely more challenging predictions. For exam-
ple, the French word pédagogiques (‘pedagogical’,

plural) /pe.da.go.3ik/ is pronounced correctly by
BiLSTM+Attn, but as /pe.da.30.3ik/ by BILSTM.
Similarly BiLSTM+Attn predicts /'d3@miy/, while
Transformer network says /'dzamiy/ for jamming
(en). We note that errors for Spanish often involve
incorrect stress assignment since the grapheme-to-
phoneme mapping is highly consistent.

Adding morphological class information seems
to reduce the error in endings for morphologically
rich languages, which can be an important source
of error if there is relative scarcity of transcrip-
tions available for the inflected words. For exam-
ple, for our BiLSTM+Attn model, the pronunci-
ation for dyppewm (ru, ‘furry’ instrumental singu-
lar noun) is fixed from /furzem/ to /fur:im/, and
koronavirusrél (hu, ‘coronavirus’ delative singu-
lar) gets corrected from /'’koronovi:rufo:l/ to /'’ko-
ronnviirufro:l/. On the other hand, adding lemma
pronunciation usually helps with pronouncing the
root morpheme correctly. Without the lemma in-
jection, our BiILSTM+Attn model mispronounces
debriefing (en) as /dr'bii:fiy/ and sentences (en)
as /sen'tensiz/. Based on these observations, it
sounds interesting to try to inject both categorical
and lemma information simultaneously.
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