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Abstract

To find a suitable embedding for a knowledge
graph remains a big challenge nowadays. By
using previous knowledge graph embedding
methods, every entity in a knowledge graph
is usually represented as a k-dimensional vec-
tor. As we know, an affine transformation can
be expressed in the form of a matrix multi-
plication followed by a translation vector. In
this paper, we firstly utilize a set of affine
transformations related to each relation to op-
erate on entity vectors, and then these trans-
formed vectors are used for performing em-
bedding with previous methods. The main ad-
vantage of using affine transformations is their
good geometry properties with interpretability.
Our experimental results demonstrate that the
proposed intuitive design with affine transfor-
mations provides a statistically significant in-
crease in performance with adding a few ex-
tra processing steps or adding a limited num-
ber of additional variables. Taking TransE as
an example, we employ the scale transforma-
tion (the special case of an affine transforma-
tion), and only introduce k additional variables
for each relation. Surprisingly, it even outper-
forms RotatE to some extent on various data
sets. We also introduce affine transformations
into RotatE, Distmult and ComplEx, respec-
tively, and each one outperforms its original
method.

1 Introduction

Knowledge graphs are usually collections of fac-
tual triples—(head entity, relation, tail entity) also
known as (subject, predicate, object), which repre-
sent human knowledge of the real world in a struc-
tured way. There are some outstanding knowledge
graphs, such as WordNet (Miller, 1995), Free-
base (Bollacker et al., 2008), DBpedia (Lehmann
et al., 2015), YAGO (Suchanek et al., 2007). They
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have gained widespread attention from their suc-
cessful usage in various applications, e.g., question
answering (Huang et al., 2019), natural language
processing (Zhang et al., 2020a), recommendation
systems (Zhou et al., 2020) ,etc.

Although millions of entities and billions of facts
exist in the large-scale knowledge graphs, they still
suffer from the incompleteness problem. There-
fore, knowledge graph completion also known as
link prediction which aims to predict missing links
among entities based on the known triples has at-
tracted much attention gradually. Recently, exten-
sive studies have been done concerning knowledge
graph embedding (Bordes et al., 2013; Yang et al.,
2015; Dettmers et al., 2018). These methods rep-
resent entities and relations as low-dimensional
vectors (or matrices, tensors, etc.), which not only
preserve the semantic information of the knowl-
edge graph, but also represent entities and relations
in a fixed structure which is easier for machines’
further processing. Therefore, apart from the link
prediction task, knowledge graph embedding can
also be used in various downstream tasks, such as
triple classification (Nguyen et al., 2020), search
personalization (Lu et al., 2020) and so on.

The success of existing knowledge graph embed-
ding models heavily relies on their ability to model
different types of the relations, such as symme-
try/antisymmetry and composition. For example,
TransE (Bordes et al., 2013), which represent re-
lations as translations, can model the composition
paterns. DistMult (Yang et al., 2015), which forces
all relation embeddings to be diagonal matrices in
bilinear model, can model the symmetry pattern.
However, most models ignore the difference be-
tween single-relational and multi-relational triples.

Multi-relational triples are ubiquitous phenom-
ena in knowledge graphs. For instance, Word-
Net (Miller, 1995) contains the entity {de-
partment_of_justice} with relations {_hypernym,
_synset_domain_topic_of, _has_part}. Freebase
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(Bollacker et al., 2008) contains the entity {Bryan
Singer} with relations {/film/director/film, /peo-
ple/person/profession, /people/person/nationality,
/people/person/place_of_birth and so on}. Differ-
ent relations lead entities to different identities or
concerns. Figure 1 briefly shows that multiple re-
lations may have effects on the optimization of
knowledge graph embedding models. We try to do
some spatial transformations to make the entities
contain the corresponding relation information, and
help to distinguish the scenes of different relations.
Although there exists similar works that project en-
tities with each relation (Lin et al., 2015; Nguyen
et al., 2016), they often require complex projection
matrices, which lead to a large amount of calcu-
lation and are difficult to apply to other models.
In addition, other than TransE series models, we
also apply this transformation method to Bilinear
Models similar to RESCAL (Nickel et al., 2011),
and improve their performance obviously.

In this paper, we firstly utilize a set of affine
transformations related to each relation to oper-
ate on entity vectors, and then these transformed
vectors are used for performing embedding with
previous methods like TransE (Lin et al., 2015), Ro-
tatE (Sun et al., 2019), DistMult (Yang et al., 2015)
and ComplEx (Trouillon et al., 2016). All of these
applications are correspondingly simplified based
on different model structures. Our experimental re-
sults demonstrate that the proposed intuitive design
with affine transformations provides a statistically
significant increase in performance with adding a
few extra processing steps or adding a limited num-
ber of additional variables. Taking TransE as an
example, we employ the scale transformation (the
special case of an affine transformation), and only
introduce : additional variables for each relation.
Surprisingly, it even outperforms RotatE to some
extent on various data sets. The application in other
models also shows better results than their origi-
nal models. Especially for DistMult and ComplEx,
experiments on three benchmark data sets show
that the proposed affine-transformation-based al-
gorithms outperform several other state-of-the-art
algorithms.

Notations. Throughout this paper, we use lower-
case letters 4, ℎ, A , and C to represent entities, head
entities, relations, and tail entities, respectively.
The triplet (ℎ, A, C) denotes a fact in knowledge
graphs. The corresponding boldface lower-case
letters h, r and t denote the embeddings (vectors)

of head entities, relations, and tail entities. 3 and
: are the dimensionality of entity and relation em-
bedding space, respectively (usually 3 = :).

2 Related Work

In this section, we briefly review the related work.
Roughly speaking, the existing knowledge graph
embedding models are mainly divided into three
categories: translational models, bilinear models
and deep learning models. Table 1 summarizes dif-
ferent score functions 5A (h, t) from previous state-
of-the-art methods.

Translational models. TransE is the first link
prediction model to propose translation distance
constraints, which supposes that entities and rela-
tions satisfy h + r ≈ t, where h, r, t ∈ R: , and de-
fines the score function as 5A (h, t) = −‖h+r−t‖1/2.
TransH (Wang et al., 2014) is proposed to com-
pensate for the shortcomings of transE. They find
that TransE cannot handle 1-N, N-1, N-N rela-
tions well. TransH projects entities onto relation-
specific hyperplanes with h⊥ = h − w>A hwA and
t⊥ = t − w>A twA , and the score function is defined
as 5A (h, t) = −‖h⊥ + r − t⊥‖2. Moreover, RotatE
(Sun et al., 2019) defines each relation as a rotation
from the source entity to the target entity in a com-
plex vector space, which is able to represent various
relation patterns including symmetry/asymmetry,
inversion and composition. Then QuatE (Zhang
et al., 2019) represents entities and relations with
Quaternion; HAKE Zhang et al. (2020b) consid-
ers the hierarchical of relations, and both of them
achieved impressive results.

Bilinear models. RESCAL (Nickel et al.,
2011) represents each relation as a full rank matrix
and defines a bilinear function as score function
5A (h, t) = 〈h>MA t〉. Although the embedded rela-
tions have a large number of parameters, RESCAL
can still get good results through some of the latest
training methods (Ruffinelli et al., 2019). Subse-
quently, DistMult (Yang et al., 2015) forces all
relation embeddings MA to be diagonal matrices,
which can reduce the space of parameters and result
in an easier model to be trained. However, Dist-
mult assumes that all relations are symmetric, and
is not friendly to other types of relations, such as
antisymmetry, composition. To solve this problem,
ComplEx (Trouillon et al., 2016) extends DistMult
to complex space: h, r, t ∈ C: , and uses conjugate-
transpose t̄ to model asymmetric relations.

Deep learning models. MLP (Dong et al.,
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Figure 1: Illustration of the simplified optimization process of knowledge graph embedding. We expect the dashed
arrow lines to be consistent with the solid arrow lines after optimization. (a) shows five sets of identical relation
triples randomly initialized. (b) is the ideal optimization result. The same relation arrow lines should be consistent.
(c) shows the optimization results of triples with two relations. Obviously, multiple relations affect the same
relation arrow lines to be consistent. (d) shows the optimization result we expect after affine transformation.

2014) and NTN (Socher et al., 2013) use a fully
connected neural network to calculate the scores
of given triples. ConvE (Dettmers et al., 2018),
ConvKB (Nguyen et al., 2018) and ConvR (Jiang
et al., 2019) employ convolutional neural networks
to build score functions. There are also graph con-
volutional networks (Schlichtkrull et al., 2018) and
recurrent neural networks RSN (Guo et al., 2019)
which show promising performances.

3 Embedding with Affine
Transformation

In this section, we briefly introduce affine trans-
formation at first. Then we introduce our pro-
posed method which utilizes affine transformation
in TransE, RotatE, DistMult and ComplEx, respec-
tively.

3.1 Affine Transformation

Consider a data set of : dimensional points {G8}.
We wish to learn a : × : linear transformation ma-
trix A and a translation vector b which will help to
find better embedding of the original data points.
In general, an affine transformation is composed of
linear transformations (dilation, reflection, rotation,
scaling or shear) and a translation (or "shift"). In ad-
dition the affine transformation preserves collinear-
ity and ratios of distances. In this regard, we per-
form affine transformation on the head entities and
tail entities according to the corresponding rela-

tions: {
h′ = AAh + bA

t′ = CA t + dA ,
(1)

where AA ,CA ∈ R:×: and bA , dA ∈ R: are the
head entity and tail entity affine transformation
parameters, respectively.

3.2 Improving TransE with AT

For TransE + AT (affine transformation), the ex-
pected distance relationship after affine transforma-
tion can be expressed as

t′ = h′ + r. (2)

Substituting Equation (1) into Equation (2), we can
obtain

CA t + dA = AAh + bA + r. (3)

We further simplify Equation (3) as

t = C−1
A AAh + C−1

A (bA + r − dA ). (4)

Since C−1
A and AA are also transformation matrices

about r, and the effect of C−1
A on the product of h

can be absorbed by AA , we denote A′A as C−1
A AA .

Similarly, denote r′ as C−1
A (bA + r − dA ). In fact,

the symbolic representations of A′A , r′ and AA , r are
only used to distinguish the changes, and we still
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Model Score Function 5A (h, t) Parameters

TransE (Bordes et al., 2013) −‖h + r − t‖1/2 h, r, t ∈ R:
TransH (Wang et al., 2014) −‖(h − w>A hwA ) + dA − (t − w>A twA )‖22 h, t,wA , dA ∈ R:
TransR (Lin et al., 2015) −‖MAh + r −MA t‖2 h, t ∈ R3 , r ∈ R: ,MA ∈ R:×3
RotatE (Sun et al., 2019) −‖h ◦ r − t‖1 h, r, t ∈ C: , |A8 | = 1

RESCAL (Nickel et al., 2011) 〈h>MA t〉 h, t ∈ R: ,MA ∈ R:×:
DistMult (Yang et al., 2015) 〈h>diag(r)t〉 h, r, t ∈ R:

ComplEx (Trouillon et al., 2016) Re
(〈

h>diag(r) t̄
〉)

h, r, t ∈ C:
ConvE (Dettmers et al., 2018)

〈
f(vec(f( [h̄, t̄] ∗ l))W)t

〉
h, r, t ∈ R:

TransE + AT ‖diag(aA )h + r − t‖1 h, r, t, aA ∈ R:
DistMult + AT 〈(h + bA )>diag(r) (t + dA )〉 h, r, t, bA , dA ∈ R:
ComplEx + AT Re

(〈
(h + bA )>diag(r) (t̄ + dA )

〉)
h, r, t, bA , dA ∈ C:

RotatE + AT ‖diag(aA )h ◦ r + bA − t‖1 h, r, t, bA ∈ C: , aA ∈ R:

Table 1: Details of several knowledge graph embedding models, where 〈·〉 denotes the generalized dot product, ◦
denotes the Hadamard product, f denotes activation function, ∗ denotes 2D convolution, ·̄ denotes conjugate for
complex vectors and 2D reshape for real vectors in ConvE model.

use AA , r to represent in the following equation.
Then we can get

t = AAh + r. (5)

In experiments, using full matrices AAh may cause
parameter redundancy and overfitting. Therefore,
we refer to DistMult (Yang et al., 2015) to take the
diagonal parameters of the full matrix and mark it
as diag(aA ). And a simplified equation is obtained

t = diag(aA )h + r. (6)

Then the corresponding score function of TransE +
AT can be expressed as

5A (h, t) = ‖diag(aA )h + r − t‖1, (7)

where h, r, t, aA ∈ R: .
The simplified model of TransE + AT acciden-

tally obtains a score function similar to MuRE (Bal-
azevic et al., 2019), The scoring function of MuRE
is

5 (h, t) = −d(Rh, t + r)2 + bs + bo, (8)

where d is a distance function, R is a diagonal
relation matrix, bs and bo are constants. Inter-
nally, MuRE (Rh − r − t) (Balazevic et al., 2019),
TransE+AT (diag(aA )h + r − t) are very similar,
but MuRE calculates the square of the distance and
there are two deviation terms, so the two are not
totally the same.

The scoring function of the unsimplified version
of TransE + AT can be expressed as

5A (h, t) = ‖(AAh + bA ) + r − (CA t + dA )‖1. (9)

Compared with other models based on rela-
tional transformation to improve TransE, such as
TransH (Wang et al., 2014) and TransR (Lin et al.,
2015) (refer to Table 1 for the scoring functions).
TransH projects the entity onto the hyperplane
where the relation r ∈ R: is located, and TransR
transform the entity based on the relation-specified
matrix MA ∈ R:×: . The entity of TransR has a
larger transformation range than that of TransH, so
it can be understood that TransH is a special case
of TransR. When AA = CA and bA = dA = 0, the
original TransE + AT is equivalent to TransR. That
is, TransR is a special case of TransE + AT, and we
simplify TransE + AT on this basis.

3.3 Improving RotatE with AT
For RotatE + AT, the expected rotation relationship
after affine transformation can be expressed as

t′ = h′ ◦ r. (10)

Substituting Equation (1) into Equation (10), we
can obtain

CA t + dA = (AAh + bA ) ◦ r. (11)

We further simplify Equation (11) as

t = C−1
A ((AAh) ◦ r) + C−1

A (bA ◦ r − dA ). (12)
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We simplify C−1
A ((AAh) ◦ r) as diag(a′A )h ◦ r to

represent scale transformation, and denote b′A as
C−1
A (bA ◦ r−dA ). Again, we use aA , bA to represent

a′A , b′A in the following equation. And we can obtain

t = diag(aA )h ◦ r + bA . (13)

Then the corresponding score function of RotatE +
AT can be expressed as

5A (h, t) = ‖diag(aA )h ◦ r + bA − t‖1, (14)

where h, r, t, bA ∈ C: , aA ∈ R: .

3.4 Improving DistMult and ComplEx with
AT

Since the loss functions of RESCAL, DistMult and
ComplEx have similar structures, we use RESCAL
+ AT to show the application process. For RESCAL
+ AT, the expected score function after affine trans-
formation can be expressed as

5A (h, t) =
〈
h′>MA t′

〉
. (15)

Substituting Equation (1) into Equation (15), we
can obtain

5A (h, t) =
〈
(AAh + bA )>MA (CA t + dA )

〉
. (16)

We further simplify Equation (16) as

5A (h, t) =
〈
(h + A−1

A bA )>A>A MACA (t + C−1
A dA )

〉
.

(17)
Here, we denote b′A as A−1

A bA , d′A as C−1
A dA and

M′A as A>A MACA . Also, we use bA , dA and MA to
represent b′A , d′A and M′A in the following equation.
Correspondingly, the score function of RESCAL +
AT can be expressed as

5A (h, t) =
〈
(h + bA )>MA (t + dA )

〉
, (18)

where h, t, bA , dA ∈ R: ,MA ∈ R:×: .
Similarly, for DistMult, the corresponding score

function of DistMult + AT is

5A (h, t) =
〈
(h + bA )>diag(r) (t + dA )

〉
, (19)

where h, r, t, bA , dA ∈ R: .

For ComplEx, the corresponding score function
of ComplEx + AT is

5A (h, t) = Re
(〈
(h + bA )>diag(r) (t̄ + dA )

〉)
,

(20)
where h, r, t, bA , dA ∈ C: .

4 Experiments

This section is organized as follows: Firstly, we
introduce the experimental settings in detail. Sec-
ondly, we show the effectiveness of our proposed
model on three benchmark datasets. Finally, we
analyze the embeddings generated by TransE + AT,
RotatE + AT, Dismult + AT and ComplEx + AT,
and show the results of ablation studies and visual-
ize some parameters of models.

4.1 Experimental Settings

We evaluate our proposed models on three com-
monly used knowledge graphs, which are statisti-
cally summarized in Table 2.

Dataset #En #Re #train #valid #test

WN18RR 40,943 11 86,835 3,034 3,134
FB15k-237 14,541 237 272,115 17,535 20,466
YAGO3-10 123,182 37 1,079,040 5,000 5,000

Table 2: Number of entities, relations, and observed
triples in each split for three benchmarks.

• FB15k-237 (Toutanova and Chen, 2015) is a
subset of FB15k (Bordes et al., 2013), where
inverse relations are deleted. A large fraction
of content in this knowledge graph describes
facts about movies, actors, awards, sports, and
sport teams.

• WN18RR (Dettmers et al., 2018)is a subset of
WN18 (Bordes et al., 2013). The inverse rela-
tions are deleted. Most of the triples consist of
hyponym and hypernym relations which make
WN18RR tend to follow a strictly hierarchical
structure.

• YAGO3-10 (Dettmers et al., 2018) is a subset
of YAGO3 (Mahdisoltani et al., 2013) which
has a minimum of 10 relations for each entity.
Most of the triples deal with descriptive at-
tributes of people, such as citizenship, gender,
and profession.
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As pointed out by Toutanova and Chen (2015)
and Dettmers et al. (2018), FB15k, WN18 and
YAGO3 suffer from the test leakage. This issue
is primarily due to the presence of relations that
are nearly identical or the inverse of one another.
One can achieve the state-of-the-art results even
using a simple rule-based model. Therefore, we
use WN18RR, FB15k-237 and YAGO3-10 as the
benchmark datasets.

Training Protocol. We use Adam (Kingma and
Ba, 2014) as the optimizer and fine-tune the hyper-
parameters on the validation dataset based on grid
search. Both the entity and relation embeddings are
uniformly initialized. For TransE + AT and RotatE
+ AT, we use self-adversarial negative sampling
Sun et al. (2019) with margin _. For DistMult + AT
and ComplEx + AT, we use the “reciprocal” setting
Lacroix et al. (2018) with N3 regularizers.

WN18RR FB15k-237 YAGO3-10

TransE 8.1908M 2.9556M 24.6438M
RotatE 16.3794M 5.8638M 49.2802M

DistMult 8.1908M 2.9556M 24.6438M
ComplEx 16.3816M 5.9112M 49.2876M

TransE + AT 8.1930M 3.0030M 24.6512M
RotatE + AT 16.3860M 6.0060M 49.3024M

DistMult + AT 8.1952M 3.0504M 24.6586M
ComplEx + AT 16.3904M 6.1008M 49.3172M

RESCAL 8.4086M 7.6482M 25.3764M
TransH 8.1930M 3.0030M 24.6512M
TransR 8.4086M 7.6482M 25.3764M
HAKE 16.3838M 5.9586M 49.295M
QuatE 32.7632M 11.8224M 98.5752M

Table 3: The number of parameters that different
models need to learn on WN18RR, FB15k-237 and
YAGO3-10 data sets. Here we assume that the dimen-
sion of the entities and relations embedding vector is
200.

Evaluation Protocol. For each triple (ℎ, A, C) in
the test dataset, we replace either the head entity
ℎ or the tail entity C with the total list of the em-
bedding entities. Then we base the score function
to rank the candidate entities in descending order.
The filtered setting is used to remove some correct
results that appear in the training set or validation
set but not in test set. We choose Mean Reciprocal
Rank (MRR) and Hits at N (H@N) as the evalua-
tion metrics. Higher MRR or H@N indicates better
performance.

Number of parameters. Table 3 shows the
number of parameters that different models need
to learn on WN18RR, FB15k-237 and YAGO3-
10 data sets. Compared with the original models:
TransE, RotatE, DistMult and ComplEx, our pro-
posed TransE + AT, RotatE + AT, DistMult + AT
and ComplEx + AT models only adds a small num-
ber of parameters. Especially for the WN18RR and
YAGO3-10 data sets, the number of added parame-
ters is almost negligible, but the final experimental
results are significantly improved. TransH has the
same number of parameters as TransE + AT, but
needs more computing resources for Hyperplanes
translating in both head entities and tail entities,
and TransR needs more number of parameters and
calculations for the matrix multiplication with MA .
Compared with the recent state of art methods, i.e.,
QuatE and HAKE, the number of parameters of
TransE + AT and DistMult + AT are smaller than
both, while ComplEx + AT and RotatE + AT are
close to HAKE but smaller than QuatE, and our
method also exceeds their results in some quality
indexes.

4.2 Main Results

In this section, we compare the performance
of affine transformation against several state-of-
the-art Knowledge graph completion models on
WN18RR, FB15k-237 and YAGO3-10 datasets,
including TransE (Bordes et al., 2013), Dist-
Mult (Yang et al., 2015), ComplEx (Trouillon et al.,
2016), RotatE (Sun et al., 2019), MuRE (Balazevic
et al., 2019), QuatE (Zhang et al., 2019), Inter-
actE (Vashishth et al., 2020) and HAKE (Zhang
et al., 2020b). In order to avoid the influence of
negative sample sampling and other training strate-
gies, We reimplement TransE using self-adversarial
negative sampling Sun et al. (2019), DistMult and
ComplEx using the “reciprocal” setting Kazemi
and Poole (2018); Lacroix et al. (2018). Table 4
shows the effectiveness of affine transformation ap-
plied in TransE, RoataE, DistMult and ComplEx
models.

For TransE + AT, compared with the retrained
TransE, our results on the three data sets have an
average MRR increase of 10.4%. Especially for
the WN18RR data set, TransE + AT can handle
symmetric relations, while WN18RR contains a
large number of symmetric relations, so the result
is significantly improved. For RotatE + AT, com-
pared with the original RotatE, our results have an



514

WN18RR FB15k-237 YAGO3-10
MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

MuRE .475 .436 .487 .554 .336 .245 .370 .521 - - - -
QuatE .488 .438 .508 .582 .366 .271 .401 .556 - - - -
InteractE .463 .430 - .528 .354 .263 - .535 .541 .462 - .687
HAKE .497 .452 .516 .582 346 250 .381 .542 .545 .462 .596 .694
TransE .222 .014 .399 .528 .330 .232 .369 .526 .510 .413 .574 .681
RotatE .476 .428 .492 .571 .338 .241 .375 .533 .495 .402 .550 .670
DistMult .455 .410 .467 .544 .358 .264 .395 .550 .566 .491 .608 .704
ComplEx .489 .443 .502 .580 .365 .270 .403 .558 .577 .502 .621 .709
TransE + AT .479 .434 .495 .571 .351 .257 .386 .538 .543 .462 .596 .690
RotatE + AT .488 .438 .509 .583 .348 .253 .384 .537 .545 .459 .601 .701
DistMult + AT .478 .433 .490 .563 .372 .276 .412 .564 .584 .513 .625 .709
ComplEx + AT .500 .455 .514 .592 .369 .273 .407 .559 .582 .507 .627 .712

Table 4: Evaluation results on WN18RR, FB15k-237 and YAGO3-10 datasets. We reimplement TransE using self-
adversarial negative sampling Sun et al. (2019), DistMult and ComplEx using the “reciprocal” setting Kazemi
and Poole (2018); Lacroix et al. (2018), which leads to better results than the reported results in the original paper.

average MRR increase of 2.5% on the three data
sets. Especially for the YAGO3-10 data set, RotatE
+ AT exceeds the retrained TransE and closes to
HAKE.

For DistMult + AT and ComplEx + AT, We cre-
atively introduce the translation component into
the bilinear model. Interestingly, this kind of ap-
plication works and makes improvements then the
original models. Compared with the retrained Dist-
Mult, our results of DistMult + AT on the three data
sets have an average MRR increase of 1.8%. Sim-
ilarly, compare with the retrained ComplEx, our
results of ComplEx + AT on the three data sets have
an average MRR increase of 0.7%. In three data
sets, DistMult + AT and ComplEx + AT exceed
other affine transformation methods, and mostly
outperform MuRE, QuatE, InteractE and HAKE,
reaching the state of art results.

4.3 Ablation Studies

In this section, we conduct ablation studies on
different models. Based on the structural differ-
ences of models, we split the affine transforma-
tion into different combinations, including only
make affine transformation on head entities AT_h
and only make affine transformation on tail entities
AT_t; only keep the scale parameter of affine trans-
formation AT_scale and only keep the translation
parameters of the affine transformation AT_trans.
For DistMult + AT and ComplEx + AT, we choose
the first combination as it can easily split the affine
transformation of the head and tail entities. And
we chose the second combination for RotatE.

From Table 5, we can see that for most mod-

els, better results are obtained by using a complete
affine transformation. There are some results where
H@10 is higher than the final models, such as Ro-
tatE + AT_scale gains a 0.2% higher H@10 than
RotatE + AT on the FB15k-237 data set, DistMult
+ AT_t gains a 0.1% higher H@10 than DistMult
+ AT on the YAGO-10 data set. We infer that the
use of a complete affine transformation will have
stronger constraints, which makes the accurate pre-
diction H@1 higher, while the rough prediction
H@10 decreases. On the contrary, under weak con-
straints, the accurate prediction H@1 will be lower,
while the rough prediction H@10 will increase.

4.4 Visualize Embedded Parameters

In this part, we visualize the some instances of
TransE + AT, RotatE + AT, DisMult + AT and
ComplEx + AT models on three data sets. Refer
to Sun et al. (2019), we display the histogram of
the k-dimensional embedding vector with different
relations.

The first column is a symmetry relations {_sim-
ilar_to, _derivationally_related_form}. From Fig-
ure 2 we can see that the parameter of TransE +
AT diag(aA ) can help TransE deal with symmetric
relations. For RotatE, the value of diag(aA ) is 1
or -1, while the value of bA is close to zero for the
symmetric relations. For DistMult + AT and Com-
plEx + AT, the bA and dA parameters may affect the
model’s representation of the symmetric relations,
so their values here are close to zero.

For other visualization of models’ instances,
such as the last four columns of TransE + AT,
we use similar relationships {/film/film/genre,
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WN18RR FB15k-237 YAGO3-10
MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

RotatE + AT_scale .474 .426 .497 .567 .342 .243 .381 .539 .538 .449 .596 .694
RotatE + AT_trans .480 .434 .497 .577 .346 .250 .381 .534 .535 .448 .591 .693
RotatE + AT .485 .436 .505 .581 .348 .253 .384 .537 .545 .459 .601 .701
DistMult + AT_h .475 .431 .487 .562 .368 .272 .407 .562 .582 .511 .626 .709
DistMult + AT_t .459 .416 .473 .545 .369 .274 .406 .561 .582 .511 .625 .710
DistMult + AT .478 .433 .490 .563 .372 .276 .412 .564 .584 .513 .625 .709
ComplEx + AT_h .498 .454 .513 .588 .368 .272 .406 .561 .580 .505 .625 .713
ComplEx + AT_t .495 .451 .508 .585 .367 .271 .404 .558 .579 .504 .626 .712
ComplEx + AT .500 .455 .514 .592 .369 .273 .407 .559 .582 .507 .627 .712

Table 5: Ablation results on WN18RR, FB15k-237 and YAGO3-10 datasets. The symbols AT_scale and AT_trans
represent only keep the scale parameter of affine transformation and only keep the translation parameters of the
affine transformation, respectively; AT_h and AT_t represent only make affine transformation on head entities and
only make affine transformation on tail entities, respectively.
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Figure 2: Visualization of some instances of TransE + AT, RotatE + AT, DistMult + AT and ComplEx + AT on
WN18RR, FB15k-237 and YAGO3-10 data sets
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/film/film/executive_produced_by, /fim/film/film
_crew_role, /film/film/written_by}, they show a cer-
tain difference, and the last three related to people
are more similar; In DistMult + AT and ComplEx +
AT, we choose two similar relations to form differ-
ent groups. The results show that different relation-
ships have large differences in histograms, while
similar relationships have smaller differences; sim-
ilar phenomena also appears in the RotatE + AT.

5 Conclusion

We propose a novel knowledge graph embedding
approach which firstly introduces a parametric map-
ping that projects entity vectors into a new space
by an affine transformation corresponding to each
relation, and then employs previous embedding
methods that map the entities and relations into the
embedding space. This algorithm enforces the em-
bedding to be approximately uniformly distributed
around the original entity vectors by adjusting the
scaling and translation parameters of the affine
transformation, which requires considerably less
additional computational effort. Extensive experi-
mental results show that the affine-transformation-
based algorithms outperform the original TransE,
RotatE, Distmult and ComplEx, respectively. Ex-
periments on three benchmark data sets also show
that the proposed affine-transformation-based al-
gorithms outperform several other state-of-the-art
algorithms in some quality indexes. We believe that
knowledge graph embedding based on affine trans-
formations is very promising and has the potential
of being used for many applications. However,
more comparison with other embedding methods
are needed to fully understand its advantages and
disadvantages.
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