
Proceedings of the First Workshop on Language Technology for Equality, Diversity and Inclusion, pages 26–33
April 19, 2021. ©2020 Association for Computational Linguistics

26

hBert + BiasCorp - Fighting Racism on the Web

Olawale Onabola1, Zhuang Ma2

Yang Xie3, Benjamin Akera1, Abdulrahman Ibraheem1,
Jia Xue4, Dianbo Liu1, and Yoshua Bengio1,5

1Montreal Institute for Learning Algorithms (Mila), 2Carnegie Mellon University, CMU,
3Independent Researcher, 4University of Toronto,

5CIFAR Program Co-director
walexi4great@gmail.com, liudianbo@gmail.com

yoshua.bengio@mila.quebec

Abstract

Subtle and overt racism is still present both
in physical and online communities today
and has impacted many lives in different
segments of the society. In this short piece
of work, we present how we’re tackling
this societal issue with Natural Language
Processing. We are releasing BiasCorp 12,
a dataset containing 139,090 comments and
news segment from three specific sources -
Fox News, BreitbartNews and YouTube. The
first batch (45,000 manually annotated) is
ready for publication. We are currently in
the final phase of manually labelling the
remaining dataset using Amazon Mechanical
Turk. BERT has been used widely in
several downstream tasks. In this work, we
present hBERT, where we modify certain
layers of the pretrained BERT model with the
new Hopfield Layer. hBert generalizes well
across different distributions with the added
advantage of a reduced model complexity. We
are also releasing a JavaScript library 3 and
a Chrome Extension Application 4, to help
developers make use of our trained model in
web applications (say chat application) and
for users to identify and report racially biased
contents on the web respectively.

1 Introduction

The internet has evolved to become one of the
main sources of textual information for many
people. Through social media, reviews, and
comment sections across the internet, people are
continuously consuming information through text.

1corresponds to:dianbo.liu/ yoshua.bengio@mila.quebec
2https://doi.org/10.7910/DVN/KPBRLC
3https://github.com/walexi/biasjs
4https://github.com/walexi/biasjs-chrome-extension

With this, racially biased content has become more
entrenched within the language of the internet.
Racially biased content in this context refers
to the attitudes or stereotypes expressed against
marginalized races. This is often as a result of
implicit bias resulting into hate speech. In this
work, we attempt to automatically detect this
racially biased content from data collected from
the web, including comments from online news
outlets such as Fox News and and comments
from YouTube videos. We label this dataset with
pointers to racial bias and use machine learning
techniques to automate this task. Specifically, we
implement BERT as a base model to do this. We
also implement a browser extension as a tool to
help people identify racially biased content in the
information they are consuming. We will also be
releasing our curated dataset - BiasCorp to allow
more research to be done in this direction.

2 Related works

One of the earliest papers to investigate machine
learning approaches for the automatic detection
of racially-biased online content is (Greevy and
Smeaton, 2004). The paper identified the potential
use of bag-of-words, n-grams, and distributions of
parts-of-speech tags as features for the task. Their
bag-of-words features are informed by ideas from
the field of information retrieval, and involve either
word frequencies or counts of word occurrences.
Using an SVM classifier, for bag-of-words features,
they found that the use of frequency of words,
rather than number of occurrence of words, yielded
greater classification accuracies. The n-grams and
parts-of-speech tags techniques were unavailable
as of the time of their writing.

In (Warner and Hirschberg, 2012), authors

27

followed the definition of (Nockleby and
John, 2000) by defining hate speech as “any
communication that disparages a person or a
group on the basis of some characteristic such as
race, color, ethnicity, gender, sexual orientation,
nationality, religion, or other characteristic.” Their
work focused more on detecting anti-Semitic hate
speech. For their work, they created a dataset
containing hate speech obtained from Yahoo!
and the American Jewish Congress. Following
the work of (Yarowsky, 1994), they employed
hand-crafted template-based features. Apart from
the fact that these features are hand-engineered,
a potential drawback is their sheer size: a total
of 3,537 features, which is prone to the curse
of dimensionality. A counter-intuitive result
reported by the paper is that the uni-gram features
contributed best to classification accuracies. They
used linear-kernel SVMs for classification.

The work of (C. et al., 2016) dealt with the
broad category of abusive language. Authors of the
work gave definitions for distinguishing between
three categories of abusive language: hate speech
which subsumes racial bias, derogatory remarks
and profanity. Further, they described reasons why
automatic detection of abusive language, which
subsumes racial bias, is difficult. Reasons include:
clever evasion of detection engines by users via
the use of mischievous permutations of words (e.g.
Niggah written as Ni99ah); evolution of ethnic
slurs with time; role of cultural context in the
perception and interpretation of slurs, as a phrase
that is considered derogative in one culture might
be perfectly neutral in another culture. Towards
building their classification model, they employed
four categories of features namely, n-grams, lexical
features, syntactic/parser features, and word-level
as well as comment-level embeddings. They
found that character-level n-grams gave the highest
contribution to the model’s accuracy.

The authors of (Burnap and Williams, 2016)
also developed techniques for detecting multiple
hate speech categories including the racially-based
category. Towards creating their datasets, they
harnessed hate speech event-triggers. For example,
to create their racial bias dataset, they collected
tweets in a two-week interval following the re-
election of Barrack Obama as U.S president.
They explored a number of potential features
towards building their classification algorithm: bag
of words, lexicon of hateful terms, and typed

dependencies. In addition, they experimented
into classification via SVMs versus classification
via random forests, and reported that the former
yielded superior performance over the latter. Also,
they compared the use of classifiers trained for
each hate speech category against the use of
a single classifier trained on data spanning all
categories. As expected, the specialized classifiers
outperformed their multi-category counterpart.
(Hasanuzzaman et al., 2017) followed the definition
of (Gelber and Stone, 2007), which states that
hate speech is: ”speech or expression which
is capable of instilling or inciting hatred of, or
prejudice towards, a person or group of people
on a specified ground, including race, nationality,
ethnicity, country of origin, ethno-religious identity,
religion, sexuality, gender identity or gender.” The
main research thrust of their work was to apply
demographic embeddings (Bamman et al., 2014) ,
(Hovy, 2015), for the task of racial bias detection in
tweets. Compared to other works such as (Burnap
and Williams, 2016), for instance, a particularly
distinguishing result of (Hasanuzzaman et al.,
2017) is how their data extraction procedure is able
to arrive at a better balanced ratio of racially-biased
to non-racially-biased comments. For example,
in the work, 40.58 percent of Canadian tweets
were judged racially-biased by human annotators,
whereas in (Burnap and Williams, 2016) only about
3.73 percent of the comments in the dataset are
racially biased. Classification results using an
SVM classifier revealed benefits of their proposed
demographic embeddings over traditional features
and embeddings. In (Saleh et al., 2020), the authors
explored the detection of hate speech in White
supremacist forums. They explored BiLSTM,
logistic regression and BERT for their task. Also,
they compared the use of domain-agnostic pre-
trained word embedding (such as GloVe.6B.300d)
versus the use of a domain-aware 300-dimensional
word2vec embedding trained on the specific dataset
used in the work. Results showed that BERT
yields better results than both logistic regression
and BiLSTM. Further, results proved the domain-
aware embeddings to be superior to the pre-trained
embeddings.

3 Method

3.1 Data curation and processing

The datasets used for training were obtained
from discussion channels of online news media

28

by programmed web crawler based on Scrapy
framework with all crawled data stored in
PostgreSQL database. Since existing comments
of online article were generally loaded by
asynchronous API accessed by a specific key
hidden in the articles before presenting them on
website, the web crawler parsed keys for each
article after completing a list with URLs of all
articles waiting to be further crawled and then
matched the keys with their corresponding API
to retrieved stored comments for each article.

First, sentences containing neural racial words
from a curated list were selected. Second, the
sentiment score of each comment was calculated
according to two lookup tables: a combined
and augmented (Jockers, 2015) and Rinker’s
augmented Hu and Liu (Tyler Rinker, 2016)
(Hu and Liu, 2004) positive/negative word list
as sentiment lookup values, and a racial-related
English lookup table from Hatebase5. To guarantee
these two tables influence the sentiment score
consistently, the lookup values of the Hatebase
table were adjusted by percentage. Then we
extracted the data with bottom 20 percent of the
sentiment score, and matched them up with other
randomly selected comments appearing under the
same articles or videos as random control. Finally,
equal numbers of random controls are added into
the data set, to ensure that approximately half of
the data is racially discriminatory.

3.2 Model Architecture
Attention-based Transformer network (Vaswani
et al., 2017) has been used widely across different
natural language processing tasks. Based on the
previous successes of the transformer network, we
decided to use the BERT Architecture (Devlin
et al., 2019) as our base model. Unlike previous
variant of the attention-based language models
such as (Radford et al., 2018), BERT learns to
jointly conditions on the right and left context
of the input representation at all the layers by
randomly masking out segments of the input token.
This is particularly useful for extracting contextual
information from the input representation, and
it’s very applicable to our use case. We aim to
build a variant of the model that can generalize
sufficiently well across different data distributions6.
The notion of sufficiency is evaluated by training,

5https://hatebase.org/
6distributions here implies different use cases or data

environments/sources

validating and testing our model on data across
the different sources. We fine-tune the pretrained
BERT model on our curated dataset rather than
training from scratch (this choice was based on
empirical results). We are releasing a JavaScript
library for developers to use our pretrained model
in front facing applications such as chat app, to
flag down racially biased comments. Consequently,
we need to optimize for the model complexity
without sacrificing performance gain. BERT has
a huge number of parameters / large model size.
Other methods have been employed to reduce
the complexity without hurting the performance,
such as knowledge distillation (Sanh et al., 2019)
and quantization (Zafrir et al., 2019). It has
also been proven that pruning the weights of the
pretrained model do not necessarily affect the
model performance, within acceptable ’thresholds’
(Gordon et al., 2020). In a similar fashion, we
aim to reduce the complexity of BERT without
sacrificing performance by replacing certain layers
with the Hopfield layer (Ramsauer et al., 2020).
Hopfield layer can be used to replace the attention-
based layer of the BERT model; as it has been
shown to approximate the functionality of the
attention mechanism with a new Energy update
rule (modified version of the Hopfield network
extended to continuous state representation). The
learning dynamics of BERT as shown in (Ramsauer
et al., 2020) shows that the attention heads
in the higher layers are mostly responsible for
extracting task-specific features from the input
representation. We replaced the self-attention
mechanism in the last X layers of the pretrained
BERT model with a Hopfield layer, where X is an
hyperparameter. In a similar approach described in
(Vaswani et al., 2017), we use residual connection
around the Hopfield sub-layer, followed by layer
normalization (Ba et al., 2016). It has been shown
that residual connections help propagate positional
information across layers. The replaced Hopfield
layer drastically reduced the parameter size of
our model. To further improve the performance
of the model, we use the Hopfield Pooling layer
which acts as both a permutation equivariant layer
and pools generated embedding from the modified
BERT model. The Hopfield pooling layer also acts
as a form of memory to store the hidden state of
the last layer in the modified BERT model. Finally,
we add a classification layer on top of the pooling
layer for the task in question.

29

3.3 Model Training
Given the disparity between the annotators for each
sample in our dataset, averaging the labels with the
confidence scores as weights might be noisy. We
computed the coefficient of variation CV among
annotators for each sample in our dataset. Using
the recommended (JUDICE et al., 1999) (Veit et al.,
2017) CV of 0.2 for the bias scores would imply
dropping 90% of the dataset as seen in 2. In order
to fully utilize the dataset and effectively manage
the disparity between the annotators, we formulate
a loss function Lmodel given by

Lmodel = 1/N

N∑
i=1

CE

(
p
(
xi
)
, q
(
xi
))

(1)

where CE
(
p
(
xi
)
, q
(
xi
))

is the cross entropy
between p(xi) and q(xi) for the ith sample, and N
is the size of the dataset.

CE(p, q) = −
c∑

i=1

pc(x) log(ε+ qc(x)) (2)

qc(x) is the predicted probability of sample x in
class c, equivalently, the output probabilities from
the model and ε is for numerical stability. pc(x) is
the probability of sample x in class c, equivalently,
pc(x) is a c − length vector with entries such
that

∑c
i=1 pc(x) = 1. The entries of pc(x) are

the normalized confidence scores of the annotators
with indices given by the respective voted classes.
As an example, following the algorithm described
in 1, for a given sample shown in figure 1; the
bias scores of the 3 different annotators with their
confidence level is represented with an array of
tuples, X where each tuple, (bi, si) is the bias
score bi with the associated confidence score,
si by annotator i. To calculate pc(x), we first
normalize the confidence scores across the 3
different annotators such that

∑3
i=1 si = 1. The

resulting pc(x) for the entry, S, shown in 1 is

X =

[
(4, 4), (3, 3), (2, 5)

]
Xnorm =

[
(4, 0.3333), (3, 0.25), (2, 0.4167)

]
pc(X) = [0., 0., 0.4167, 0.25, 0.3333, 0.]

3.4 Evaluation Task and Metrics
We evaluate the model performance across the
validation and test set, given that they are from

Algorithm 1: Compute pc(x) for a sample
x

Result: pc(x)

Input: An array of target scores t, and array
of confidence scores s where s[i] is the
confidence score by annotator i for
choosing target score t[i]

Both arrays are of equal length N where N is
the number of annotators. C is the number
of classes (equivalently the range/max of
possible target scores if scores are integer.)

Step 1: Initialize
pc ← [.0 for in C]

Step 2: Calculate normalizing constant K

K←
∑N

i=1 si ;

Step 3: Set the values of pc
for i in N do

class index← t[i];

pc[class index]
+←− s[i]

K ;
end

different distributions or sources. The test set
contains only comments from YouTube while the
validation set was randomly sampled from Fox
News and BreitbartNews. The particular choices
were due to the fact that the first batch of the dataset
used for training contained very relatively few
samples from YouTube. We evaluate our approach
using two methods; multiclass classification and
multiclass-multilabel classification.
Using the multiclass approach, for a given
sample, k and using the method described
previously in calculating the target class, the class
with the maximum confidence score was used as
the target. We calculate the average precision for
each class, APc and the mean average precision
MAP averaged over the entire dataset with size N
along the class dimension d as described in (Veit
et al., 2017)

APc =

∑N
k=1 Precision(k, c) · rel(k, c)

numberofpositives
(3)

MAP = 1/d

d∑
c=1

APc (4)

30

Figure 1: Sample annotation

(a) Bias Score (b) Confidence Score

Figure 2: Confidence of Variation

(a) Train Vs Validation Loss

Model
TopK Accuracy mAP F1 @ k IoU @ k

1 2 3 1 2 3 1 2 3
Baseline 0.6015625 0.703125 0.7890625 0.29355 0.5859 0.6953 0.7734 0.2102 0.2114 0.2102
hBert 0.0.640625 0.703125 0.765625 0.3501 0.6562 0.7109 0.8125 0.2266 0.2165 0.2281

Table 1: Test Metrics for selected trial for each model configuration

Model
AP

0 1 2 3 4 5
Baseline 0.2205 0.0967 0.1344 0.9564 0.1103 0.2340
hBert 0.1195 0.1111 0.2132 0.9607 0.5049 0.1914

Table 2: The Average Precision (AP) for the different classes

31

Figure 3: Parallel Coordinate Graph for multiple runs/trials across model configurations
The model configuration is the Baseline when the target variable (useHopfieldLayers in the graph is False.

The useHopfieldPool variable denotes whether the Hopfield Pooling layer was used
The lr, pool num heads, num hf layers, val loss epoch variables in the graph are the learning rate, the number
of heads in the Hopfield Pooling Layer (if used), the number of Hopfield Layer and the validation loss respectively

. With a reduced model complexity, the hBert performs relatively as good as the baseline

32

where Precision(k, c) is the precision for class
c for the kth sample and rel(k, c) is an indicator
function that is 1 if the predicted and the target
class for sample k is positive. We also report the
topK accuracy, for k = [1, 3] since we had a max
of 3 annotators for each k.
Using the multilabel approach, for a given
sample, k and using the method described
previously in calculating the target class, we take
the top k classes as the target classes. We do the
same for the predictions (obtained after passing
the output logits through a softmax function). We
compute the APc (for each class), mAP,F1 score,
and IoU

4 Experiments

4.1 Training Details & Result

We run a multi-objective hyperparameter search
(using Optuna(Akiba et al., 2019)) optimizing for
the following parameters: validation loss, FLOPs
(indicative of the model complexity and ultimately
the inference time), mAP on the validation and test
set, and the Intersection over Union IoU scores
(also known as the Jaccard Index) for the topk for
k = [1, 3] transformations described above. We
use 4 NVidia V100SXM2 (16G memory) GPUs on
a single node, with batch size of 32. We reduced
the batch size (instead of say 64) because we had to
run multiple trials and to avoid the notorious OOM
error. For each model configuration, we run 10
trials with 5 epochs each. As seen in 3, the hBert
perform relatively better with a reduced model
complexity. In 1, the models predictions were more
accurate for an increasing k. The hBert perform
better than the Baseline for the Top1 accuracy. The
F1 scores and Jaccard Index (IoU) for the hBert
were relatively higher for k = [1, 3]. The mAP ,
which is the average of the APc over the classes,
is relatively low because of the low performing
classes as seen in 2

4.2 Data statistics

The data set contains 139,090 rows, and 67.70
percent of their sentiment scores are negative. Their
average sentiment score is -0.1422, and the median
value is -0.1203, ranging from -3.6206 to 2.1414.
66,998 of them are comments from Fox News, with
an average sentiment score of -0.0997 and a median
of -0.0884, ranging from -2.8591 to 2.1414. And
63,948 of the data are comments from Breitbart
News, with an average sentiment score of -0.1760

and a median of -0.1721, ranging from -3.6206
to 1.3576. And 8,144 of the data are comments
from YouTube, with an average sentiment score
of -0.2259 and a median of -0.2694, ranging from
-3.3000 to 1.4673. In this work, we used the first
batch of the dataset; which have been manually
annotated using Amazon Mechanical Turk. After
pre-processing the input text (removing irrelevant
tokens such as mentions), the maximum length was
478 (it was 623 before preprocessing).

5 Discussion

In this work we have shown a way to detect racial
bias in text. We experimented with a BERT-based
model as we aim to reduce model complexity
without sacrificing much of the performance. We
also discussed the BiasCorp, a manually labelled
dataset containing racially biased comments from
Fox News, BreitbartNews and YouTube. To enable
developers make use of our pretrained hBERT
model, we are releasing a Javascript Library,
optimized for inference on the edge. A Chrome
Extension will also be available for users to help
report and identify racially bias text on the web.
We also plan to extend this work to other forms of
biases such as Gender. In a future work, we plan
to further reduce the model complexity by using
Gaussian Kernel as described in (Ramsauer et al.,
2020) and other quantization tricks.

Acknowledgments

This research was enabled in part by support
provided by Calcul Québec (www.calculquebec.ca)
and Compute Canada (www.computecanada.ca)

References
Takuya Akiba, Shotaro Sano, Toshihiko Yanase,

Takeru Ohta, and Masanori Koyama. 2019. Optuna:
A next-generation hyperparameter optimization
framework. In Proceedings of the 25rd ACM
SIGKDD International Conference on Knowledge
Discovery and Data Mining.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E.
Hinton. 2016. Layer normalization.

David Bamman, Chris Dyer, and Noah A. Smith.
2014. Distributed representations of geographically
situated language. In Proceedings of the Association
for Computational Linguistics, pages 828–834.

Pete Burnap and Mathew Williams. 2016. Us and
them: identifying cyber hate on twitter across

http://arxiv.org/abs/1607.06450

33

multiple protected characteristics. EPJ Data
Science, 5:1817–1853.

Nobata C., Tetreault J., Thomas A., Y. Mehdad, and
Chang Y. 2016. Abusive language detection in
online user content. In Proceedings of the 25th
international conference on world wide web, pages
145–153.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training
of deep bidirectional transformers for language
understanding.

Katharine Gelber and Adrienne Sarah Ackary Stone.
2007. Hate Speech and Freedom of Speech in
Australia. Federation Press.

Mitchell A. Gordon, Kevin Duh, and Nicholas
Andrews. 2020. Compressing bert: Studying the
effects of weight pruning on transfer learning.

Edel Greevy and Alan Smeaton. 2004. Text
categorisation of racist texts using a support vector
machine. JADT 2004 : 7es Journées internationales
d’Analyse statistique des Données Textuelles, pages
533–544.

Mohammed Hasanuzzaman, Gael Dias, and Andy
Way. 2017. Demographic word embeddings for
racism detection on twitter. In Proceedings of
the 8th International Joint Conference on Natural
Language Processing, pages 926–936.

Dirk Hovy. 2015. Demographic factors improve
classification performance. In Proceedings of the
Association for Computational Linguistics, pages
752–762.

Minqing Hu and Bing Liu. 2004. Mining and
summarizing customer reviews. pages 168–177.

Matthew L. Jockers. 2015. Syuzhet: Extract Sentiment
and Plot Arcs from Text.

MARCELO JUDICE, Muniz Augusto, and Roberto
Carvalheiro. 1999. Avaliação do coeficiente de
variação na experimentação com suı́nos. Ciência e
Agrotecnologia, 23.

Nockleby and John. 2000. Hate speech. In
Encyclopedia of the American Constitution, pages
1277–1279.

Alec Radford, Karthik Narasimhan, Tim Salimans,
and Ilya Sutskever. 2018. Improving language
understanding with unsupervised learning.

Hubert Ramsauer, Bernhard Schäfl, Johannes Lehner,
Philipp Seidl, Michael Widrich, Thomas Adler,
Lukas Gruber, Markus Holzleitner, Milena Pavlović,
Geir Kjetil Sandve, Victor Greiff, David Kreil,
Michael Kopp, Günter Klambauer, Johannes
Brandstetter, and Sepp Hochreiter. 2020. Hopfield
networks is all you need.

Hind Saleh, Areej Alhothali, and Kawthar Moria.
2020. Detecting white supremacist hate speech
using domain specific word embedding with deep
learning and bert. In Submission to Information
Processing and Management, pages 533–544.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of BERT: smaller, faster, cheaper and lighter. CoRR,
abs/1910.01108.

Vitalie Spinu Tyler Rinker. 2016. sentimentr:
Dictionary based sentiment analysis that considers
valence shifters.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need.

Andreas Veit, Neil Alldrin, Gal Chechik, Ivan
Krasin, Abhinav Gupta, and Serge J. Belongie.
2017. Learning from noisy large-scale datasets with
minimal supervision. CoRR, abs/1701.01619.

J. Warner and J. Hirschberg. 2012. Detecting hate
speech on the world wide web. In Proceedings of
the Second Workshop on Language in Social Media,
pages 19–26.

David Yarowsky. 1994. Decision lists for lexical
ambiguity resolution: Application to accent
restoration in spanish and french. In Proceedings of
the ACL, pages 88–95.

Ofir Zafrir, Guy Boudoukh, Peter Izsak, and Moshe
Wasserblat. 2019. Q8BERT: quantized 8bit BERT.
CoRR, abs/1910.06188.

http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/2002.08307
http://arxiv.org/abs/2002.08307
https://doi.org/10.1145/1014052.1014073
https://doi.org/10.1145/1014052.1014073
https://github.com/mjockers/syuzhet
https://github.com/mjockers/syuzhet
http://arxiv.org/abs/2008.02217
http://arxiv.org/abs/2008.02217
http://arxiv.org/abs/1910.01108
http://arxiv.org/abs/1910.01108
https://gthub.com/trinker/sentimentr/0
https://gthub.com/trinker/sentimentr/0
https://gthub.com/trinker/sentimentr/0
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1701.01619
http://arxiv.org/abs/1701.01619
http://arxiv.org/abs/1910.06188

