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Abstract
Natural language inference (NLI) is the task
of determining whether a piece of text is en-
tailed, contradicted by or unrelated to another
piece of text. In this paper, we investigate how
to tease systematic inferences (i.e., items for
which people agree on the NLI label) apart
from disagreement items (i.e., items which
lead to different annotations), which most
prior work has overlooked. To distinguish sys-
tematic inferences from disagreement items,
we propose Artificial Annotators (AAs) to sim-
ulate the uncertainty in the annotation process
by capturing the modes in annotations. Re-
sults on the CommitmentBank, a corpus of nat-
urally occurring discourses in English, confirm
that our approach performs statistically signif-
icantly better than all baselines. We further
show that AAs learn linguistic patterns and
context-dependent reasoning.

1 Introduction

Learning to effectively understand unstructured
text is integral to Natural Language Understand-
ing (NLU), covering a wide range of tasks such
as question answering, semantic textual similarity
and sentiment analysis. Natural language infer-
ence (NLI), an increasingly important benchmark
task for NLU research, is the task of determining
whether a piece of text is entailed, contradicted by
or unrelated to another piece of text (i.a., Dagan
et al., 2005; MacCartney and Manning, 2009).

Pavlick and Kwiatkowski (2019) observed inher-
ent disagreements among annotators in several NLI
datasets, which cannot be smoothed out by hiring
more people. They pointed out that to achieve ro-
bust NLU, we need to be able to tease apart system-
atic inferences (i.e., items for which most people
agree on the annotations) from items inherently
leading to disagreement. The last example in Ta-
ble 1, from the CommitmentBank (de Marneffe
et al., 2019), is a typical disagreement item: some
annotators consider it to be an entailment (3 or 2),

1 Premise: Some of them, like for instance the farm in Connecticut, are
quite small. If I like a place I buy it. I guess you could say it’s a hobby.
Hypothesis: buying places is a hobby.
Entailment (Entailment) [3, 3, 2, 2, 2, 2, 1, 1]

2 Premise: “I hope you are settling down and the cat is well.” This was a
lie. She did not hope the cat was well.
Hypothesis: the cat was well.
Neutral (Neutral) [0, 0, 0, 0, 0, 0, 0, 0, -3]

3 Premise: “All right, so it wasn’t the bottle by the bed. What was it,
then?” Cobalt shook his head which might have meant he didn’t know
or might have been admonishment for Oliver who was still holding the
bottle of wine.
Hypothesis: Cobalt didn’t know.
Neutral (Disagreement) [1, 0, 0, 0, 0, 0, 0, -2]

4 Premise: A: No, it doesn’t. B: And, of course, your court system when
you get into the appeals, I don’t believe criminal is in a court by itself.
Hypothesis: criminal is in a court by itself.
Contradiction (Contradiction) [-1, -1, -2, -2, -2, -2, -2, -3]

5 Premise: A: The last one I saw was Dances With The Wolves. B: Yeah,
we talked about that one too. And he said he didn’t think it should have
gotten all those awards.
Hypothesis: Dances with the Wolves should have gotten all those
awards.
Contradiction (Disagreement) [0, 0, -1, -1, -2, -2, -2, -3]

6 Premise: Meg realized she’d been a complete fool. She could have said
it differently. If she’d said Carolyn had borrowed a book from Clare and
wanted to return it they ’d have given her the address.
Hypothesis: Carolyn had borrowed a book from Clare.
Disagreement (Disagreement) [3, 3, 3, 2, 0, -3, -3, -3]

Table 1: Examples from CommitmentBank, with finer-
grained NLI labels. The labels in parentheses come
from Jiang and de Marneffe (2019b). Scores in brack-
ets are the raw human annotations.

while others view it as a contradiction (-3). A com-
mon practice to generate an inference label from
annotations is to take the average (i.a., Pavlick and
Callison-Burch, 2016). In this case, the average
of the annotations is 0.25 and the gold label for
this item would thus be “Neutral”, but such label is
not accurately capturing the annotation distribution.
Alternatively, some work simply ignores items on
which annotators disagree and only studies sys-
tematic inference items (Jiang and de Marneffe,
2019a,b; Raffel et al., 2019).

Here, we aim at teasing apart systematic infer-
ences from inherent disagreements. In line with
what Kenyon-Dean et al. (2018) suggested for sen-
timent analysis, we propose a finer-grained labeling
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Entailment Neutral Contradiction Disagreement Total

Train 177 57 196 410 840
Dev 23 9 22 66 120
Test 58 19 54 109 240

Total 258 85 272 585 1,200

Table 2: Number of items in each class in train/dev/test.

for NLI: teasing disagreement items, labeled “Dis-
agreement”, from systematic inferences, which can
be “Contradiction”, “Neutral” or “Entailment”. To
this end, we propose Artificial Annotators (AAs),
an ensemble of BERT models (Devlin et al., 2019),
which simulate the uncertainty in the annotation
process by capturing modes in annotations. That is,
we expect to utilize simulated modes of annotations
to enhance finer-grained NLI label prediction.

Our results, on the CommitmentBank, show that
AAs perform statistically significantly better than
all baselines (including BERT baselines) by a large
margin in terms of both F1 and accuracy. We also
show that AAs manage to learn linguistic patterns
and context-dependent reasoning.

2 Data: The CommitmentBank

The CommitmentBank (CB) is a corpus of 1,200
naturally occurring discourses originally collected
from news articles, fiction and dialogues. Each dis-
course consists of up to 2 prior context sentences
and 1 target sentence with a clause-embedding
predicate under 4 embedding environments (nega-
tion, modal, question or antecedent of condi-
tional). Annotators judged the extent to which the
speaker/author of the sentences is committed to the
truth of the content of the embedded clause (CC),
responding on a Likert scale from +3 to -3, labeled
at 3 points (+3/speaker is certain the CC is true,
0/speaker is not certain whether the CC is true or
false, -3/speaker is certain the CC is false). Follow-
ing Jiang and de Marneffe (2019b), we recast CB
by taking the context and target as the premise and
the embedded clause in the target as the hypothesis.

Common NLI benchmark datasets are SNLI
(Bowman et al., 2015) and MultiNLI (Williams
et al., 2018), but these datasets have only one an-
notation per item in the training set. CB has at
least 8 annotations per item, which permits to iden-
tify items on which annotators disagree. Jiang and
de Marneffe (2019b) discarded items if less than
80% of the annotations are within one of the fol-
lowing three ranges: [1,3] Entailment, 0 Neutral,
[-3,-1] Contradiction. The gold label for example

Entailment
-biased

Contradiction
-biased

Neutral
-biased

MLP

PREMISE [SEP] HYPOTHESIS

𝒍𝒐𝒔𝒔𝒇

𝒍𝒐𝒔𝒔𝒏 𝒍𝒐𝒔𝒔𝒄𝒍𝒐𝒔𝒔𝒆

Figure 1: Artificial Annotators setup.

3 in Table 1 would thus be “Disagreement”. How-
ever, this seems a bit too stringent, given that 70%
of the annotators all agree on the 0 label and there is
only one annotation towards the extreme. Likewise,
for example 5, most annotators chose a negative
score and the item might therefore be better labeled
as “Contradiction” rather than “Disagreement”. To
decide on the finer-grained NLI labels, we there-
fore also took variance and mean into account, as
follows:1

• Entailment: 80% of annotations fall in the
range [1,3] OR the annotation variance ≤ 1 and
the annotation mean > 1.

• Neutral: 80% of annotations is 0 OR the anno-
tation variance ≤ 1 and the absolute mean of
annotations is bound within 0.5.

• Contradiction: 80% of annotations fall in the
range [-3, -1] OR the annotation variance ≤ 1
and the annotation mean < -1.

• Disagreement: Items which do not fall in any
of the three categories above.
We randomly split CB into train/dev/test sets in

a 7:1:2 ratio.2 Table 2 gives splits’ basic statistics.

3 Model: Artificial Annotators

We aim at finding an effective way to tease items
leading to systematic inferences apart from items
leading to disagreement. As pointed out by Calma
and Sick (2017), annotated labels are subject to
uncertainty. Annotations are indeed influenced by
several factors: workers’ past experience and con-
centration level, cognition complexities of items,
etc. They proposed to simulate the annotation pro-
cess in an active learning paradigm to make use of
the annotations that contribute to uncertainty. Like-
wise, for NLI, Gantt et al. (2020) observed that di-
rectly training on raw annotations using annotator

1Compared with the labeling scheme in Jiang and de Marn-
effe (2019b), our labeling scheme results in 59 fewer Disagree-
ment items, 48 of which are labeled as Neutral.

2We don’t follow the SuperGLUE splits (Wang et al.,
2019) as they do not include disagreement items. The data
splits and codes are available at https://github.com/
FrederickXZhang/FgNLI.

https://github.com/FrederickXZhang/FgNLI
https://github.com/FrederickXZhang/FgNLI
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Dev Test

Acc. F1 Acc. F1 Entail Neutral Contradict Disagree

Always 0 55.00 39.03 45.42 28.37 0.00 0.00 0.00 62.46
CBOW 55.25 40.54 45.09 28.37 0.00 0.00 0.69 62.17
Heuristic 65.00 62.08 54.17 50.60 22.54 52.94 64.46 58.20
Vanilla BERT 63.71 63.54 62.50 61.93 59.26 49.64 69.09 61.93
Joint BERT 64.47 64.28 62.61 62.07 59.77 47.27 67.36 63.21

AAs (ours) 65.15 64.41 65.60* 64.97* 61.07 51.27 70.89 66.49*

Table 3: Baselines and AAs overall performance on CB dev and test sets, and F1 scores of each class on the test
set (average of 10 runs). * indicates a statistically significant difference (t-test, p ≤ 0.01).

identifier improves performance. Essentially, Gantt
et al. (2020) used a mixed-effect model to learn a
mapping from an item and the associated annotator
identifier to a NLI label. However, annotator iden-
tifiers are not always accessible, especially in many
datasets that have been there for a while. Thus, we
decide to simulate the annotation process instead
of learning from real identifiers.

As shown by Pavlick and Kwiatkowski (2019),
if annotations of an item follow unimodal distribu-
tions, then it is suitable to use aggregation (i.e., take
an average) to obtain a inference label; but such
an aggregation is not appropriate when annotations
follow multi-modal distributions. Without loss of
generality, we assume that items are associated
with n-modal distributions, where n ≥ 1. Usually,
systematic inference items are tied to unimodal
annotations while disagreement items are tied to
multi-modal annotations. We, thus, introduce the
notion of Artificial Annotators (AAs), where each
individual “annotator” learns to model one mode.

3.1 Architecture

AAs is an ensemble of n BERT models (Devlin
et al., 2019) with a primary goal of finer-grained
NLI label prediction. n is determined to be 3 as
there are up to 3 relationships between premise
and hypothesis, excluding the disagreement class.
Within AAs, each BERT is trained for an auxiliary
systematic inference task which is to predict entail-
ment/neutral/contradiction based on a respective
subset of annotations. The subsets of annotations
for the three BERT are mutually exclusive.

A high-level overview of AAs is shown in Fig-
ure 1. Intuitively, each BERT separately predicts
a systematic inference label, each of which repre-
sents a mode3 of the annotations. The representa-
tions of these three labels are further aggregated

3It’s possible that three modes collapse to (almost) a point.

as augmented information to enhance final fine-
grained NLI label prediction (see Eq. 1).

If we view the AAs as a committee of three
members, our architecture is reminiscent of the
Query by Committee (QBC) (Seung et al., 1992),
an effective approach for active learning paradigm.
The essence of QBC is to select unlabeled data for
labeling on which disagreement among committee
members (i.e., learners pre-trained on the same
labeled data) occurs. The selected data will be
labeled by an oracle (e.g., domain experts) and then
used to further train the learners. Likewise, in our
approach, each AA votes for an item independently.
However, the purpose is to detect disagreements
instead of using disagreements as a measure to
select items for further annotations. Moreover, in
our AAs, the three members are trained on three
disjoint annotation partitions for each item (see
Section 3.2).

3.2 Training

We first sort the annotations in descending order for
each item and divide them into three partitions.4

For each partition, we generate an auxiliary label
derived from the annotation mean. If the mean
is greater/smaller than +0.5/-0.5, then it’s entail-
ment/contradiction; otherwise, it’s neutral. The
first BERT model is always enforced to predict
the auxiliary label of the first partition to simulate
an entailment-biased annotator. Likewise, the sec-
ond and third BERT models are trained to simulate
neutral-biased and contradiction-biased annotators.

Each BERT produces a pooled representation
for the [CLS] token. The three representations are
passed through a multi-layer perceptron (MLP) to
obtain the finer-grained NLI label:

P (y|x) = softmax(Ws tanh(Wt[e;n; c])) (1)

4For example, if there are 8 annotations for a given item,
the annotations are divided into partitions of size 3, 2 and 3.
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with [e;n; c] being the concatenation of three
learned representations out of entailment-biased,
neutral-biased and contradiction-biased BERT
models. Ws and Wt are parameters to be learned.

The overall loss is defined as the weighted sums
of four cross-entropy losses:

loss = r ∗ lossf +
1− r

3
(losse + lossn + lossc) (2)

where r ∈ [0, 1] controls the primary finer-grained
NLI label prediction task loss ratio.

4 Experiment

We include five baselines to compare with:
• “Always 0”: Always predict Disagreement.
• CBOW (Continuous Bags of Words): Each

item is represented as the average of its tokens’
GLOVE vectors (Pennington et al., 2014).

• Heuristic baseline: Linguistics-driven rules (de-
tailed in Appendix A), adapted from Jiang and
de Marneffe (2019b); e.g., conditional environ-
ment discriminates for disagreement items.

• Vanilla BERT: (Devlin et al., 2019) Straightfor-
wardly predict among 4 finer-grained NLI labels.

• Joint BERT: Two BERT models are jointly
trained, each of which has a different special-
ity. The first one (2-way) identifies whether a
sentence pair is a disagreement item. If not, this
item is fed into the second BERT (3-way) which
carries out systematic inference.
For all baselines involving BERT, we follow the

standard practice of concatenating the premise and
the hypothesis with [SEP].

Table 3 gives the accuracy and F1 for each base-
line and AAs, on the CB dev and test sets. We run
each model 10 times, and report the average.

CBOW is essentially the same as the “Always 0”
baseline as it keeps predicting Disagreement regard-
less of the input. The Heuristic baseline achieves
competitive performance on the dev set, though it
has a significantly worse result on the test set. Not
surprisingly, both BERT-based baselines outper-
form the Heuristic on the test set: fine-tuning BERT
often lead to better performance, including for NLI
(Peters et al., 2019; McCoy et al., 2019). These
observations are consistent with Jiang and de Marn-
effe (2019b) who observed a similar trend, though
only on systematic inferences. Our proposed AAs
perform consistently better than all baselines, and
statistically significantly better on the test set (t-test,
p ≤ 0.01). Also, AAs achieve a smaller standard
deviation on the test set within the 10 runs, indi-

1 Premise: B: Yeah, it is. A: For instance, B: I’m a historian, and my
father had kept them, I think, since nineteen twenty-seven uh, but he
burned the ones from twenty-seven to fi-, A: My goodness. B: I could
not believe he did that,
Hypothesis: his father burned the ones from twenty-seven
Heuristics: C V. BERT: D J. BERT: E AAs: E {E, E, E}
Gold: E [3, 3, 3, 3, 3, 2, 2, -1]

2 Premise: ‘She was about to tell him that was his own stupid fault and
that she wasn’t here to wait on him - particularly since he had proved
to be so inhospitable. But she bit back the words. Perhaps if she made
herself useful he might decide she could stay - for a while at least just
until she got something else sorted out.
Hypothesis: she could stay
Heuristics: D V. BERT: D J. BERT: D AAs: N {N, N, N}
Gold: N [3, 0, 0, 0, 0, 0, 0, 0, 0, 0]

3 Premise: A: but that is one of my solutions. Uh... B: I know here in
Dallas that they have just instituted in the last couple of years, uh, a real
long period of time that you can absentee vote before the elections. And
I do not think they have seen a really high improvement.
Hypothesis: they have seen a really high improvement.
Heuristics: C V. BERT: C J. BERT: C AAs: C {C, C, C}
Gold: C [-1, -2, -2, -2, -2, -2, -2, -2, -3, -3]

4 Premise:B: So did you commute everyday then or, A: No. B: Oh, okay.
A: No, no, it was a six hour drive. B: Oh, okay, when you said it was
quite a way away, I did not know that meant you had to drive like an
hour
Hypothesis: speaker A had to drive like an hour
Heuristics: C V. BERT: D J. BERT: E AAs: D {E, C, C}
Gold: D [3, 2, 2, 1, 0, 0, -1, -1, -1, -3]

5 Premise: The assassin’s tone and bearing were completely confident. If
he noticed that Zukov was now edging further to the side widening the
arc of fire he did not appear to be troubled.
Hypothesis: Zukov was edging further to the side
Heuristics: D V. BERT: D J. BERT: D AAs: D {E, E, N}
Gold: E [3, 3, 3, 3, 2, 2, 1, 1]

6 Premise: B: Yeah, and EDS is very particular about this, hair cuts, A:
Wow. B: I mean it was like you can’t have, you know, such and such
facial hair, no beards, you know, and just really detailed. A: A: I don’t
know that that would be a good environment to work in.
Hypothesis: that would be a good environment to work in
Heuristics: C V. BERT: C J. BERT: D AAs: C {C, C, C}
Gold: D [2, 0, 0, 0, 0, -1, -2, -3]

7 Premise: “Willy did mention it. I was puzzled, I ’ll admit, but now I
understand.” How did you know Heather had been there?
Hypothesis: Heather had been there
Heuristics: N V. BERT: E J. BERT: E AAs: E {E, E, E}
Gold: D [3, 3, 3, 2, 1, 1, 0, 0, 0]

Table 4: Models’ predictions for CB test items. Labels
in {} are predictions by individual AAs. E: entailment,
C: contradiction, N: neutral, D: disagreement.

cating that it is more stable and potentially more
robust to wild environments.

5 Analysis

Table 3 also gives F1 for each class on the test set.
AAs outperform all BERT-based models under all
classes. However, compared with the Heuristic,
AAs show an inferior result on “Neutral” items
mainly due to the lack of “Neutral” training data.
The first 4 examples in Table 4 show examples
for which AAs make the correct prediction while
other baselines might not. The confusion matrix
in Table 5 shows that the majority (∼60%) of er-
rors come from wrongly predicting a systematic
inference item as a disagreement item. In 91% of
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Predict
Gold

E N C D Total

E 37 2 0 13 52
N 1 10 0 3 14
C 0 0 34 13 47
D 20 7 20 80 127

Total 58 19 54 109 240

Table 5: Confusion matrix for the test set. E: entail-
ment, N: neutral, C: contradiction, D: disagreement.

negation modal conditional question negR

Heuristic 51.29 48.02 37.69 44.64 54.16
V. BERT 60.91 73.98 44.84 53.02 61.91
J. BERT 60.94 73.95 46.02 51.68 63.67

AAs 65.96 80.18 48.05 54.95 68.00

Table 6: F1 for CB test set under the embedding envi-
ronments and “I don’t know/believe/think” (“negR”).

such errors, AAs predict that there is more than
one mode for the annotation (i.e., the three labels
predicted by individual “annotators” in AAs are not
unanimous), as in example 5 in Table 4. AAs are
thus predicting more modes than necessary when
the annotation is actually following a uni-modal
distribution. On the contrary, when the item is sup-
posed to be a disagreement item but is missed by
AAs (as in example 6 and 7 in Table 4), AAs mis-
takenly predict that there is only one mode in the
annotations 78% of the time. It thus seems that a
method which captures accurately the number of
modes in the annotation distribution would lead to
a better model.

We also examine the model performance for
different linguistic constructions to investigate
whether the model learns some of the linguistic
patterns present in the Heuristic baseline. The
Heuristic rules are strongly tied to the embedding
environments. Another construction used is one
which can lead to “neg-raising” reading, where a
negation in the matrix clause is interpreted as negat-
ing the content of the complement, as in example
3 (Table 4) where I do not think they have seen a
really high improvement is interpreted as I think
they did not see a really high improvement. “Neg-
raising” readings often occur with know, believe or
think in the first person under negation. There are
85 such items in the test set: 41 contradictions (thus
neg-raising items), 39 disagreements and 5 entail-
ments. Context determines whether a neg-raising
inference is triggered (An and White, 2019).

Correct inference
by Heuristic?

Yes (130) No (110)

Acc. F1 Acc. F1

V. BERT 80.00 80.45 41.51 42.48
J. BERT 79.74 80.04 42.73 44.15
AAs 84.37 84.85 46.97 48.75

Table 7: BERT-based models performance on test items
correctly predicted by vs. items missed by linguistic
rules. Numbers next to Yes/No denote the size.

Table 6 gives F1 scores for the Heuristic, BERT
models and AAs for items under the different em-
bedding environments and potential neg-raising
items in the test set. Though AAs achieve the
best overall results, it suffers under conditional
and question environments, as the corresponding
training data is scarce (9.04% and 14.17%, respec-
tively). The Heuristic baseline always assigns con-
tradiction to the “I don’t know/believe/think” items,
thus capturing all 41 neg-raising items but missing
disagreements and entailments. BERT, a SOTA
NLP model, is not great at capturing such items
either: 71.64 F1 on contradiction vs. 52.84 on the
others (Vanilla BERT); 71.69 F1 vs. 56.16 (Joint
BERT). Our AAs capture neg-raising items bet-
ter with 77.26 F1 vs. 59.38, showing an ability to
carry out context-dependent inference on top of
the learned linguistic patterns. Table 7, compar-
ing performance on test items correctly predicted
by the linguistic rules vs. items for which context-
dependent reasoning is necessary, confirms this:
AAs outperform the BERT baselines in both cate-
gories.

6 Conclusion

We introduced finer-grained natural language in-
ference. This task aims at teasing systematic infer-
ences from inherent disagreements, overlooked in
prior work. We show that our proposed AAs, which
simulate the uncertainty in annotation process by
capturing the modes in annotations, perform statis-
tically significantly better than all baselines. How-
ever the best performance obtained (∼66%) is still
far from achieving robust NLU, leaving room for
improvement.
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Appendix A Linguistic Rules

Our linguistic rules are inspired by and adapted
from Jiang and de Marneffe (2019b) to explic-
itly include the most discriminating expressions
for disagreement items. We utilize three linguis-
tic features which are provided in CB: entailment-
canceling environment (negation, modal, question,
antecedent of conditional), matrix verb and its sub-
ject person.
1. Items under conditional are disagreement.
2. Items under question and with second person are

neutral.
3. Items under question and with non-second per-

son are disagreement.
4. Items of the form “I don’t know/think/believe”

are contradiction (i.e., negRaising structure).
5. Items with factive verbs are entailment.
6. Items under negation and with non-factive verbs

are disagreement.
7. Items under modal and with non-third person are

entailment.
When this policy is executed, there are two ad-

ditional auxiliary rules: Items not falling in any
group above are assigned a disagreement label as
it is the dominant class in CB; For items satisfying
more than one rule, the label will be determined
by the higher-ranked rule (i.e., a smaller number
indicates a higher rank). Note that the rules above
also reveal the most discriminating expressions for
each class.

Appendix B Impact of r

We experiment with three different r values, 0.25,
0.4, 0.7. Intuitively,

• 0.25: each module contributes equally;
• 0.4: finer-grained NLI predictor is the main

component and three artificial annotators are
to complement the main predictor;

• 0.7: over-amplify the role of main predictor
and suppress three artificial annotators.

Table A1 shows the results on the dev set in
terms of both accuracy and F1 under different r

r 0.25 0.4 0.7

Accuracy 65.33 65.67 65.33

F1 64.86 64.57 65.06

Table A1: Performance of our proposed AAs on the
dev set under different r values.

Train Test Overall

CBOW 35 30 65
Vanilla BERT 205 7 212
Ensemble BERT 645 10 655

AAs (ours) 955 9 964

Table A2: The training (10 epochs) and testing time as
well as overall running time for each neural network-
based model. All numbers are in seconds.

values. We set r to 0.4 as it achieves the best accu-
racy on the dev set.

Appendix C Reproducibility Checklist

C.1 Implementation Details

We set r in eq. 2 at 0.4 (see Appendix B). For all
experiments, we use the Adam optimizer (Kingma
and Ba, 2015) with a learning rate of 1e-5 and fine-
tune up to 10 epochs. The batch size of first three
baselines is 8 and that of Ensemble BERT baseline
and our AAs is 2. The gradient is clipped when
its norm exceeds 5. We select the best model for
each method using the accuracy on the dev set, and
the average performance on dev set is shown in
Table 3 as well. Hyperparameters for underlying
BERT (bert-base-uncased)5 are the default.

C.2 Summary Statistics of Results

For the results reported in Table 3, we run each
baseline (except for “Always 0” and Heuristic rules)
and AAs 10 times, and report the average. For
the results reported in Table 6 and 7, we ran-
domly select 3 trained models for each baseline
and AAs, and report the average. We also share
the checkpoints of AAs at https://github.
com/FrederickXZhang/FgNLI to help re-
produce the results given in Section 5.

C.3 Computational Resources

All experiments are conducted using one single
GeForce GTX 2080 Ti 12 GB GPU (with signifi-
cant CPU resources). The overall running time of

5https://huggingface.co/transformers/

https://github.com/FrederickXZhang/FgNLI
https://github.com/FrederickXZhang/FgNLI
https://huggingface.co/transformers/
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baselines and AAs are listed in Table A2.

C.4 Dataset
The characteristics of the CommitmentBank (CB)
are detailed in Section 2. The original version
is available at https://github.com/mcdm/
CommitmentBank, and the recast version used
in this work is available at https://github.
com/FrederickXZhang/FgNLI.

https://github.com/mcdm/CommitmentBank
https://github.com/mcdm/CommitmentBank
https://github.com/FrederickXZhang/FgNLI
https://github.com/FrederickXZhang/FgNLI

