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Abstract

Latent alignment objectives such as CTC and
AXE significantly improve non-autoregressive
machine translation models. Can they improve
autoregressive models as well? We explore the
possibility of training autoregressive machine
translation models with latent alignment ob-
jectives, and observe that, in practice, this ap-
proach results in degenerate models. We pro-
vide a theoretical explanation for these empiri-
cal results, and prove that latent alignment ob-
jectives are incompatible with teacher forcing.

1 Introduction

Latent alignment objectives, such as CTC (Graves
et al., 2006) and AXE (Ghazvininejad et al., 2020a),
have been recently proposed for training non-
autoregressive models for machine translation (Li-
bovický and Helcl, 2018; Saharia et al., 2020).
These objectives use a dynamic program to comb
the space of monotonic alignments between the
“gold” target sequence and the token probabilities
the model predicts, thus reducing the loss from po-
sitional misalignments and focusing on the original
prediction error instead. For example, consider the
target sequence “there is a tiny difference between
pink and magenta”; if the model’s distribution fa-
vors the paraphrase “there is a very small difference
between pink and magenta”, substituting one token
(“tiny”) with two (“very small”) will cause a mis-
alignment, and result in a disproportionately large
cross entropy loss. A latent alignment loss would
match the predictions of both “very” and “small”
with the target “tiny”, while aligning the rest of the
sentence properly and computing a much lower loss
that focuses on this particular discrepancy. Could
latent alignments also benefit autoregressive mod-
els?

We apply CTC and AXE to standard autoregres-
sive machine translation models. We observe that,

∗ Equal contribution.

when trained with teacher forcing (Williams and
Zipser, 1989), CTC reduces to the vanilla cross en-
tropy loss because CTC assumes that the prediction
sequence is longer than the target and has only one
valid alignment when they are equal. We further
examine AXE, which does not share this assump-
tion, and find that it yields a degenerate model that
almost perfectly fits the training set but completely
fails at inference time.

Our analysis reveals that latent alignments and
teacher forcing are fundamentally incompatible.
We observe that there exists a valid alignment
in which the prediction pi is aligned with the
target yi−1 for almost every token. Simultane-
ously, teacher forcing feeds the model with yi−1
when computing the prediction pi, encouraging
the model to simply predict its input under this
alignment. While AXE allows this alignment for
equal-length prediction and target sequences, the
phenomenon also occurs (theoretically) in CTC
if the predictions are longer, and in fact, occurs
in any latent alignment objective that can align a
prediction pj with a target yi where i < j.

2 Background: Latent Alignments

A latent alignment objective measures the com-
patibility between the target sequence Y and the
sequence of predicted token probabilities P by
considering a subspace of possible mappings be-
tween Y and P . Latent alignments are typically
used in non-autoregressive models for automatic
speech recognition, and optical character recogni-
tion (Graves et al., 2006), and have recently been
introduced to the task of machine translation (Li-
bovický and Helcl, 2018; Ghazvininejad et al.,
2020a; Saharia et al., 2020). We describe two such
objectives, beginning with an overview of the com-
mon notation and framework.

Monotonic Alignments Let Y = y1, . . . , yn
be the target sequence of n tokens, and P =
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Operator Description Formula CTC AXE

Align Predict the target token Yi with the distribution Pj . This
is the default alignment, advancing along A’s diagonal.

Ai,j = Ai−1,j−1 · Pj(Yi) X X

Clone Target Assuming the target token Yi was predicted with the pre-
vious distribution Pj−1, repredict Yi using Pj .

Ai,j = Ai,j−1 · Pj(Yi) X

Clone Prediction Assuming the previous target token Yi−1 was predicted
with the distribution Pj , reuse Pj to predict the next target
token Yi.

Ai,j = Ai−1,j · Pj(Yi) X

Delimiter Use the distribution Pj to predict the blank token ε instead
of the target token Yi. This operation is akin to inserting ε
into the target sequence at the i-th position.

Ai,j = Ai,j−1 · Pj(ε) X X

Table 1: The set of possible operators in latent alignment dynamic programs. Both AXE and CTC use align and
delimiter, but apply different clone operators.

p1, . . . , pm be the model prediction, a sequence
of m token probability distributions. A monotonic
alignment α is a function that maps every target
position i ∈ {1, . . . , n} to a set of one or more con-
secutive prediction positions α(i) ⊆ {1, . . . ,m},
such that i ≤ j ⇔ maxα(i) ≤ minα(j).

Objective Given an alignment α, the objective is
defined as follows:

Lα(Y, P ) =
n∏
i=1

∏
j∈α(i)

pj(yi) (1)

Since α is not provided a priori, it is necessary to
aggregate over all the possible alignments (hence
latent alignments), by either summation (Equa-
tion 2) or maximization (Equation 3):

L
∑

(Y, P ) =
∑
α

Lα(Y, P ) (2)

Lmax(Y, P ) = max
α

Lα(Y, P ) (3)

In practice, the negative log loss is minimized dur-
ing training:

`(Y, P ) = − logL(Y, P ) (4)

Dynamic Programming Aggregation can be
done efficiently with dynamic programming, us-
ing derivations of the forward-backward algorithm
(for summation, as in CTC) or the Viterbi algorithm
(for maximization, as in AXE). These algorithms
create an aggregation matrix A ∈ Rn×m, where
each cell represents the desired aggregation score f
(sum or max) over prefixes of the target and predic-
tion probability sequences: Ai,j = Lf (Y≤i, P≤j).
The dynamic program combs through the space of
alignments by implicitly constructing every pos-
sibility using the set of local operators defined in
Table 1. The subspace of alignment functions that
the program explores is determined by the subspace
of operators it employs.

Connectionist Temporal Classification (CTC)
The CTC objective (Graves et al., 2006) was origi-
nally introduced for speech and handwriting recog-
nition, where the prediction sequence P is typically
much longer than the target sequence Y (m� n).
While computing the summation objective (Equa-
tion 2), CTC uses only the align, clone target, and
delimiter operators. This means that CTC restricts
α to the space of alignments where every item
in P is aligned with at most one item in Y , i.e.
α(i) ∩ α(j) = ∅ for i 6= j.

CTC was used in non-autoregressive machine
translation by Libovický and Helcl (2018) and
more recently by Saharia et al. (2020). In both
cases, the prediction sequence was artificially in-
flated to be double (or more) the length of the
source-language input sequence in order to sim-
ulate the m� n condition of speech recognition.

Aligned Cross Entropy (AXE) The AXE objec-
tive (Ghazvininejad et al., 2020a) is specifically
designed for non-autoregressive machine transla-
tion. AXE finds the monotonic alignment that min-
imizes the cross entropy loss (i.e., maximizes the
likelihood, Equation 3) in order to focus the penalty
on the root errors instead of positional shifts that
result from them. AXE uses only the align, clone
prediction, and delimiter operators. This combina-
tion of operators allows AXE to align prediction
and target sequences of any lengths because clone
prediction inflates the prediction sequence while
delimiter adds new target tokens. However, since
AXE cannot clone target tokens, every target po-
sition i is always aligned to a single prediction
position, i.e. |α(i)| = 1. Figure 1 illustrates how
AXE aligns the model’s predictions with the target
sequence.
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Target Y it is rainy today EOS

Model
Predictions
P (Top 4)

it is so rainy today
however the rain good tonight

the looks very and EOS
but this ε very good

Figure 1: An illustration of how AXE aligns the
model’s predictions P with the target sequence Y : “it
is rainy today”. The model favors a slightly different
sequence (“it is so rainy today”), which would suf-
fer from a high penalty with the regular cross entropy
loss. Instead, AXE finds a more appropriate alignment
α = (1, 2, 4, 5, 5) using the operator sequence align,
align, delimiter, align, align, clone prediction.

3 Combining CTC with Teacher Forcing
Defaults to the Trivial Alignment

In an autoregressive setting, it is standard prac-
tice to use teacher forcing (Williams and Zipser,
1989); i.e., when predicting the i-th token, the
model takes the prefix of the (gold) target sequence
Y<i as input. This dictates that the number of pre-
dictions is identical to the number of target tokens
(m = |P | = |Y | = n).

However, CTC assumes that the prediction se-
quence P is typically much longer than the target
sequence Y (m � n), and can only inflate Y via
clone target and delimiter (see Section 2). This
leaves only one valid alignment when m = n: the
trivial alignment α(i) = {i}. CTC will thus de-
fault to the same objective as the standard cross
entropy loss.

Unlike CTC, the AXE objective aggregates over
multiple alignments even when m = n, because
it uses both the delimiter operator (which inflates
Y ) as well as the clone prediction operator (which
inflates P ).

4 Applying AXE to Autoregressive NMT

To apply AXE to autoregressive machine transla-
tion, we use a standard sequence-to-sequence trans-
former model (Vaswani et al., 2017) trained with
teacher forcing, replace the simple cross entropy
loss function with AXE, and add the empty token
ε to the vocabulary. We remove the ε tokens after
decoding.

Experiment Setup We use fairseq (Ott et al.,
2019) to train a transformer encoder-decoder
(Vaswani et al., 2017) on the IWSLT’14 DE-EN
dataset (Cettolo et al., 2015). The dataset is pre-
processed and tokenized into subwords with BPE

Figure 2: Training and validation loss when using the
AXE objective on IWSLT’14 DE-EN with an autore-
gressive model.

(Sennrich et al., 2016) using the scripts provided by
fairseq. We also use the implementation’s de-
fault hyperparameters: 6 layers of encoder/decoder,
512 model dimensions, 1024 hidden dimensions, 4
attention heads. We optimize with Adam (Kingma
and Ba, 2015) for 50k steps with early stopping
using 4096 tokens per batch. We decode with
beam search (b = 5) and evaluate performance
with BLEU (Papineni et al., 2002).

Results We observe two seemingly contradictory
behaviors. On the one hand, the model approaches
a near-zero training loss within a single epoch, and
observes similar results when computing AXE loss
on unseen examples in the validation set (Figure 2).
Meanwhile, at inference time, the model consis-
tently produces the empty sequence (after remov-
ing all instances of ε), scoring 0 BLEU on the test
set. This indicates that the model has learned to
“game” the AXE objective without actually learning
anything useful about machine translation. What
shortcut did the model learn?

5 Analysis

To understand how the model learns to game the
AXE objective, we analyze the optimal alignments
chosen by the objective, and find that they allow
the model to condition on the target token when
trying to predict it. We prove that this is the optimal
solution when combining teacher forcing and AXE,
and that it holds for any latent alignment objective
that allows the model to align future target tokens
with the current prediction.
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Prediction Y thank you for listening . EOS

Alignment α(i) 2 3 4 5 6 6

Model
Predictions
P (Top 4)

0.999 ε 0.995 thank 0.999 you 0.999 for 0.994 listening 0.627 .
8e-8 EOS 5e-5 ’s 2e-7 pre@@ 1e-5 is 3e-5 ver@@ 0.370 EOS
8e-8 ... 2e-5 super@@ 2e-7 ke 6e-6 audience 2e-5 taking 1e-4 ...
7e-8 use 2e-5 unfortunate 2e-7 cu@@ 5e-6 oil 2e-5 sever@@ 1e-4 ’

Figure 3: An example of the constant alignment that AXE chooses after training the model. Given the German
source “danke fürs zuhören”, the model tries to predict “thank you for listening”. Because the model is trained
with teacher forcing, it can simply learn to predict its input at each position, and assume that AXE will align the
prediction with the previous token (which is identical to the input). For example, p2 predicts “thank” with very
high probability because teacher forcing uses the previous target y1 as the decoder’s input in the second position.
Notice how the final prediction p6 is used twice to predict both “.” and EOS.

AXE finds a constant alignment We examine
the alignments chosen by AXE’s dynamic program
for a sample of training examples, and observe
that they all belong to a consistent pattern: delim-
iter, align, align, ..., clone prediction. In other
words, the chosen path skips the first prediction
by emitting the blank token ε and then aligns each
prediction pi with the previous target token yi−1.
The alignment synchronizes the positions at the
end of the sequence by cloning the last prediction
to compensate for the offset produced by the initial
delimiter operator.

Each prediction conditions on its target The
teacher forcing algorithm conditions the predic-
tion pi on the ground truth of the previous tokens
y1, . . . , yi−1 to predict the target token yi. How-
ever, if the prediction pi is aligned with the tar-
get yi−1, then it is effectively observing its tar-
get through the input, and only needs to learn the
identity function. Formally, we see that for every
1 < i < n the prediction is trivial:

pi(yi−1) = Pr(yi−1|X,Y<i)
= Pr(yi−1|yi−1) = 1

Figure 3 demonstrates this phenomenon on an ac-
tual example using the model’s predictions.

The cost of sharing the last prediction It is now
clear to see that the loss should indeed be close to
zero. Having said that, it is not infinitesimal; the
last two tokens (typically “.” and EOS) need to be
predicted from the same distribution. At best, this
yields a loss of −2 log(0.5)/n, which is just below
the loss observed in Figure 2 when considering
the average target sequence length in IWSLT’14
DE-EN is around n̄ ≈ 30.

Inference produces empty sequences The
model essentially learns to produce the blank token
ε in the first step, and then copy the latest token that
is fed into the decoder as input. During training,
that input is indeed the target token. At inference,
however, it is the model’s prediction from the pre-
vious timestep. Since the first prediction is ε, the
model will continue and predict the blank token
until the end of the sequence.

This exploit is not unique to AXE AXE is not
the only latent alignment objective that the model
can “game” when coupled with teacher forcing.
We would see a similar phenomenon if we were
to use CTC with a longer prediction sequence; for
example, if we doubled the prediction length (Li-
bovický and Helcl, 2018) and applied a version of
teacher forcing that feeds each target token twice
in a row. In fact, every latent alignment objective
that can align a prediction pj with a target yi where
i < j will be subject to this exploit, and allow a
model trained with teacher forcing to glimpse into
the future.

Restricting AXE to causal alignments leads to
the trivial alignment We further limit AXE to
allow only causal alignments, where a prediction
pj may only align with a target yi if i ≥ j. After
training with the restricted objective, we observe
that AXE selects the trivial alignment (i = j) in
98% of the validation set sentences, whereas the re-
maining 2% contain only minor deviations from the
trivial alignment, typically one delimiter quickly
followed by one clone prediction.

6 Conclusion

This work elaborates why latent alignment objec-
tives are incompatible with autoregressive models
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trained with teacher forcing. That said, teacher forc-
ing might not be the best way to train a machine
translation model (Bengio et al., 2015; Lamb et al.,
2016; Ghazvininejad et al., 2020b), and perhaps a
future alternative could reopen the discussion on
applying latent alignment objectives to autoregres-
sive models.
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