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Abstract

This paper investigates how the ordering
of tone relative to the segmental string
influences the calculation of phonotactic
probability. Trigram and recurrent neu-
ral network models were trained on sylla-
ble lexicons of four Asian syllable-tone lan-
guages (Mandarin, Thai, Vietnamese, and
Cantonese) in which tone was treated as
a segment occurring in different positions
in the string. For trigram models, the
optimal permutation interacted with lan-
guage, while neural network models were
relatively unaffected by tone position in all
languages. In addition to providing a base-
line for future evaluation, these results sug-
gest that phonotactic probability is robust
to choices of how tone is ordered with re-
spect to other elements in the syllable.

1 Introduction

The phonotactic probability of a string is an
important quantity in several areas of lin-
guistic research, including language acquisi-
tion, wordlikeness, word segmentation, and
speech production and perception (Bailey and
Hahn, 2001; Daland and Pierrehumbert, 2011;
Storkel and Lee, 2011; Vitevitch and Luce,
1999). When the language of interest is a
tone language, the question arises of how tone
should be incorporated into the probability cal-
culation. As phonotactic probability is fre-
quently computed based on some type of n-
gram model, this means deciding on which
segment(s) the probability of a tone should
be conditioned. For instance, using a bigram
model, one might compute the probability of
the Mandarin syllable fang as P(a|f) x P(yla)
x P(tone 1|y), but could just as well consider
P(tone 1|f) x P(a|l) x P(yla), or any other
conceivable permutation of tone and segments.

32

While this issue is occasionally remarked on
(e.g. Newman et al., 2011: 246), there remains
no widespread consensus in practice. Choice
of ordering is sometimes justified based on
segment-tone co-occurrence restrictions in the
language under study (Myers and Tsay, 2005),
but is often presented without justification
(Kirby and Yu, 2007; Yang et al., 2018), and
in some cases tone is simply ignored (Gong,
2017). When the space of possibilities is con-
sidered, researchers generally select the permu-
tation which maximizes model fit to some ex-
ternal data, such as participant judgments of
phonological distance (Do and Lai, 2021a) or
wordlikeness (Do and Lai, 2021b).

Although extrinsic evaluation is in some
sense a gold standard, intrinsic metrics of
model fit can also be informative, in part be-
cause extrinsic metrics are not always robust
across data sets. For instance, participant
wordlikeness judgments can vary considerably
based on the particulars of the experimen-
tal design (Myers and Tsay, 2005; Shademan,
2006; Vitevitch and Luce, 1999), so the treat-
ment of tone that produces a best-fit model for
one dataset may not do so for another. The
lexicon of a given language is much more in-
ternally stable in terms of how segments and
tones are distributed, so intrinsic evaluation
may provide a useful baseline for reasoning
about the treatment of tone relative to seg-
ments both within and across languages.

This short paper a simple
information-theoretic motivation for selecting
a permutation: all else being equal, we should
prefer a model that maximizes the probability
of the lexicon (i.e., minimizes the cross-entropy
loss), because this will be the model that by
definition does the best job of capturing the
phonotactic regularities of the lexicon (Cherry
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et al., 1953; Goldsmith, 2002; Pimentel et al.,
2020). By treating tone as another phone in
the segmental string, we can see whether and
to what degree this choice has an effect on the
overall entropy of the lexicon.

Intuitively, any model that can take into ac-
count phonotactic constraints will result in a
reduction in entropy. Thus, even an n-gram
model with a sufficiently large context window
should in principle be able model segment-tone
co-occurrences at the syllable level. However,
tone languages differ with respect to tone-
segment co-occurrence restrictions (see Sec. 2).
If a relevant constraint primarily targets syl-
lable onsets, for instance, placing the tonal
“segment” in immediate proximity to the on-
set will increase the probability of the string,
even relative to a model capable of capturing
the dependency at a longer distance.

2 Languages

Four syllable-tone languages were selected for
this study: Mandarin Chinese, Cantonese,
Vietnamese and Thai. They are partially a
convenience sample in that the necessary lex-
ical resources were readily available, but also
have some useful similarities: all share a sim-
ilar syllable structure template and have five
or six tones. However, the four languages vary
in terms of their segment-tone co-occurrence
restrictions, as detailed below.

In all cases, the lexicon was defined as
the set of unique syllable shapes in each lan-
guage. For consistency, the syllable tem-
plate in all four languages is considered to be
(C1)(C2)V(C)T, with variable positioning of
T. Offglides were treated as codas in all lan-
guages. The syllable lexicons for all four lan-
guages are provided in the supplementary ma-
terials (nttp://doi.org/10.17605/0SF.10/NASFB).

Mandarin (cmn) The Mandarin syllabary
consists of 1,226 syllables based on list of at-
tested readings of the 13,060 BIG5 characters
from Tsai (2000), phonetized using the phono-
logical system of Duanmu (2007). This rep-
resentation encodes 22 onsets, 3 medials (/]
y w/), 6 nuclei, 4 codas and 5 tones (includ-
ing the neutral tone). In Mandarin, unaspi-
rated obstruent onsets rarely appear with mid-
rising tone (MC yang ping), and sonorant on-
sets rarely occur with the high-level tone (MC
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yin ping). Obstruents never occur as codas.

Thai (tha) A Thai lexicon of 4,133 unique
syllables was created based on the dictionary
of Haas (1964) which contains around 19,000
entries and 47,000 syllables. The phonemic
representation encodes 20 onsets, 3 medials /w
1 r/, 21 nuclei (vowel length being contrastive
in Thai), 8 codas and 5 tones. In Thai, high
tone is rare/unattested following unaspirated
and voiced onsets, but there is also statistical
evidence for a restriction on rising tones with
these onsets (Perkins, 2013). In syllables with
an obstruent coda (/p t k/), only high, low, or
falling tones occur, depending on length of the
nuclear vowel (Morén and Zsiga, 2006).

Vietnamese (vie) The Vietnamese lexicon
of 8,128 syllables was derived from a freely
available dictionary of around 74,000 words
(Dtic, 2004), phonetized using a spelling pro-
nunciation (Kirby, 2008). The resulting repre-
sentation encodes 24 onsets, 1 medial (/w/),
14 nuclei, 8 codas and 6 tones. Vietnamese
syllables ending in obstruents /p t k/ are re-
stricted to just one of two tones.

Cantonese (yue) The Cantonese syllabary
consists of the 1,884 unique syllables in the
Chinese Character Database (Kwan et al.,
2003), encoded using the jyutping system.
This representation distinguishes 22 onsets, 1
medial (/w/), 11 nuclei, 5 codas and 6 tones.
In Cantonese, unaspirated initials do not oc-
cur in syllables with low-falling tones, and
aspirated initials do not occur with the low
tone. Syllables ending with /p t k/ are re-
stricted to one of the three “entering” tones
(Yue-Hashimoto, 1972).

3 Methods

Two classes of character-level language models
(LMs) were considered: simple n-gram models
and recurrent neural networks (Mikolov et al.,
2010). In an n-gram model, the probability
of a string is proportional to the conditional
probabilities of the component n-grams:

P(ai|ay™") m P(xila; 2, 4)

(1)

The degree of context taken into account is
thus determined by the value chosen for n.

In a recurrent neural network (RNN), the
next character in a sequence is predicting using
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the current character and the previous hidden
state. At each step t, the network retrieves an
embedding for the current input z; and com-
bines it with the hidden layer from the previ-
ous step to compute a new hidden layer h;:

(2)

where W is the weight matrix for the current
time step, U the weight matrix for the previ-
ous time step, and ¢ is an appropriate non-
linear activation function. This hidden layer
hy is then used to generate an output layer
4, which is passed through a softmax layer to
generate a probability distribution over the en-
tire vocabulary. The probability of a sequence
T1,T9...T, is then just the product of the
probabilities of each character in the sequence:

ht = g(Uht_l + W.I‘t)

P(xy,xe...2,) = ﬁyz (3)
i=1

The incorporation of the recurrent connec-
tion as part of the hidden layer allows RNNs to
avoid the problem of limited context inherent
in n-gram models, because the hidden state
embodies (some type of) information about all
of the preceding characters in the string. Al-
though RNNs cannot capture arbitrarily long-
distance dependencies, this is unlikely to make
a difference for the relatively short distances
involved in phonotactic modeling.

Trigram models were built using the SRILM
toolkit (Stolcke, 2002), with maximum likeli-
hood estimates smoothed using interpolated
Witten-Bell discounting (Witten and Bell,
1991). RNN LMs were built using PyTorch
(Paszke et al., 2019), based on an implementa-
tion by Mayer and Nelson (2020). The results
reported here make use of simple recurrent net-
works (Elman, 1990), but similar results were
obtained using an LSTM layer (Hochreiter and
Schmidhuber, 1997).

3.1 Procedure

The syllables in each lexicon were arranged
in 5 distinct permutations: tone following the
coda (T|C), nucleus (T|N), medial (T|M), on-
set (T|O) and with tone as the initial seg-
ment in the syllable (T|#). As many syl-
lables in these languages lack onsets, medi-
als, and/or codas, a sizable number of the
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resulting strings were identical across permu-
tations. Both smoothed trigram and simple
RNN LMs were then fit to each permuted lex-
icon 10 times, with random 80/20 train/dev
splits (other splits produced similar results).
For each run, the perplexity of the language
model on the dev set D = zqyx2... 2y (i.e., the
exponentiated cross-entropy') was recorded:

PPL(D) (4)
(5)

bf%long(azla:g...xN)

4 Results

For brevity, only the main findings are sum-
marized here; the full results are available as
part of the online supplementary materials
(http://doi.org/10.17605/0SF.10/NASFB).

Table 1 show the orderings which minimized
perplexity for each method and language, aver-
aged over 10 runs. Table 2 shows the average
perplexity over all permutations for a given
language and method.

method lexicon order PPL
cmn T|C 4.91 (0.06)
o tP2 TIM 7.34(012)
& vie T|C 7.35(0.03)
yue TIM  5.84 (0.09)
cmn TIM  4.01 (0.08)
tha  T|M  5.20 (0.04)
RN vie TIM  5.16 (0.02)
yue T|# 4.37 (0.05)
Table 1: Orders which produced the lowest per-

plexities averaged over 10 runs (means and stan-
dard deviations).

Differences between orderings were then as-
sessed visually, aided by simple analyses of
variance. For the trigram LMs, perplexity was
lowest in Mandarin when tones followed co-
das, while differences in perplexity between
other orderings were negligible. For Thai,
Vietnamese, and Cantonese, all orderings were
roughly comparable except for when tone was
ordered as the first segment in the syllable
(T|#), which increased perplexity by up to
1 over the mean of the other orderings. For
Thai, the ordering T|M resulted in signifi-
cantly lower perplexities compared to all other

'Equivalently, we may think of PPL(D) as the in-

verse probability of the set of syllables D, normalized
for the number of phonemes.
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cmn tha vie yue
3-gram 5.15 (0.17) 7.76 (0.4) 7.49 (0.27) 5.98 (0.18)
RNN 4.01 (0.07) 5.28 (0.05) 5.18 (0.03) 4.42 (0.07)
Table 2: Mean and standard deviation of perplexity across all permutations by lexicon and language
model.
permutations. For the RNN LMs, although  thelanguage model. Even a model with a large

T|M was the numerically optimal ordering for
three out of the four languages, in practical
terms permutation had no effect on perplex-
ity, with numerical differences of no greater
than 0.1 (see Table 2).

5 Discussion

Consistent with other recent work in compu-
tational phonotactics (e.g. Mayer and Nel-
son, 2020; Mirea and Bicknell, 2019; Pimentel
et al., 2020), the neural network models out-
performed the trigram baselines by a consider-
able margin (a reduction in average perplexity
of up to 2.5, depending on language). Neu-
ral network models were also much less sen-
sitive to the linear position of tone relative
to other elements in the segmental string (cf.
Do and Lai, 2021b), no doubt due to the fact
that the ability of the RNNs to model co-
occurrence tendencies within the syllable is not
constrained by context in the way that n-gram
models are.

Perhaps as a result, however, the RNN mod-
els reveal little about the nature of segment-
tone co-occurrence restrictions in any of the
languages investigated. In this regard, the tri-
gram models, while clearly less optimal in a
global sense, are still informative. The fact
that the ordering T|# was significantly worse
under the trigram model for Cantonese, Viet-
namese and Thai but not Mandarin can be ex-
plained (or predicted) by the fact that of the
four languages, only Mandarin does not per-
mit obstruent codas, and consequently has no
coda-tone co-occurrence restrictions (indeed,
the four primary tones of Mandarin occur with
more or less equal type frequency). In the
other three languages, syllables with obstruent
codas can only bear a restricted set of tones,
and in a trigram model, this dependency is not
modeled when tone is prepended to the sylla-
ble, since this means it will frequently, though
not always, fall outside the window visible to
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enough context window to capture such depen-
dencies will assign the lexicon a higher perplex-
ity when structured in this way.

The finding that the T|M ordering is always
optimal in Thai (and by a larger margin than
in the other languages) is presumably due to
the fact that the distribution of the medials
/w 11/ is severely restricted in this language,
occurring only after /p p® t t! k kP f/. The
distribution of tones after onset-medial clus-
ters is inherently more constrained and there-
fore more predictable. A similar restriction
holds in Cantonese, albeit to a lesser degree
(the medial /w/ only occurs with onsets /k/
and /kP/).

5.1 Shortcomings and extensions

This work did not explore representations
based on phonological features, given that
their incorporation has failed to provide evalu-
ative improvements in other studies of com-
putational phonotactics (Mayer and Nelson,
2020; Mirea and Bicknell, 2019; Pimentel et al.,
2020). However, feature-based approaches can
be both theoretically insightful and may even
prove necessary for other quantifications, such
as the measure of phonological distance where
tone is involved (Do and Lai, 2021a).

The present study has focused on a small
sample of structurally and typologically simi-
lar languages. All have relatively simple syl-
lable structures in which one and only one
tone is associated with each syllable. Not all
tone languages share these properties, how-
ever. In so-called “word-tone” languages, such
as Japanese or Shanghainese, the surface tone
with which a given syllable is realized is fre-
quently not lexically specified. In other lan-
guages, such as Yolox6chitl Mixtec (DiCanio
et al., 2014), tonal specification may be tied
to sub-syllabic units, such as the mora. Fi-
nally, data from many other languages, such
as Kukuya (Hyman, 1987), make it clear that



in at least in some cases tones can only be
treated in terms of abstract melodies, which
do not have a consistent association to sylla-
bles, moras, or vowels (Goldsmith, 1976). In
these and many other cases, careful consider-
ation of the theoretical motivations justifying
a particular representation are required before
it makes sense to consider ordering effects.

However, to the extent that it is possible to
generate a segmental representation of a tone
language in which surface tones are indicated,
what the present work suggests is that the pre-
cise ordering of the tonal symbols with respect
to other symbols in the string is unlikely to
have a significant impact on phonotactic prob-
ability. This follows from two assumption (or
constraints): first, that the set of symbols used
to indicate tones is distinct from those used to
indicate the vowels and consonants; and sec-
ond, that one and only one such tone symbol
appears per string domain (here, the syllable).
If these two constraints hold, the complexity
of the syllable template should in general have
a greater impact on the entropy of the string
set than the position of the tone symbol, al-
though the number of unique tone symbols rel-
ative to the number of segmental symbols may
also have an effect. According to Maddieson
(2013) and Easterday (2019), languages with
complex syllable structures (defined as those
permitting fairly free combinations of two or
more consonants in the position before a vowel,
and/or two or more consonants in the position
after the vowel) rarely have complex tone sys-
tems, or indeed tone systems at all, so this is
unlikely to be an issue for most tone languages.

One possibility the present work did not ad-
dress is whether it is even necessary, or desir-
able, to include tone in phonotactic probability
calculations in the first place. The probability
of the lexicon of a tonal language would surely
change if tone is ignored, but whether listeners’
judgments of a sequence as well- or ill-formed
is better predicted by a model that takes tone
into account vs. one that does not is an empir-
ical question (but see Kirby and Yu, 2007; Do
and Lai, 2021b for some evidence that it may
not). Similarly, for research questions focused
on tone sandhis, or on the distributions of the
tonal sequences themselves (tonotactics), the
relevant computations will be restricted to the
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tonal tier in the first instance, and ordering
with respect to segments may simply not be
relevant (but see Goldsmith and Riggle, 2012).

Finally, the present study has focused on the
lexical representation of tone, but in many lan-
guages tone primarily serves a morphological
function. The SIGMORPHON 2020 Task 0
shared challenge (Vylomova et al., 2020) in-
cluded inflection data from several tonal Oto-
Manguean languages in which tone was or-
thographically encoded in different ways via
string diacritics. =~ While the authors noted
the existence these differences, it is unclear
whether and to what extent the different rep-
resentations of tones affected system perfor-
mance. Similarly, the potential impact of
tone ordering relative to other elements in the
string has yet to be systematically investigated
in this setting.

6 Conclusion

This paper has assessed how different permu-
tations of tone and segments affects the per-
plexity of the lexicon in four syllable-tone lan-
guages using two types of phonotactic lan-
guage models, an interpolated trigram model
and a simple recurrent neural network. The
perplexities assigned by the neural network
models were essentially unaffected by different
choices of ordering; while the trigram model
was more sensitive to permutations of tone and
segments, the effects on perplexity remained
minimal. In addition to providing a baseline
for future evaluation, these results suggest that
the phonotactic probability of a syllable is rel-
atively robust to choice of how tone is ordered
with respect to other elements in the string,
especially when using a model capable of en-
coding dependencies across the entire syllable.
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