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Abstract

Contextual language models have led to sig-
nificantly better results on a plethora of lan-
guage understanding tasks, especially when
pre-trained on the same data as the down-
stream task. While this additional pre-training
usually improves performance, it can lead to
information leakage and therefore risks the pri-
vacy of individuals mentioned in the training
data. One method to guarantee the privacy
of such individuals is to train a differentially-
private model, but this usually comes at the
expense of model performance. Moreover, it
is hard to tell given a privacy parameter ε
what was the effect on the trained represen-
tation. In this work we aim to guide future
practitioners and researchers on how to im-
prove privacy while maintaining good model
performance. We demonstrate how to train
a differentially-private pre-trained language
model (i.e., BERT) with a privacy guarantee
of ε = 1 and with only a small degradation in
performance. We experiment on a dataset of
clinical notes with a model trained on a target
entity extraction task, and compare it to a sim-
ilar model trained without differential privacy.
Finally, we present experiments showing how
to interpret the differentially-private represen-
tation and understand the information lost and
maintained in this process.

1 Introduction

Recent advancements in natural language process-
ing (NLP), mainly the introduction of the trans-
former architecture and contextual language repre-
sentations, have led to a surge in the performance
and applicability language models. Such models
rely on pre-training on massive self-labeled cor-
pora to incorporate knowledge within the language
representation. Additionally, when presented with
a new dataset and task, such models often gain
from an additional pre-training stage, where they
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are trained to solve a language modeling task on
the new training data.

While the pre-training steps are crucial for good
model performance on downstream tasks, it can
come at the expense of the privacy of the persons
mentioned in the data. As these models learn to pre-
dict words using their context, they often memorize
individual words and phrases. Such memorization
can lead to information leakage when using the
trained models or the language representation. This
problem is amplified in medical domains, where pa-
tients data might leak and expose Protected Health
Information (PHI).

One solution for pre-training the model while
preserving patients’ privacy is to train the model
with a differential privacy guarantee. However, for
a sufficiently small privacy parameter ε, this usually
comes at the expense of model performance. Also,
it was only shown to work for recurrent language
models, and not for more recent systems that are
based on the transformer architecture (McMahan
et al., 2018; Kerrigan et al., 2020). Apart from
their size (our model has 109M trainable parame-
ters), transformer-based language models introduce
an additional privacy concern, as their reliance on
WordPiece based tokenization algorithm can also
potentially leak private information.

Moreover, even with a sufficiently small ε guar-
antee, it is hard to test and evaluate the result-
ing privacy-preserving properties of the model.
One also has difficulty understanding whether the
differentially-private training procedure affected
the language representation other than by measur-
ing performance on a downstream task. For exam-
ple, it could be that other valuable information was
also lost during training.

In this work we provide here a detailed solu-
tion to training a differentially-private contextual
embedding model, and to better understand the re-
sulting representation. We start by presenting a
method for training BERT, a contextual embedding
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model, on medical data with a strong privacy guar-
antee of ε = 1 and with only a small degradation
in performance (Section 3). Possibly the most ma-
jor technical challenge in doing so is the fact that
the training batch size has to be fairly large, all
the while training on specific hardware (TPUs) in
which the batch size is limited. We overcome this
obstacle by distributing each training batch over
time during the training process, along with other
useful manipulations (Section 2.1). As these mod-
els gain from retraining the WordPiece algorithm
on the target dataset, we propose a differentially-
private WordPiece algorithm, preventing additional
information leakage through the model’s vocabu-
lary (Section 3.2).

After training the differentially-private BERT on
clinical notes, we follow common wisdom and pro-
vide privacy tests to show that information leakage
has been prevented in this process (Section 5). We
further provide adversarial attacks that can help
understand the privacy guarantees in terms of mem-
orized words and phrases. These tests, when com-
bined, provide a useful toolbox for understanding
how “private” is the differentially-private model.

2 Previous Work

Since the introduction of the differentially-private
Stochastic Gradient Descent (SGD) algorithm
(Song et al., 2013; Abadi et al., 2016b), it is possi-
ble to train deep neural networks (DNN) with pri-
vacy guarantees. Specifically, there have been sev-
eral attempts to train DNN-based language models
with such guarantees, though with mixed results in
terms of performance on downstream tasks (McMa-
han et al., 2018; Kerrigan et al., 2020). To better
understand the trade-offs between the performance
and privacy of deep language models, we survey
here the literature on differentially-private training
and on methods for measuring privacy in language
models.

2.1 Training Differentially-Private Models

Differential Privacy (DP; Dwork et al., 2006b;
Dwork, 2011; Dwork et al., 2014) is a framework
that quantifies the privacy leaked by some random-
ized algorithm accessing a private dataset. In the
context of training a machine learning model on
private data, it enables one to bound the poten-
tial privacy leakage by releasing the model to the
world.

Definition 1 ((ε, δ)-DP) Given some ε, δ > 0, we

say that algorithm A has (ε, δ)-differential privacy,
if for any two datasets D, D′ differing in a single
element and for all S ⊆ Range(A), we have:

Pr[A(D) ∈ S] ≤ eε Pr[A(D′) ∈ S] + δ.

The leading method for training models with
small differential privacy parameters ε, δ is the DP-
SGD method by Abadi et al. (2016b). The method
was subsequently incorporated into Tensorflow’s
privacy toolbox with improved privacy analysis
(Mironov, 2017; Mironov et al., 2019). The basic
idea behind DP-SGD is to clip and add noise to the
per example gradients of the loss function during
model training. The intuition is that such a mecha-
nism guarantees that, for each step, the influence
of each example on the outcome is bounded.

In the context of NLP, there have been several at-
tempts to train language models using the DP-SGD
algorithm. Specifically, McMahan et al. (2018) pre-
sented a pipeline for training differentially-private
language models based on the recurrent neural net-
work (RNN) architecture. While successful on the
RNN architecture, results on a fine-tuned trans-
former, specifically GPT-2, were shown to be less
successful in preserving privacy without hurting
task performance (Kerrigan et al., 2020). In this
paper, we present the first, as far as we know, suc-
cessfully trained differentially private BERT model,
with a strong privacy guarantee and with only a
small decrease in downstream performance.

2.2 Evaluating the Privacy of Language
Models

While differential privacy training provides privacy
guarantees (in terms of the privacy parameters ε, δ),
it is often hard to evaluate the practical implication
of such a guarantee. In the context of language
models, evaluation becomes even trickier. Private
information might be encoded in specific phrases
contained in the text, but it can also be implicitly
contained in the language model. In the context of
clinical notes, for example, information regarding
the linguistic style of the doctor can be captured
and predicted from linguistic cues in the text itself
(Rosenthal and McKeown, 2011; Preoţiuc-Pietro
et al., 2015; Coavoux et al., 2018).

Song and Raghunathan (2020) studied informa-
tion leakage from language representations, and
presented several methods for evaluating the pri-
vacy preserving qualities of trained language mod-
els. They provided a taxonomy of adversarial at-
tacks, differing by the adversary’s access to model’s
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internal state. Specifically, they defined member-
ship attacks on language representation, which are
designed to detect memorized information. In this
paper, we build on the secret sharer membership
test, a method for quantitatively assessing the risk
that rare or unique training-data sequences are un-
intentionally memorized by generative sequence
models (Carlini et al., 2019). While not specifically
designed for language models such as BERT, it fits
the DP evaluation setup perfectly. Concretely, in
this test a secret sharer plants n identical occur-
rences of a k WordPiece sequence into the train
corpus. The sequence itself consists of i.i.d. ran-
dom WordPieces where the middle is the secret.
The model is then trained on the modified corpus
and evaluated for each planted sequence by trying
to predict the secret WordPiece.

In Section 5, we show that unlike the original
BERT model, our trained DP-BERT model does
not memorize sequences of words introduced via
the secret sharer.

3 Training Differentially Private
Contextual Language Models

Training differentially private language models be-
comes exceedingly difficult with model size. As
such, attempting to train a transformer model such
as BERT using the DP-SGD algorithm and without
any modifications will usually lead to a significant
performance degradation (Kerrigan et al., 2020).
Moreover, as the WordPiece algorithm, the process
that tokenizes the textual input of BERT, is not dif-
ferentially private, training will not guarantee that
there is no information leakage. In this section,
we formulate the problem of training a DP BERT
model on medical text, and explain the process
of constructing a differentially private vocabulary.
We then discuss the importance of parallel training
and very large batch sizes in training such large
language models, and provide a method for suffi-
ciently increasing such crucial parameters.

3.1 Problem Formulation

We choose to focus our DP training on the task of
entity extraction (EE) from medical text, specifi-
cally clinical notes. Clinical notes include medi-
cally relevant information regarding patients’ con-
ditions, and are often used as training data for
downstream machine learning tasks (Esteva et al.,
2019). However, they can contain Protected Health
Information (PHI) as well as additional informa-

tion that might put patients at risk (Feder et al.,
2020; Hartman et al., 2020). For this reason, lan-
guage models trained on such datasets must be
able to learn domain-relevant information (such as
medical jargon and doctors’ writing style) without
memorizing private information (Lee et al., 2020).

To test our ability to train a DP language model
on clinical notes, we use a BERT model (Devlin
et al., 2019) with specialization to the medical do-
main. To this end, the public Wikipedia and Book-
Corpus datasets (Zhu et al., 2015) used to train
BERT were amended with the Medical Informa-
tion Mart for Intensive Care III corpus (Johnson
et al., 2016, MIMIC-III) in order to improve per-
formance on medical tasks. Although MIMIC-III
has undergone a de-identification process aimed
to remove revealing information such as names
and dates, the corpus and its derivative models are
not considered public, and their use must adhere
to certain restrictions. As a consequence, a need
arises to build a medical BERT model with sub-
stantial differential privacy guarantees on its use of
MIMIC-III, and this work aims to do exactly that.

Before introducing changes designed to guaran-
tee privacy, let us review the procedure used to
obtain the Medical BERT model. The available
resources are the 3 billion word Wikipedia + Book-
Corpus, and the 712M word MIMIC-III corpus.
The training process consists of the following three
steps:

(i) Build the vocab from the MIMIC-III corpus.
(ii) Train BERT from scratch on the Wikipedia +

BookCorpus using the new vocab.
(iii) Continue BERT’s training on the MIMIC-III

corpus.
The steps that are susceptible to leaking MIMIC-

III data are the first, and the third. Therefore, by
the composability property of differential privacy
(Dwork et al., 2014, Theorem 3.16), our problem
reduces to providing algorithms with satisfactory
DP guarantees for steps 1 and 3 without causing
a significant performance loss. We discuss these
problems in the following two subsections.

3.2 Constructing a differentially private
vocabulary

Transformer-based models commonly tokenize in-
puts into WordPieces using the WordPiece algo-
rithm. The WordPiece algorithm (Wu et al., 2016)
is a general method for improving the generaliza-
tion properties of a language model by tokenizing
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based on the most frequent combination of symbols
rather than words. While its efficacy is undisputed,
it can leak private information by memorizing cer-
tain WordPieces in the training data. To prevent
such leakage, we modify this algorithm to be dif-
ferentially private. We do so as follows.

The WordPiece algorithm starts with construct-
ing the word histogram of the corpus. This his-
togram is then manipulated to obtain the Word-
Piece output vocabulary. Since differential privacy
is robust to post-processing, it is enough to make
the input histogram differentially private in order to
guarantee a differentially-private end-result vocab-
ulary. Our differentially-private WordPiece algo-
rithm is therefore to add noise to the histogram with
given privacy parameters and apply the standard
WordPiece algorithm.

Histogram noising is done following (Korolova
et al., 2009; Bun et al., 2019), let X be the set of all
possible n distinct words. For the input histogram
h : X → R, we do:

(i) For all x ∈ X, if h(x) > 0, add Laplace noise:
h(x)← h(x) + Lap(2/ε).

(ii) For all x ∈ X, if h(x) < 1 + 2 ln(2/δ)/ε, set
h(x)← 0.

The output h of this process satisfies (ε, δ)-
differential privacy with respect to replacing one
of the words in the histogram counts. Assuming
0 < ε < ln(n), 0 < δ < 1/n (Bun et al., 2019;
Korolova et al., 2009).

In order to obtain differential privacy at the level
of BERT example (256???? WordPiece) we use
the basic composition theorem for non-adaptive
queries (Dwork et al., 2006a; Dwork and Lei,
2009):

Theorem 1 Let M1, . . .Mk be (ε, δ)-differentially
private, then (M1, . . . , Mk) is (kε, kδ)-differentially
private.

We used parameters ε′ =?, δ′ =?? in the noisy
histogram algorithm above to achieve an example
level (ε = 256∗?, δ = 256∗?) differential privacy.

3.3 Training a differentially private BERT

We use the DP-SGD method supplied the TF pri-
vacy toolbox (see Section 2.1). The parameters
of the algorithm are the number of steps, batch-
size B, `2-norm-clip C, and the noise multiplier σ.
To fix notation, we formally define the DP-SGD
step, as defined in Abadi et al. (2016b, Algorithm
1). Given the per-example gradients of the loss
function g1, . . . , gB, the gradient g̃ for passing to

apply_gradients is defined by:

gi = gi/ max(1, ‖gi‖2/C), for all i; (1)

g̃ =
1
B

(∑
i

gi +N (0,σ2C2I)

)
. (2)

The most important parameter of the algorithm
is the noise multiplier σ—increasing σ directly
decreases ε; i.e., increases the differential-privacy
guarantee of the algorithm. On the other hand
it harms performance on the target data-set, and
thus a careful choice of σ is necessary to trade-off
privacy against performance. Moreover, we choose
the noise σ to be proportional to the square root
of the batch size B. This is done in order to make
the privacy guarantee oblivious to changes in the
batch size B (as one can observe from Eq. (2)). The
privacy guarantee is also affected by the number of
training steps (or epochs), but this behavior is more
gradual since ε increases near-linearly in the range
of interest. In our experience, the clip level C is of
lesser importance and we fix it to be 0.01.

For any choice of parameters, we upper bound
the privacy parameter ε using the TF privacy
toolbox compute_dp_sgd_privacy function,
where we also use the number of MIMIC examples
N = 83M. We fix privacy δ to be 10–8, which is
smaller than 1/N.

The effect of parallelism. In order to make the
training run faster, we use TPUs1 to parallelize
training by splitting example batches to shards.
This mechanism is readily available through Ten-
sorflow (TF; Abadi et al., 2016a), but its effect
has to be taken into account when computing the
bounds on ε.

In order to understand this effect, let us first
review the way we incorporate TF privacy
into the BERT training code. The change
consists of changing the loss computation code
to compute the vector loss (per-example loss),
and of wrapping the existing Adam weight
decay optimizer (Kingma and Ba, 2015), our
optimizer of choice, by the DP optimizer using
the make_gaussian_optimizer_class
method.

The subtle point lies in the second change,
as the optimization is also wrapped by
CrossShardOptimizer which handles
the sharded batching. Let B denote the unsharded

1https://cloud.google.com/tpu/docs/
tpus.

https://cloud.google.com/tpu/docs/tpus
https://cloud.google.com/tpu/docs/tpus
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batch size, and P denote the number of parallel
shards. For each batch, the examples are split
between P independent instances of the TF privacy
optimizer, each handling B/P examples. For each
shard, the gradients are clipped, averaged and
noise is added by equations Eqs. (1) and (2).
Subsequently, the CrossShardOptimizer
averages the P shard gradients to obtain the single
gradient to be passed to apply_gradients.

Therefore, denoting the i-th gradient of shard j by
gi,j, the gradient passed to apply_gradients
can be written as follows:

g̃ =
1
P

∑
j

[
1

B/P

(∑
i

gi,j +N (0,σ2C2I)

)]

=
1
B

∑
i,j

gi,j +N (0, Pσ2C2I)

 . (3)

This implies that using noise multiplier σ with P
shards is equivalent to an unsharded training with
noise multiplier σ

√
P. As computing an upper

bound on ε through TF privacy does not take paral-
lelism into account, one must use σ

√
P as the noise

multiplier in order to get the correct result.

Achieving larger batch sizes. As it quickly be-
came apparent throughout this project, we needed
larger batch sizes. However, usually batch size
cannot increase beyond a certain point because of
memory considerations, and limitation on the num-
ber of available TPUs. With the resources avail-
able to us, we couldn’t get beyond parallelism of
P = 256 with sharded batch size of 32, achieving
total batch size B = 8192.

The way we chose to solve this problem is to
spread the batch in time, so apply_gradients
is called only after T batches are processed with
the average total gradient. This is equivalent to
increasing both P and B by a factor of T . With
this method, the only limit on T is processing time.
From our experience, the value of T = 32 is a
reasonable choice, achieving parallelism of P =
256 · 32 and total batch size B of 128k with the
above parameters.

We briefly remark upon the implementation of
this mechanism. For every trainable variable, we
created a variable with /grad_acc suffix added
to the original name. For each step, the train_op
either accumulates the current gradients in the
new variables, or zeros the accumulator and calls

apply_gradients, depending on the current
step modulo T .

4 Experimental Setup

We design our experiments to demonstrate the abil-
ity of the DP training scheme to improve perfor-
mance while preserving privacy. We focus on the
medical domain as it has strict privacy requirements
and its language is distinct enough such that addi-
tional pre-training should be useful. We start by
describing the data used for the DP training and
relevant implementation details. We then present
the entity extraction task used for the supervised
task training and evaluation. Finally, we discuss
the relevant baselines, chosen to demonstrate the
efficacy of the DP training scheme.

Pre-training data. For the DP pre-training, we
supplement the original training data used in Devlin
et al. (2019) with the MIMIC-III dataset, a com-
monly used collection of medical information that
contains more than 2 million distinct notes (John-
son et al., 2016; Alsentzer et al., 2019). MIMIC-III
covers 38,597 distinct adult patients and 49,785
hospital admissions between 2001 and 2012. The
clinical notes in this dataset are widely used by
NLP researchers for a variety of clinically-related
tasks (Feder et al., 2020; Hartman et al., 2020), and
were previously used for pre-training BERT mod-
els specifically for the medical domain (Alsentzer
et al., 2019).

Using the combined dataset, we train our DP-
BERT model using the the training scheme de-
scribed in Section 3. At this point, we use a Word-
Piece vocabulary generated from MIMIC-III with-
out privacy guarantees.

Entity-extraction task. For the supervised task
training, we use i2b2-2010, a dataset from the i2b2
National Center for Biomedical Computing for the
NLP Shared Tasks Challenges (Uzuner et al., 2011).
This dataset contains clinical notes tagged for con-
cepts, assertions, and relations. In this task, 170
patient reports are labeled with three concepts: test,
treatment, and problem. The total number of enti-
ties in each category are as follows:

• Problem: 7, 073
• Test: 4, 608
• Treatment: 4, 844

We perform 5-fold cross validation where each fold
has random training (136 notes) and test (34 notes)
sets.
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Baselines. We compare our differentially private
BERT model, denoted as DP BERT, to several non
private baselines:
BERT (Wikipedia + Books) We train a BERT-

large model, as in Devlin et al. (2019), using
the default hyperparameters.

BERT-M (Wikipedia + Books + MIMIC-III)
We supplement the original training from
Devlin et al. (2019) with the MIMIC-III
clinical notes corpus. In addition, we also
use a (non-differentially private) WordPiece
vocabulary generated from MIMIC-III.

BioBERT We use the training data presented in
Lee et al. (2020), and use it to train BERT. We
tested version v1.1 which it trained using the
original dataset + 1M PubMed abstracts.

In Section 5 we compare several differentially
private models, discuss their differences and high-
light the effect of certain parameters (as discussed
in Section 3) on the EE task performance.

5 Results

In this section we empirically evaluate the trade-
offs between a model’s privacy and its usefulness.
Previously, in Section 3, we have shown how to pre-
train a contextual embedding model such as BERT
with any, possibly substantial, privacy guarantee.
We naturally expect that a stronger privacy guaran-
tee would entail that less information is preserved
during pre-training, which in turn would degrade
performance on downstream tasks. Thus, we aim
to ascertain the exact trade-off between these two
goals in order to be able to choose a model that has
both good performance and a satisfactory privacy
guarantee.

We provide two sets of experiments to help bet-
ter understand this trade-off as well as to provide
practitioners with tools to understand the effects
of DP pre-training. First, we use the pre-trained
DP model and fine-tune it on the aforementioned
EE task. Then, we test the ability of the model to
memorize private information and show that it is
protected against commonly used privacy attacks.
Aggregating both results, we argue that medically-
relevant information is preserved in the DP model
all the while private information is not revealed.

5.1 Preserving Useful Information

For our first experiment, we pre-trained a DP BERT
model, then evaluated on an EE task over the i2b2-
2010 dataset. We summarize our results in the

Figure 1: Top to bottom - privacy parameter ε (red) and
test F1 score on the EE task (blue), as a function of:
noise multiplier σ; number of pre-training epochs; pre-
training batch size.

following table.

Model ε F1 Score
BERT ∞ 76.3%

BERT-M ∞ 86.8%
BioBERT ∞ 86.5%
BERT-M 3.2 84.5%
BERT-M 1 83.7%

Table 1: Results on the Medical Entity Extraction task.
ε =∞ means no differential privacy.

These were all evaluated after 1M training steps
with batch size 128K. As one can observe, the ad-
ditional pre-training either on MIMIC-III or on
PubMed gives a significant boost in performance
over the off-the-shelf BERT. The addition of differ-
ential privacy then deteriorates performance only
slightly, and, as expected, performance is inversely
proportional to ε (recall that smaller ε implies better
privacy).

In addition, in Fig. 1 we evaluate the change in
ε and of the F1 score of the downstream task as a
function of batch size, noise multiplier σ, and the
number of pre-training epochs. The behavior in
all three parameters is as expected. Increasing σ
enables more privacy (lower ε), but worsens perfor-
mance. Similarly, with more pre-training epochs
the model gathers more information about the train-
ing data, so we obtain better F1 score but worse
privacy preservation (higher ε). When increasing
the batch size, we also increase the noise multiplier
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Figure 2: Secret exposure as a function of the number
of secret occurrences. Black lines for models with dif-
ferential privacy ε = 0.58, red lines for models without
DP ε =∞.

σ proportionally, thus both ε and the F1 decrease.

5.2 Forgetting Private Information

For our second experiment, we followed Carlini
et al. (2019) to test the model’s ability to memorize
private information. We injected the MIMIC-III
dataset with “secrets”, of the form HS, HSH, and
HHSHH, where H is a generic word and S is a
secret word. The injection was done by sampling
locations to plant each secret uniformly at random
from the dataset. We tested all three forms of se-
crets on a DP model and a non-DP model, with
different numbers of appearances of the secret in
the dataset. For each such evaluation, we measured
the exposure of the secret which essentially mea-
sures how well the model memorized the secret
(see Carlini et al., 2019 for exact definition of “ex-
posure”). As one can see from Fig. 2, even when
the secret appears as much as 100K times in the
data, the DP model performs significantly better
than without differential privacy. This seems to
suggest that the model learns through information
that helps it generalize rather than memorizing the
dataset in its entirety, which includes private and
personal information as well.

6 Discussion and Future Work

In this paper, we have shown a pipeline for learning
and evaluating a differentially-private contextual
language model. We have defined the problem of
learning such a model with end-to-end privacy guar-
antees and have discussed the pitfalls that might
lead to poor downstream performance. To over-
come the difficulties associated with learning such
models, we have offered practical measures for
circumventing them, most notably through vastly
increasing batch sizes. Then, to increase the trust of

the DP trained contextual language model, we have
utilized a secret sharer evaluation test and showed
that our trained language model does not memorize
private information.

While these results are definitely encouraging,
more research is needed. Our results are confined
to the medical domain, where privacy needs are per-
haps most stringent. Showing the efficacy of this
training and evaluation pipeline on other domains
would certainly increase the trust in it. Additionally,
we have not yet measured the model’s performance
with the DP WordPiece algorithm. In future work,
we plan to provide more theoretical and empirical
support for end-to-end privacy guarantees.

Finally, the observed performance gain due to
the vocabulary training presents an interesting ques-
tion for the larger NLP community. Understanding
the importance of vocabulary vs. linguistic style
when performing additional pre-training could im-
prove the domain adaptation capabilities of existing
NLP systems. In future work, we plan to expand
our DP training to additional domains, allowing
us to test the power of vocabulary modifications
via the DP WordPiece training in increasing across
domain performance.
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