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Abstract
As large-scale, pre-trained language models
achieve human-level and superhuman accu-
racy on existing language understanding tasks,
statistical bias in benchmark data and prob-
ing studies have recently called into question
their true capabilities. For a more informative
evaluation than accuracy on text classification
tasks can offer, we propose evaluating systems
through a novel measure of prediction coher-
ence. We apply our framework to two existing
language understanding benchmarks with dif-
ferent properties to demonstrate its versatility.
Our experimental results show that this evalu-
ation framework, although simple in ideas and
implementation, is a quick, effective, and ver-
satile measure to provide insight into the co-
herence of machines’ predictions.

1 Introduction

Large-scale, pre-trained contextual language rep-
resentations (Devlin et al., 2018; Radford et al.,
2018; Raffel et al., 2020; Brown et al., 2020) have
approached or exceeded human performance on
many existing language understanding benchmarks.
However, due to increasing complexity and con-
cerns of statistical bias enabling artificially high
performance (Schwartz et al., 2017; Poliak et al.,
2018b; Niven and Kao, 2019; Min et al., 2020),
the coherence of these state-of-the-art systems and
their alignment to humans is not well understood.

This is perhaps because benchmarks geared to-
ward language understanding only cover the tip
of the iceberg, typically focusing on a high-level
end task rather than diving deeper into the kind
of coherent, robust understanding that takes place
in humans. Language understanding in machines
is often boiled down to text classification, where
a classifier is tasked with recognizing whether
a text contains a particular semantic class, e.g.,
textual entailment (Dagan et al., 2005; Bowman
et al., 2015), commonsense implausibility (Roem-
mele et al., 2011; Mostafazadeh et al., 2016; Bisk

Entailed?

✓
Why?

Dialog:
A1: Yeah, yeah. Is that why you like aerobics 
classes, because you're not, sort of, someone 
else is doing the counting for you, so,
B1: Yeah.
…
B2: And, someone else is telling me, okay, you 
know, let's move this way, let's move that way,
A2: Uh-huh, uh-huh.
B3: instead of me having to think about it so 
much.
…
Hypothesis:
Speaker B likes the aspect of Aerobics that 
someone else is leading.

Figure 1: In Conversational Entailment (Zhang and
Chai, 2010), systems only predict whether a hypothe-
sis is entailed by a dialog, while ignoring the underly-
ing evidence in the discourse toward this conclusion.

et al., 2020), or combinations of several phenomena
meant to serve as comprehensive diagnostics (Po-
liak et al., 2018a; Wang et al., 2018, 2019). Without
regard to the underlying evidence used to reach a
conclusion, systems are rewarded for correct pre-
dictions on the task without “showing their work.”

To make meaningful improvement on machine
language understanding, it is important to have
more informative performance measures. To ad-
dress this issue, the contribution of this paper is to
introduce a novel model- and task-agnostic eval-
uation framework that allows a quick assessment
of text classifiers’ ability in terms of the coherence
of their predictions. We apply our framework to
two existing language understanding benchmarks
of different genres to demonstrate its versatility.
Our results support recent findings of spurious be-
haviors in fine-tuned large LMs, and show that our
framework, although simple in ideas and implemen-
tation, is effective as a quick measure to provide
insight into the coherence of machines’ predictions.

2 Related Work

In the face of data bias and uninterpretability of
large LMs, past work has proposed methods to ro-
bustly interpret and evaluate them for various tasks
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and domains. Some work has sought to probe con-
textual language representations through various
means to better understand what knowledge they
hold and their correspondence to syntactic and se-
mantic patterns (Tenney et al., 2018; Hewitt and
Manning, 2019; Jawahar et al., 2019; Tenney et al.,
2019). Meanwhile, behavior testing approaches
have also been applied to understand model ca-
pabilities, from automatically removing words in
language inputs and examining model performance
as the input becomes malformed or insufficient
for prediction (Li et al., 2016; Murdoch et al.,
2018; Hewitt and Manning, 2019), to curating fine-
grained testing data to measure performance on
interesting phenomena (Zhou et al., 2019; Ribeiro
et al., 2020). Similar work has used specialized nat-
ural language inference tasks (Welleck et al., 2019;
Uppal et al., 2020), logic rules (Li et al., 2019;
Asai and Hajishirzi, 2020), and annotated explana-
tions (DeYoung et al., 2020; Jhamtani and Clark,
2020) to support and evaluate consistency and co-
herence of inference in these models. Other works
have studied coherence of discourse through the
proxy task of sentence re-ordering (Lapata, 2003;
Logeswaran et al., 2018). Different from these pre-
vious works that focus only on specific tasks or
methods, or require heavy annotation, this paper
introduces an easily-accessed, versatile evaluation
of machine coherence from a small amount of ad-
ditional annotation.

3 Coherent Text Classification

For any text classification task requiring reasoning
over a discourse, a coherent classifier should use
the same evidence as humans do in reaching a con-
clusion. For any positive example, we expect that
there are specific regions of the text which contain
the semantic class of interest and thus directly con-
tribute to the positive label. Conversely, for any
negative example, there should be no such regions
of the text. At a high level, we will propose a coher-
ence measure that captures whether classifiers can
give consistent and human-aligned predictions on
these regions to support the end task conclusion.

Depending on specific tasks, this measure can
have different implementations while maintaining
the same high-level goal. In the following sections,
we will use two example benchmark datasets, Con-
versational Entailment (CE) from Zhang and Chai
(2010) and Abductive Reasoning in narrative Text
(ART) from Bhagavatula et al. (2020), to illustrate

Dialog: 
A1: Well, ironically enough I’m sitting here 
with a cast on my leg because I resumed an 
aerobics class the night before last.
B1: Oh, no.
A2: I ripped the ligaments in my right ankle.

Hypothesis: 
Speaker A ripped the ligaments in her 
ankle at aerobics class.

✗

✗ ✓

Figure 2: In CE, we label each sub-span of dialog with
whether it entails the hypothesis (3 for yes, 7 for no).

how the coherence measure can be applied. We in-
tentionally chose these two distinctive benchmark
datasets for our investigation. CE is formulated as
a textual entailment task, while ART is a multiple-
choice text plausibility classification task. CE is
small-scale, created over ten years ago before the
era of deep learning, while ART is a large-scale
(∼171k examples) dataset created more recently.
Through these two different datasets, we aim to
demonstrate the versatility of this framework.

3.1 Coherence in Textual Entailment

CE poses a textual entailment task where context is
given as several turns of a natural language dialog,
and we must determine whether the dialog entails
a hypothesis sentence. All required information
is explicitly given in the dialog. In each positive
example, only some dialog turns directly contribute
to the entailment, while others are irrelevant to the
hypothesis. For example, as shown in Figure 1,
turns A1 and B2 together entail the hypothesis,
while others are not necessary for entailment.

As shown in Figure 2 for CE, we can label indi-
vidual spans of a discourse that entails a hypothesis
with whether or not consecutive sub-spans of the
discourse also entail the hypothesis. Here, while
the entire dialog from A1 through A2 entails the
hypothesis, the spans from A1 through B1 and B1

through A2 do not, as they omit details required by
the hypothesis. Given an example of lengthN ,1 we
can decompose it into N +

(
N
2

)
possible consecu-

tive sub-spans2 to label with human judgements.
For a correctly classified example, we can then

perform inference on all sub-spans. If the system

1Length can be defined in units of dialog turns, sentences,
paragraphs, or other appropriate units of the text. Text should
be decomposed such that individual sub-spans are not mal-
formed or fragmented, so token- and character-level sub-spans
will typically be inappropriate for this evaluation.

2There are
(
N
2

)
combinations of starting and ending points

for multi-sentence sub-spans, plus N individual sentences.



3171

Story 1:
Kelly wanted to try out for soccer this year.
Kelly tried out for the soccer team but was cut.
Kelly celebrated by getting pizza.1

Why?

Which is less plausible?

Story 2:
Kelly wanted to try out for soccer this year.
Kelly made it onto the team.
Kelly celebrated by getting pizza.

Figure 3: In Abductive Reasoning in narrative
Texts (Bhagavatula et al., 2020), systems only compare
two texts by their commonsense plausibility, ignoring
which parts of the stories support this conclusion.

additionally classifies all of them correctly, we con-
sider the prediction to be coherent. We then calcu-
late coherence on the task as the percentage of ex-
amples coherently classified. Extremely simple to
compute, this provides valuable insight beyond the
surface of end task accuracy, measuring how well
the classifier’s perceived evidence toward the con-
clusion aligns with that of humans. Alternatively,
the average sub-span accuracy may be considered
as a more lenient measure.

3.2 Coherence in Plausibility Classification
ART, meanwhile, is a multiple-choice text classi-
fication benchmark for commonsense plausibility
recognition. The task is to determine which of two
candidate sentences most plausibly fits between
two given context sentences when considering com-
monsense constraints on the world. This translates
naturally into a choice between two three-sentence
stories (differing only by the second sentence),
one of which has some implausibility (the posi-
tive choice). For example, as shown in Figure 3,
Story 1 is implausible because while the second
sentence describes a negative event, the third sen-
tence indicates celebration. Meanwhile, in Story 2,
the agent is celebrating a positive event.

Multiple-choice tasks. To account for multiple-
choice tasks like ART, where we identify one of
two texts to be semantically implausible, we must
adjust this setup. We still consider sub-spans of
the context, breaking down each pair of texts into
N+

(
N
2

)
pairs of sub-spans. Intuitively, the model’s

choice on each pair should again align with that of
humans. However, there is a possibility that none
of the texts contain the positive class. In such cases,
the classifier should not make a confident predic-
tion, and instead believe the texts are equally likely.
Confidence should be defined based on the classi-
fier’s internal model of the probability distribution
over all possible class labels, i.e., text choices (typ-
ically calculated by applying softmax over the acti-

Which choice is implausible?

1. Ada was emptying the trash one night.

1. Ada was emptying the trash one night.

1. Ada was emptying the trash one night.
2. The bag broke as Ada was walking out the door.

1. Ada was emptying the trash one night.
2. The trash bag ripped open from a hole in the top.

1. Ada was emptying the trash one night.
2. The bag broke as Ada was walking out the door.
3. Ada had to pick up all the trash from the floor.

1. Ada was emptying the trash one night.
2. The trash bag ripped open from a hole in the top.
3. Ada had to pick up all the trash from the floor.

span pair: classifier output:

A

B

A

B

A

B

✗

✓

✗

✗

✗

✗

P(A) P(B)

1.0

0.0

P(A) P(B)

1.0

0.0

P(A) P(B)

1.0

0.0

Figure 4: In ART, a multiple-choice text classification
problem, we can label sub-spans with the least plausi-
ble choice, although in some cases, both choices are
plausible. To address this, we consider the classifier’s
posterior probability for each choice; it is ideal if the
classifier has low confidence in such instances.

vations of several neural network branches). This
is conceptually visualized in Figure 4, where a clas-
sifier should only become confident that Story B
is implausible once both the second and third sen-
tence are present, as the trash is less likely to end
up on the floor with a hole in the top of the bag.

Generally, let Ta:b represent the consecutive sub-
sequence of text T from unit a through b, e.g.,
sentences a through b of text T . Consider a set
S1:N of M texts of length N such that S =
{T 1

1:N , T
2
1:N , · · · , TM

1:N}, and a classifier f such
that f(S1:M ) ∈ [1,M ].3 When classifying a set
Sa:b, let f(Sa:b) = c∗ be considered a confident pre-
diction if max

c∈[1,c∗)∨(c∗,M ]
(p(c∗)− p(c)) ≥ ρ, where

p(c) refers to probability of class c under the clas-
sifier’s output distribution, and ρ is a confidence
threshold. Where there is no positive text within
Sa:b, then the desired outcome (ground truth) is
for f(Sa:b) to be a non-confident prediction. This
should be reflected in the calculation of coherence.

4 Coherence of SOTA Classifiers

Using our framework, we next establish baseline
measures of coherence on the two benchmarks. The
source code and data for our empirical study are
shared with the community on GitHub.4

3While text choices may be different lengths, this can be
trivially resolved by padding.

4https://github.com/sled-group/Verifiable-Coherent-NLU

https://github.com/sled-group/Verifiable-Coherent-NLU
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4.1 Enabling Coherence Evaluation

To enable the type of evaluation described in Sec-
tion 3 for our benchmarks, additional annotation
is required. CE contains 50 unique dialog sources
from the Switchboard corpus (Godfrey and Hol-
liman, 1997). We randomly selected 10 testing
sources to form the test set and left all remain-
ing sources for training and validation, creating
an 80%/20% split for training and validation (703
examples) versus testing (178 examples). We an-
notated the positive examples in the test set with
the range of dialog turns entailing the hypothesis,
allowing us to generate ground truth labels for the
coherence measurement. Examples were labeled
by two separate annotators and cross-verified with
a near-perfect Cohen’s κ (Cohen, 1960) of 0.91,
then a third annotator resolved any disagreements.

To transfer ART to our framework, we annotated
200 random examples from the public validation
set (1532 examples) with the evidence for implau-
sibility. There are 3 possible cases in implausible
story choices: 1) the second sentence conflicts with
the first and/or third sentence, 2) the second sen-
tence is malformed or nonsense, presumably due
to annotation error or adversarial filtering (Zellers
et al., 2018), and 3) the first and third sentence
conflict with each other by default, and the sec-
ond sentence does not resolve this. These cases
are labeled by two annotators then merged with a
fair Cohen’s κ of 0.30 (perhaps lower due to sub-
jectivity of commonsense-based problems), and a
third annotator again resolving disagreements. 11
examples were discarded as two annotators agreed
that both story choices were entirely plausible, pre-
sumably due to annotation error in ART.

4.2 Empirical Results

We evaluate three state-of-the-art, transformer-
based language models from recent years:
BERT (Devlin et al., 2018), ROBERTA (Liu et al.,
2019), and DEBERTA (He et al., 2021).5 On
CE, we additionally apply transfer learning from
MultiNLI (Williams et al., 2017), a large-scale
textual entailment dataset with some dialog-based
problems. We measure both the accuracy, i.e., the
proportion of instances where the end task predic-
tion is correct, and coherence of models on respec-
tive evaluation sets. Specifically, we consider two
kinds of coherence: strict and lenient. Given a

5We use the “large” configuration of all models, which
have 24 hidden layers and 16 attention heads.

set of evaluation instances, strict coherence refers
to the proportion of instances where the end task
prediction is not only correct, but also coherent as
described in Section 3. While strict coherence only
rewards systems for examples where all sub-span
predictions are correct, lenient coherence averages
the sub-span accuracy over all examples for a less
rigid reward. We include this alternate form of co-
herence to accommodate some disagreement with
our annotations (which can be subjective based
on measured inter-annotator agreement) without
severe penalty.

Training details. Following common practice,
systems are trained with cross-entropy loss toward
the end task of text classification, maximizing accu-
racy on the validation set for model selection. On
CE, we used 8-fold cross-validation split by dialog
sources, then re-trained the model with the highest
average validation accuracy on all folds.

Pre-trained model parameters and implementa-
tions come from HuggingFace transformers
(Wolf et al., 2020),6 each trained with the AdamW
optimizer (Loshchilov and Hutter, 2018). We per-
formed a grid search over a wide range of learn-
ing rates and a maximum of 10 epochs. Training
batch sizes are fixed based on available GPU mem-
ory. Selected hyperparameters can be found in
Appendix A.

Discussion of results. Results on the test set of
CE and public validation set of ART are listed in
Table 1. All results show a statistically significant
drop in performance from classification accuracy
to strict coherence under a McNemar test (McNe-
mar, 1947) with p < 1e-5, some dropping below
majority-class accuracy. While lenient coherence
is slightly higher for both tasks, we still see large
drops from accuracy. This demonstrates that while
our text classifiers can achieve high classification
accuracy on CE and ART, they do not deeply un-
derstand the tasks. Much of their performance is
supported by incoherent intermediate predictions.
Although pre-training on MultiNLI improves the
end task accuracy on CE, it still suffers from com-
parably significant drops to the coherence mea-
sures. On ART, while all models see significant
performance drops, DEBERTA, the state-of-the-art
system for the task, achieves the best accuracy and
coherence measures, as well as the highest chosen
ρ values, which generally indicates more confident

6https://huggingface.co/transformers/

https://huggingface.co/transformers/
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CE, test:
Model Accuracy (%) Strict Coherence (∆; %) Lenient Coherence (∆; %)

majority 57.8 – –

BERT 55.8 28.5 (-27.3) 35.7 (-20.1)
ROBERTA 70.9 39.0 (-31.9) 47.5 (-23.4)
↪→ + MNLI 78.5 50.6 (-27.9) 58.2 (-20.3)
DEBERTA 67.4 37.2 (-30.2) 45.2 (-22.2)

ART, validation:
Model Accuracy (%) Strict Coherence (∆; %) ρ Lenient Coherence (∆; %) ρ

majority 55.0 (50.1) – – –

BERT 66.7 (66.7) 42.3 (-24.4) 0.15 43.7 (-23.0) 0.85
ROBERTA 87.8 (84.2) 55.0 (-32.8) 0.1 59.3 (-28.5) 0.05
DEBERTA 88.4 (85.7) 59.8 (-28.6) 0.85 61.8 (-26.6) 0.95

Table 1: Accuracy, strict coherence, and lenient coherence on CE and ART for state-of-the-art text classifiers. ∆ is
the total performance drop from the classification accuracy to each coherence measure, and each ρ is the confidence
threshold achieving the highest coherence. For ART, accuracy on the full validation set is given in parentheses.

predictions. Even though it only marginally out-
performs ROBERTA in accuracy, we see larger
improvements in coherence measures and the cho-
sen ρ, suggesting DEBERTA is more robust.

5 Conclusion

In this work, we proposed a simple and versatile
method to evaluate the coherence of text classifiers,
particularly targeting the problem where end task
prediction depends on a discourse rather than a
single sentence. By annotating a small amount of
data in a benchmark, this method supports a quick
assessment on whether machines’ end task perfor-
mance is supported by coherent intermediate evi-
dence. Future work driven by benchmarks should
consider similar examination beyond the end task
accuracy, whether this be through our proposed co-
herence measures or other appropriate means. As
we showed, such effort is quite straightforward, and
can drive progress toward more powerful classifiers
that can support human-aligned reasoning.
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Task Model Batch
Size

Learning
Rate

Ep.

CE BERT 32 7.5e-6 8
CE ROBERTA 32 7.5e-6 10
CE ROBERTA+MNLI 32 7.5e-6 8
CE DEBERTA 16 1e-5 10

ART BERT 64 5e-6 9
ART ROBERTA 64 2.5e-6 5
ART DEBERTA 32 1e-6 9

Table 2: Training hyperparameters (batch size, learning
rate, epochs) for probed models.

A Model Training Details

The selected hyperparameters for each model pre-
sented in the paper are listed in Table 2.


