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Abstract

This paper describes the submission of
the CU-UBC team for the SIGMORPHON
2021 Shared Task 2: Unsupervised morpho-
logical paradigm clustering. Our system
generates paradigms using morphological
transformation rules which are discovered
from raw data. We experiment with two
methods for discovering rules. Our first
approach generates prefix and suffix trans-
formations between similar strings. Sec-
ondly, we experiment with more general
rules which can apply transformations in-
side the input strings in addition to prefix
and suffix transformations. We find that
the best overall performance is delivered
by prefix and suffix rules but more gen-
eral transformation rules perform better
for languages with templatic morphology
and very high morpheme-to-word ratios.

1 Introduction

Supervised sequence-to-sequence models for
word inflection have delivered impressive re-
sults in the past few years and a number of
shared tasks on supervised learning of morphol-
ogy have helped to raise the state of the art of
this task (Cotterell et al., 2016, 2017, 2018; Mc-
Carthy et al., 2019; Vylomova et al., 2020). In
contrast, unsupervised approaches to morphol-
ogy have received far less attention in recent
years. Nevertheless, the question of whether
the morphological system of a language can be
discovered from raw text data alone is certainly
an interesting one.

This paper describes the submission of the
CU-UBC team for the SIGMORPHON 2021
Shared Task 2: Unsupervised morphologi-
cal paradigm clustering (Wiemerslage et al.,
2021).! The objective of this task is to group
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the distinct inflected forms of lexemes occur-
ring in a corpus into morphological paradigms.
Figure 1 illustrates the task.

Our system generates paradigms using mor-
phological transformation rules which are dis-
covered from raw data. As an example, con-
sider the rule ed — ing, which maps an En-
glish past tense verb form like walked into the
present participle walking. In this paper, we
use regular expressions of symbol-pairs (that
is, regular relations) in the well-known Xerox
formalism (Beesley and Karttunen, 2003) to
denote rules: for example, 7+ e:i d:n 0:g.
These rule can be applied using composition
of regular relations:

[Wwalked] .o. [?+e:id:n 0:g]
will result in an output formw a 1 k i n g.
We cluster forms into the same paradigm if
we can find morphological transformation rules
which map one of the forms into the other. Our
approach is illustrated in Figure 2.

We experiment with two methods for discov-
ering rules, described in Section 3.3. Our first
approach is inspired by work on morphology
discovery by Soricut and Och (2015), who gen-
erate prefix and suffiz transformations between
similar strings. This idea closely parallels our
approach for extracting rules. Unlike Soricut
and Och (2015), however, we do not utilize
word embeddings when extracting rules due to
the very small size of the shared task datasets.
In addition to prefix and suffix rules, we also
experiment with more general discontinuous
transformation rules which can apply trans-
formations to infixes as well as prefixes and
suffixes. For example, the rule

7+ 1:0 7?7+ e:i 7+ 0:t

would transform the input form gidem (‘to
bite’ in Maltese) to gdimt. Our results
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Figure 1: The unsupervised paradigm clustering
task.

demonstrate that prefix and suffix rules deliver
stronger performance for most languages in the
shared task dataset but our more general trans-
formations rules are beneficial for templatic
languages like Maltese and languages with a
high morpheme-to-word ratio like Basque.

2 Related Work

The unsupervised paradigm clustering task is
closely related to the 2020 SIGMORPHON
shared task on unsupervised morphological
paradigm completion (Kann et al., 2020). How-
ever, paradigm clustering systems do not infer
missing forms in paradigms. Our system re-
sembles the baseline system for the paradigm
completion task (Jin et al., 2020) which also
extracts transformation rules, however, in the
form of edit trees (Chrupala et al., 2008).

Several approaches to unsupervised or mini-
mally supervised morphology learning, which
share characteristics with our system, have
been proposed. Our rules are essentially iden-
tical to the FST rules used by Beemer et al.
(2020) for the task of supervised morpholog-
ical inflection. Likewise, Durrett and DeN-
ero (2013) and Ahlberg et al. (2015) both ex-
tract inflectional rules after aligning forms from
known paradigms. Yarowsky and Wicentowski
(2000) also generate rules for morphological
transformations but their system for minimally
supervised morphological analysis requires ad-
ditional information in the form of a list of
morphemes as input.

Erdmann et al. (2020) present a task called
the paradigm discovery problem which is quite
similar to the unsupervised paradigm clustering
task. In their formulation of the task, inflected
forms are clustered into paradigms and corre-
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sponding forms in distinct paradigms (like all
plural forms of English nouns) are clustered
into cells. Their benchmark system is based on
splitting every form into a (potentially discon-
tinuous) base and exponent, where the base is
the longest common subsequence of the forms
in a paradigm and the exponent is the residual
of the form. They then maximize the base in
each paradigm while minimizing the exponents
of individual forms.

3 Methods

This section describes how we extract rules
from the dataset and apply them to paradigm
clustering. We also describe methods for fil-
tering out extraneous forms from generated
paradigms.

3.1 Baseline

As a baseline, we use the character n-gram
clustering method provided by the shared task
organizers (Wiemerslage et al., 2021). Here
all forms sharing a given substring of length
n are clustered into a paradigm. Duplicate
paradigms are removed. The hyperparameter
n can be tuned on validation data if such data is
available (we use n = 5 in all our experiments).

3.2 Transformation rules

Our approach builds on the baseline paradigms
discovered in the previous step. We start by ex-
tracting transformation rules between all word
forms in a single baseline paradigm. For each
pair of strings like dog and dogs belonging to a
paradigm, we generate a rule like 7+ 0:s which
translates the first form into the second one.
From a paradigm of size n, we can therefore ex-
tract n? —n rules—one for each ordered pair of
distinct word forms. Preliminary experiments
showed that large baseline paradigms tended
to generate many incorrect rules which did not
represent genuine morphological transforma-
tions. We, therefore, limited rule-discovery to
paradigms spanning maximally 20 forms.
After generating transformation rules, we
compute rule-frequency over all baseline
paradigms and discard rare rules which are
unlikely to represent genuine morphological
transformations (the minimum threshold for
rule frequency is a hyperparameter). The re-
maining rules are then applied iteratively to
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Figure 2: A schematic representation of our approach. We start by generating preliminary paradigms
using the baseline method. We then extract transformation rules for each word pair in our paradigms
noting how many times each unique rule occurred. For example, here both (dog, dogs) and (cat, cats)
result in a rule ?* 0:s which therefore has count 2. Subsequently, we discard rare rules like h:0 0:0 t:0
?* which are unlikely to represent genuine morphological transformations. We then use the remaining
rules to reconstruct our morphological paradigms as explained in Section 3.3.

our datasets to construct paradigms. We exper-
iment with two rule types which are described
below.

3.2.1 Prefix and Suffix Rules

Our first approach to rule-discovery is based on
identifying a contiguous word stem shared by
both forms. The stem is defined as the longest
common substring of the forms. We split both
forms into a prefix, stem and suffix. The mor-
phological transformation is then defined as a
joint substitution of a prefix and suffix. For ex-
ample, given the German forms acker+n and
ge+acker+t (German ‘to plow’), we would
generate a rule:

0:g O:e 7+ n:t

As mentioned above, these rules are extracted
from paradigms generated by the baseline sys-
tem.

We also experiment with a more restricted
form of these rules in which only suffix trans-
formations are allowed. While this limits the
possible transformations, it will also result in
fewer incorrect rules and may, therefore, de-
liver better performance for languages which
are predominantly suffixing.

3.2.2 Discontinuous rules

Even though prefix and suffix transformations
are adequate for representing morphological
transformations in many languages, they fail to
derive the appropriate generalizations for lan-
guages with templatic morphology like Maltese
(which was included among the development
languages). For example, it is impossible to
identify a contiguous stem-like unit spanning
more than a single character for the Maltese
forms gidem ‘to bite’ and gdimt. We need

a rule which can apply transformations inside
the input string:
7+ i:0 ?+ e:i 7+ 0:t

Like prefix and suffix rules, discontinuous
rules are generated from baseline paradigms.
Unlike prefix and suffix rules, however, discon-
tinuous rules require a character-level align-
ment between the input and output string.
To this end, we start by generating a dataset
consisting of all string pairs like (dog, dogs)
and (hotdog, dog), where both strings belong
to the the same paradigm. We then apply
a character-level aligner based on the itera-
tive Markov chain Monte Carlo method to this
dataset.? Using this method, we can jointly
align all string pairs in the baseline paradigms.
This is beneficial because the MCMC aligner
will prefer common substitutions, deletions
and insertions over rare ones.> which enforces
consistency of the alignment over the entire
dataset. This in turn can help us find linguis-
tically motivated transformation rules.

Character-level alignment results in pairs:

INPUT: d o g 0
OUTPUT: d o g s
INPUT: h o t d o g
OUTPUT: 0 0 0 d o g

Each symbol pair in the alignment represents
one of the following types: (1) an identity pair
x:x, (2) an insertion 0:x, (3) a deletion x:0,
or (4) a substitution x:y. In order to convert
a pair of aligned strings into a transformation

2This aligner was initially used for the baseline sys-
tem in the 2016 iteration of the SIGMORPHON shared
task (Cotterell et al., 2016).

3This is a consequence of the fact that the algorithm
iteratively maximizes the likelihood of the alignment for
each example given all other examples in the dataset.
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rule, we simply replace all contiguous sequences
of identity pairs with 7+. For the alignments
above, we get the rules: 7+ 0:s and h:0 0:0
t:0 7+,

3.3 Iterative Application of Rules

After extracting a set of rules from baseline
paradigms, we discard the baseline paradigms.
We then construct new paradigms using our
We start by picking a random word
form w from the dataset. We then form the
paradigm P for w as the set of all forms in
our dataset which can be derived from w by
applying our rules iteratively. For example,
given the form eats and the rules:

rules.

7?7+ s:0and 7+ 0:i O:n O:g

the paradigm of eats would contain both eat
(generated by the first rule) and eating (gen-
erated by the second rule from eats) provided
that both of these forms are present in our orig-
inal dataset. All forms in P are removed from
the dataset and we then repeat the process for
another randomly sampled form in the remain-
ing dataset. This continues until the dataset is
exhausted. The procedure is sensitive to the or-
der in which we sample forms from the dataset
but exploring the optimal way to sample forms
falls beyond the scope of the present work.

For prefix and suffix rules, we limit rule ap-
plication to a single iteration because this de-
livered better results in practice. Applying
rules iteratively tended to result in very large
paradigms. For discontinuous rules, we do ap-
ply rules iteratively.

3.4 Filtering Paradigms

According to our preliminary experiments,
many large paradigms generated by transfor-
mation rules contained word forms which were
morphologically unrelated to the other forms
in the paradigm. To counteract this, we ex-
perimented with three strategies for filtering
out individual extraneous forms from generated
paradigms: the degree test, the rule-frequency
test and the embedding-similarity test. Forms
which fail all of our three tests are removed
from the paradigm.?

4These filtering strategies are applied to paradigms
containing > 20 forms. This threshold was determined
based on examining the output clusters for the devel-
opment languages.
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Figure 3: Given the candidate paradigm {walk,
wall, walking, walked, walks}, we can form a
graph where two word forms are connected if a
rule like 7+ 0:e 0:d derives one of the forms like
walked from the other one walk. We experiment
with filtering out forms which have low degree in
this graph since those are more likely to be spurious
additions resulting from rules like 7+ 1:k in the ex-
ample, which do not capture genuine morphologi-
cal regularities. In this example, wall might be fil-
tered out because it has low degree one compared
to all other forms which have degree three.

If we first generate all paradigms and then fil-
ter out extraneous forms, we will be left with a
number of forms which have not been assigned
to a paradigm. In order to circumvent this
problem, we apply filtering immediately after
generating each individual paradigm. Forms
which are filtered out from the paradigm are
placed back into the original dataset. They
can then be included in paradigms which are
generated later in the process.

Degree test Our morphological transforma-
tion rules induce dependencies and therefore
a graph structure between the forms in a
paradigm as demonstrated in Figure 3. Within
each paradigm, we calculate the degree of a
word in the following way: For each attested
word w in the generated paradigm, its degree
is the number of forms w’ in the paradigm for
which we can find a transformation rule map-
ping w — w’. We increment the degree if there
is at least one edge between words w and w’
in the paradigm (the number of distinct rules
mapping form w to w’ is irrelevant here as long
as there is at least one). If the degree of a word
is less than a third of the paradigm size, the
word fails the degree test.

Rule-Frequency test Some rules like 7+
e:i d:n 0:g for English represent genuine in-
flectional transformations and will therefore



occur often in our datasets. Others, like the
rule 7* 1:k in Figure 3, instead result from co-
incidence, and will usually have low frequency.
We can, therefore, use rule frequency as a cri-
terion when identifying extraneous forms in
generated paradigms. We examine the cumula-
tive frequency of all rules applying to the form
in our paradigm. If this frequency is lower
than the median cumulative frequency in the
paradigm, the form fails the rule-frequency test.

Embedding-similarity test If a word fails
to pass the degree and the rule frequency tests,
we will measure the semantic similarity of the
given form with other forms in the paradigm.
To this end, we trained FastText embeddings
(Bojanowski et al., 2017) and calculated co-
sine similarity between embedding vectors as a
measure of semantic relatedness.® We start by
selecting two reference words in the paradigm
which have high degree (at least 50% of the
maximal degree) and whose cumulative rule fre-
quency is above the paradigm’s median value.
We then compute their cosine similarity as a
reference point r. For all other words in the
paradigm, we then compare their cosine simi-
larity 7’ to one of the reference forms. Forms
fail the embedding-similarity test if v < 0.5
andr —1r' > 0.3.

4 Experiments and Results

In this section, we describe experiments on the
shared task development and test languages.

4.1 Data and Resources

The shared task uses two data resources. Cor-
pus data for the four development languages
(Maltese, Persian, Russian and Swedish) and
nine test languages (Basque Bulgarian, English,
Finnish, German, Kannada, Navajo, Spanish
and Turkish) are sourced from the Johns Hop-
kins Bible Corpus (McCarthy et al., 2020b).
For most of the languages, complete Bibles
were provided but for some of them, we only
had access to a subset (see Wiemerslage et al.
(2021) for details). Gold standard paradigms
were automatically generated using the Uni-
morph 3.0 database (McCarthy et al., 2020a).

5We train 300-dimensional embeddings with context
window 3 and use character n-grams of size 3-6.

4.2 Experiments on validation
languages

Since our transformation rules are generated
from paradigms discovered by the baseline sys-
tem, which contain incorrect items, it is to be
expected that some incorrect rules are gener-
ated. We filter out infrequent rules, as they are
less likely to represent genuine morphological
transformations. For prefix and suffix rules
(i.e., PS), we experimented with including the
top 2000 (PS-2000), 5000 (PS-5000), and all
rules (PS-all), as measured by rule-frequency.
Additionally, we present experiments using a
system which relies exclusively on suffix trans-
formations including all of them regardless of
frequency (S-all). For discontinuous rules (D),
we used lower thresholds because our prelimi-
nary experiments indicated that incorrect gen-
eralizations were a more severe problem for
this rule type. We selected the 200 (D-200),
300 (D-300), and 500 (D-500) most frequent
rules, respectively. Results with regard to best-
match F1 score (see Wiemerslage et al. (2021)
for details) are shown in Table 1.

According to the results, all of our systems
outperform the baseline system by at least
25.53% as measured using the mean best match
F1 score. Plain suffix rules (S-all) provide
the best performance with a mean F1 score
of 65.41%, followed by other affixal systems
(PS-2000, PS-5000 and PS-all). On average,
discontinuous rules (D-200, D-300 and D-500)
are slightly less-successful, but they deliver
the best performance for Maltese. Table 1
demonstrates that simply increasing the num-
ber of rules does not always contribute to bet-
ter performance—the optimal threshold varies
between languages.

As explained in Section 3.4, we aim to fil-
ter out extraneous forms from overly-large
paradigms. We applied this approach to discon-
tinuous rules with a 500 threshold. Results are
shown in Table 2. As the table shows, a filtering
strategy can offer very limited improvements.
Most of the languages do not benefit from this
approach and even for languages which do, the
gain is miniscule. Due to their very limited
effect, we did not apply filtering strategies to
test languages.
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Maltese Persian Portuguese Russian Swedish Mean
Baseline 29.07 30.04 34.15 36.30 43.62 34.64
PS-2000 35.41 50.17 65.53 81.20 81.14 62.69
PS-5000 36.81 50.40 71.33 81.96 79.82 64.06
PS-all 40.67 53.15 76.63 75.39 72.46 63.66
S-all 30.32 52.69 82.67 80.65 80.74 65.41
D-200 42.99 54.65 66.86 70.38 68.76 60.73
D-300 42.99 53.64 69.38 72.33 67.14 61.10
D-500 45.05 51.82 66.37 75.26 62.30 60.16
Table 1: F1 Scores for each of the model types on all development languages. The best F1 scores are in
bold.
Maltese Persian Portuguese Russian Swedish Mean
Baseline 29.07 30.04 34.15 36.30 43.62 34.64
D-500 45.05 51.82 66.37 75.26 62.30 60.16
Filter 45.05 51.82 66.45 75.26 62.30 60.18

Table 2: F1 score for Discontinuous rules systems and Filtering systems across five validation languages.

4.3 Experiments on Test Languages

Results for the test languages are presented in
Table 3. We find that all of our systems sur-
passed the baseline results by at least 23.06% in
F1 score. The prefix and suffix system using all
of the suffix rules displays the best performance
with an F1 score of 66.12%. Among the discon-
tinuous systems, the system with a threshold of
500 has the best results. On average, the affixal
systems outperform the discontinuous ones. In
particular, these methods perform best on lan-
guages which are known to be predominantly
suffixing, such as English, Spanish, and Finnish.
Contrarily, discontinuous rules deliver the best
performance for Navajo—a strongly prefixing
language. Discontinuous rules also result in
the best performance for Basque, which has a
very high morpheme-to-word ratio.

In order to better understand the behavior of
our systems, we analyzed the distribution of the
size of generated paradigms for prefix and suffix
systems as well as discontinuous systems. Re-
sults for selected systems are shown in Figure 4.
We conducted this experiment for the overall
best system (S-all), as well as the best discontin-
uous system (D-500). Both systems follow the
same overall pattern: large paradigms are rarer
than smaller ones and the frequency drops very
rapidly with increasing paradigm size. The ma-
jority of generated paradigms have sizes in the
range 1-5. Although the tendency is similar for
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suffix rules and discontinuous rules, discontin-
uous rules tend to generate more paradigms of
size 1. In contrast to the paradigms generated
by our systems, the frequency of gold standard
paradigms drops far slower as the paradigms
grow. For example, for Finnish and Kannada,
paradigms containing 10 forms are still very
common. The only language where the distri-
bution generated by our systems very closely
parallels the gold standard is Spanish. For
all other languages, our systems very clearly
over-generate small paradigms.

5 Discussion and Conclusions

Paradigm construction can suffer from two
main difficulties: overgeneralization, and un-
derspecification. In the former, paradigms are
too generous when adding new members. Con-
sider, for example, a paradigm headed by “sea”.
We would want to include the plural “seas”, but
not the unrelated words “seal”, “seals”, “un-
dersea”, etc. Contrarily, a paradigm selection
algorithm that is overly selective will result in
a large number of small paradigms - less than
ideal in a morphologically-dense language.
Considering the results described in the pre-
vious section, we note that our two best mod-
els skew towards conservatism - they prefer
smaller paradigms. This is likely an artifact of
our development cycle - we found that the base-
line preferred large paradigms, often capturing
derivational features, or even circumstantial



English Navajo Spanish Finnish Bulgarian Basque Kannada German Turkish Mean

Baseline 51.49 33.25 38.83 28.97 38.89 21.48 23.79 38.22 25.23 33.35
PS-2000 83.89 48.69 77.71 52.60 73.50 25.81 42.35 74.49 46.80 58.42
PS-5000 81.16 48.69 79.60 57.88 74.14 29.03 47.47 74.27 51.26 60.39
PS-all 76.41 48.69 76.94 66.03 69.50 29.03 57.71 65.26 60.97 61.17
S-all 88.68 42.48 83.21 73.42 76.96 29.03 59.34 74.18 67.80 66.12
D-200 76.93 58.45 66.05 50.68 70.48 26.19 40.57 70.26 48.05 56.41
D-300 73.23 59.36 69.46 53.66 69.39 26.19 43.71 68.52 51.00 57.17
D-500 69.33 61.66 69.92 56.51 63.23 33.33 46.94 62.54 53.24 57.41

Table 3: F1 Scores for each of the model types on all test languages. The best F1 scores are in bold.

w0 Basque Paradigm Size Distribution w0 Bulgarian Paradigm Size Distribution w0 English Paradigm Size Distribution
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Figure 4: Paradigm size distribution across nine test languages. The x axis stands for paradigm size
ranging from 1 to 20. The y axis shows the percentage of each paradigm size accounts for among all
paradigms the system generates.
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string similarities, when clustering paradigms.
Much of our focus was thus on limiting rule ap-
plication only to those rules we could be certain
were genuine. Unfortunately, this means that
many words are excluded, residing in singleton
paradigms.

Our methods were also affected by the choice
of development languages. Of these languages,
only one (Persian) is agglutinating, and none
of the authors can read the script, so it had a
smaller impact on the evolution of our methods.
We believe that several languages —namely,
Finnish, Turkish, and Basque— could have
benefited from iterative rule application; how-
ever, the iterative process was not selected after
seeing a degradation (due to overgeneralization)
on the development languages.

It is also worth discussing two outliers in
our system selection. Our suffix-first model
performed very well on all of the development
languages except Maltese. This is not sur-
prising, given its templatic morphology. Mal-
tese inspired the creation of our discontinuous
rule set, and indeed, these rules outperformed
the suffixes for Maltese. Switching to the test
languages, we see that this model has higher
performance for Navajo and Basque —two lan-
guages that are rarely described as templatic.
We observe, however, that both languages make
heavy use of prefizing. Note in Table 2 that in-
cluding prefixes (PS-All) significantly improves
Navajo: the only language to see such a bene-
fit. Likewise, Navajo also has significant stem
alternation, which may be benefiting from dis-
continuous rule sets. Basque is trickier - it
does not improve simply from including pre-
fixal rules. Upon closer inspection, we observe
that much Basque prefixation more closely re-
sembles circumfization: the stem has a prefixal
vowel to indicate tense, which is jointly applied
with inflectional suffixes. One round of rule
application - even if it includes both suffixes
and prefixes, appears to be insufficient.

There is still plenty of ground to be covered,
with the mean F1 score below 70%. We be-
lieve that the next step lies in re-establishing
a bottom-up construction for those paradigms
that our methods currently separate into small
sub-paradigms. Our methods predict roughly
twice to 3 times as many singleton paradigms
as exist in the gold data, and there is not signifi-
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cant rule support to combine them. Possible ar-
eas for exploration include iterative rule extrac-
tion on successively more correct paradigms, or
the incorporation of a machine learning element
that can predict missing forms.

In this paper, we have presented a method for
automatically building inflectional paradigms
from raw data. Starting with an n-gram base-
line, we extract intra-paradigmatic rewrite
rules. These rules are then re-applied to the cor-
pus in a discovery process that re-establishes
known paradigms. Our methods prove very
competitive, with our best model finishing
within 2% of the best submitted system.
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