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Abstract
Increasing studies leverage pre-trained lan-
guage models and meta-learning frameworks
to solve few-shot text classification problems.
Most of the current studies focus on building
a meta-learner from the information of input
texts but ignore abundant semantic informa-
tion beneath class labels. In this work, we
show that class-label information can be uti-
lized for extracting more discriminative fea-
ture representation of the input text from a pre-
trained language model like BERT, and can
achieve a performance boost when the sam-
ples are scarce. Building on top of this dis-
covery, we propose a framework called Label-
semantic augmented meta-learner (LaSAML)
to make full use of label semantics. We sys-
tematically investigate various factors in this
framework and show that it can be plugged
into the existing few-shot text classification
system. Through extensive experiments, we
demonstrate that the few-shot text classifica-
tion system upgraded by LaSAML can lead to
significant performance improvement over its
original counterparts.

1 Introduction

The remarkable capability of quickly learning new
concepts from a few training samples is one of the
advantages of the human learning system over the
current machine learning system. Motivated by this
gap, research in few-shot learning has received in-
creasing attention in the past decade. Meta-learning
(Vinyals et al., 2016; Snell et al., 2017; Finn et al.,
2017), as the dominant methodology in few-shot
learning, tackles the problem by learning a map-
ping function from a few support samples to a
classifier through a meta-training dataset. Most
existing meta-learning systems (Snell et al., 2017;
Sung et al., 2018) were developed or at least evalu-
ated in the field of computer vision. More recently,
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Figure 1: The example of fine-grained intent queries
from two domains in Clinc150 dataset. Class 1 and
Class 2 refer to PAY BILL and BILL DUE. Class 3
and Class 4 represent TRAVEL SUGGESTION and
TRAVEL ALERT.

few-shot learning has been introduced to the NLP
field and in particular, text classification (Yu et al.,
2018; Geng et al., 2019), as it is the fundamental
task in natural language understanding. In parallel
to few-shot learning, pre-trained language models
(PLMs) (Devlin et al., 2019; Radford et al., 2019)
have revolutionized the NLP fields and show strong
evidence of being able to perform well in low data
regime when transferred to downstream tasks.

Despite the impressive progress of meta-learning
and PLMs, however, most existing few-shot clas-
sification systems (Geng et al., 2019; Bao et al.,
2020) ignore an important information source —
semantic of class labels. When the number of train-
ing samples is limited, merely using the input texts
per class can lead to ambiguity in interpreting the
definition of class. Considering the two groups of
examples in Figure 1 which shows four samples
belonging to different intent classes, even humans
cannot fully understand the semantic meaning of
those samples if the definition of labels are not
given. For example, it is hard to tell if class 1 and
class 2 are about the type of bill — water or gas, or
class 3 and class 4 are about the destination of the
travel — USA or Germany. However, this ambigu-
ity can be easily resolved if the class definition or
simply the class name is provided.



2774

Just as understanding class names can help hu-
mans to interpret sentences of a given class, we
made an interesting observation that the BERT will
extract more discriminative features if we append
the class name to the input sentence, and it can
boost the classification performance in low-shot
scenarios. Motivated by the above observations,
this work explores how to better leverage the se-
mantic information beneath class names for few-
shot learning. Our key idea is to use meta-learning
to further strengthen the guidance of class-label
semantics for few-shot classification. Specifically,
we use meta-learning to encourage the features ex-
tracted from class-name-appended samples to be
more class-relevant and compatible to the query
features. Moreover, we systematically study the
issue of how to extract the label-semantic guided
feature representation from the support samples
and how to make the query sample features com-
patible with the meta-learner generated from the
support set. Our research leads to a framework
that can be plugged into the existing few-shot meta-
learner and we call our method Label-semantic
Augmented Meta-Learner (LaSAML). To demon-
strate the power of LaSAML, we use LaSAML to
upgrade the Prototypical Network and creates a
new method called LaSAML-PN. By conducting
the extensive experimental studies, we show that
LaSAML-PN achieves excellent few-shot learning
performance and LaSAML upgraded meta-learning
obtains superior performance over its original coun-
terpart. Our code has been released at: https:

//github.com/luoqiaoyang/ACL2021-LaSAML.

2 Related work

This section discusses the related work from three
aspects: few-shot learning, few-shot text classifica-
tion, and low-shot learning with label information.
Few-Shot learning Meta-learning approaches
have made substantial progress with few-shot learn-
ing (FSL) tasks. The focus of the current meta-
learning framework is how to construct the meta-
learner. For examples, a meta-learner could be
constructed by learning a metric between samples
and classes(Koch et al., 2015; Vinyals et al., 2016;
Snell et al., 2017; Sung et al., 2018), based on a
differentiable learning process (Bao et al., 2020),
or based on a few-shot gradient update (Mishra
et al., 2018; Finn et al., 2017). A complete re-
view of meta-learning is beyond the scope of this
paper, and we refer readers to the recent survey

(Hospedales et al., 2020).

Few-shot text classification Few-shot text clas-
sification (FSTC) has also gained increasing at-
tention in recent years. ROBUSTTC-FSL (Yu
et al., 2018) uses an adaptive metric learning ap-
proach to adaptively select an optimal distance met-
ric for different tasks. Induction Network (Geng
et al., 2019) utilizes the dynamic routing algorithm
(Sabour et al., 2017) to learn a generalized class-
wise representation. Pre-trained language models
have also been applied to few-shot text classifica-
tion. LEOPARD (Bansal et al., 2020) uses BERT
(Devlin et al., 2019) with optimization-based meta-
learning framework to achieve good performance
on diverse NLP classification tasks. More recently,
GPT-3 (Brown et al., 2020) shows that the language
model itself can be used to perform few-shot text
classification without using meta-learning. Mean-
while, another recent work (Bao et al., 2020) points
out meta-learning for text classification may have
different characteristics to the cases in computer
vision. They propose to use distributional signa-
tures to enhance the generalization capability of
meta-learner. Our method is still a meta-learning-
based few-shot text classification method. The key
contribution of our work is the discovery that using
label information together with BERT can lead to
significantly better generalization performance.

Using label information for text classification
An increasing number of recent works have real-
ized the value of label semantics. The matching
between label information and text can naturally
lead to zero-shot learning. For example, CDSSM
(Chen et al., 2016) explores zero-shot intent clas-
sifications based on class names. Prompt-based
strategies (Puri and Catanzaro, 2019; Schick and
Schütze, 2020) have been developed to implicitly
match text against class names. In the context of
few-shot learning, (Hou et al., 2020) incorporate
label semantics into the TapNet (Yoon et al., 2019)
for few-shot slot tagging tasks. Different from the
above works, this paper explores both pre-trained
language models and label semantics for few-shot
learning. We only require the name of classes rather
than manually constructed prompts or templates
to convey label semantics. TARS (Halder et al.,
2020) also leverages pre-trained language models
and label semantics based on binary text classifi-
cation. However, our method further strengthens
generalization ability via meta-learning framework
especially in cross-domain and fine-grained cases.

https://github.com/luoqiaoyang/ACL2021-LaSAML
https://github.com/luoqiaoyang/ACL2021-LaSAML
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Figure 2: The main framework of LaSAML.This graph gives an example on how LaSAML process a 3-way 2-shot
few-shot task. All support samples append with the corresponding class name to format as ”[CLS] + Sentence +
[SEP] + Label + [SEP]”. The query data can be one of three forms: 1 remains original form while 2 and 3
append all three class names. 1 and 2 use BERT emebeddings from [CLS] token, 3 uses all label embeddings.

Appending Word
Number of training samples per class

5 10
None 0.6425 0.7324

class name 0.7437 0.7925

Table 1: Results of fine-tuning BERT with only 5 or 10
labeled data per class on the AGNews dataset. None:
the standard input format for the BERT classifier, class
name: appending the respective class names for each
training sample.

3 Our method

3.1 The value of label information in the low
data regime

As described in the introduction, label information
is essential for human to accurately interpret the
meaning conveyed in the limited number of train-
ing samples. In this section, we demonstrate that
label information is also useful for extracting dis-
criminative features from a pre-trained language
model 1. More specifically, we consider the follow-
ing modification to input of BERT for text classi-
fication: we append the corresponding class name
after each training sentence (for which we know
the ground-truth classes) and a [SEP] token. In
other words, we use the following input format

1Throughout our experiments, we use BERT (Devlin et al.,
2019) as the PLM unless specified otherwise.

“[CLS] sentence [SEP] class name [SEP]” rather
than “[CLS] sentence [SEP]” as the common prac-
tice of using BERT for text classification. Then we
extract embeddings from the [CLS] token to train
a linear classifier. The reason of appending “class
name [SEP]” is to mimic the scenario of the next
sentence prediction (NSP) task for training BERT.
To perform well in the NSP task, BERT needs to
extract information that are most predictive for the
next sentence from the first sentence. In our case,
we replace the next sentence with the class name
and consequently, we expect that BERT can ex-
tract information that is relevant to the class name
from the input sentence. We call this method label-
semantic augmented feature extraction hereafter.

From the experimental results are shown in Ta-
ble 1, we can clearly see that the classifier trained
from label-semantic augmented feature extraction
achieves better performance than the baseline ap-
proach. When only five samples are used per class,
the improvement can be as significant as 10%.

From this motivating experiment, we clearly see
the potential of incorporating class-label informa-
tion. To further strengthen BERT’s capability of
leveraging class-label semantic information, we
incorporate the above idea into the meta-learning
framework, lending itself to a new meta-learning
framework termed label-semantic augmented meta-
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learner (LaSAML). We expect that through fine-
tuning a PLM by the meta-learning process, the
network can find an optimal way of building meta-
classifiers with the guidance of class-labels.

3.2 The general framework of the
label-semantic augmented meta-leaner

We first present the proposed LaSAML in its gen-
eral form and then dive into more details of this
framework. Formally, we consider the following
problem setting. Our aim is to build a meta-learner
which can convert a set of support samples, denoted
as Xs = {xs, ys, ts}, into a classifier φ(·;Xs),
where xs, ys and ts denote the input text, class
label, and the lexical definition of the class, i.e.,
the class name, respectively 2 Applying φ(·;Xs) to
test data, i.e., query data xq, we could obtain the
predicted class ŷq through φ(xq;Xs). The meta-
learner is trained from the meta-training set, from
which one can randomly construct a support set
XC
s = {xcs, ycs, tcs} and a query set with ground-

truth class name, XC
q = {xcq, ycq} for C-Way K-

shot settings, where c ∈ C. Therefore, the per-
formance of φ(·;XC

s ), classifier generated from
the meta-learner, can be evaluated by comparing
the predicted class against the ground-truth query
label {ycq}. The key difference of traditional meta-
learner and the proposed LaSAML is that the lex-
ical definition of class name {tcs} will be used for
building the meta-learner.

In particular, we consider the meta-learner that
can be written in the following form:

{wc} = ψ(f({xcs}), {ycs}) c = 1, · · · , C
qc = m(g(xq);wc), ŷ = argmax

c
qc, (1)

where f and g denotes the feature extractors which
convert the input text to a feature vector. For many
meta-learning approaches, f = g. ψ is a mapping
function to map the support set data to a set of
class vectors, one for each class. Then the classifier
is defined by a function m(·, ·) that measures the
compatibility, qc, between a query sample xq and
the class vector wc. The class with highest qc is
the predicted class.

The above formulation encompasses a wide
range of meta-learning approaches. For example,
for Prototypical network (Snell et al., 2017), wc

is the c-th class mean vector calculated from the
2In our following discussion, we slightly relax the distinc-

tion between “class label”, “class name” and “class tag” and
use them exchangeably when no confusion is caused.

Figure 3: This graph shows how we extract support
sample features from various positions. GAP refers to
the global average pooling operation.

feature extractor and m(·, ·) is simply a negative
Euclidean distance between g(xq) and wc.

The proposed LaSAML introduces label-
semantic guidance to f(·) and g(·). In other words,
the feature extractors f and g may take the class
name as an additional input. Due to that the avail-
ability of class name information will be different
for support set samples and query set samples, i.e.,
we know the ground-truth class name for support
set samples but not for query samples, we may
choose different ways of incorporating label in-
formation into the feature extractor, resulting in
different implementation of f and g.

3.3 Incorporating label information into
feature extractors

This subsection discusses various options of incor-
porating label information into f and g. We show
the possible configurations in Figure 3. For the fea-
ture extractor of the support set, f , we append the
corresponding ground-truth class name to each sen-
tence. Then we have different options of extracting
sentence feature representations. In our study, we
consider extracting sentence features from [CLS]
token, the global average pooling (GAP) of embed-
dings of sentence tokens, GAP of embeddings of
the class name (since a class name may contain
multiple tokens), and the average of them.

For the feature extractor of the query set, g. We
consider three cases. First, the most straightfor-
ward way is not appending anything since we do
not know the ground-truth class name for query
samples. Second, we can append all class names,
as shown in Figure 2. Finally, we can append all
class names but extract C features from the cor-
responding class name, one for each class. Then
the c-th feature will be compared against the c-th
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class vector and calculate the matching score with
m. The class corresponding to the highest match-
ing score will be the prediction. This scheme is
visualized in Figure 2 option 3 for query. Formally,
this process can be written as:

ŷq = argmax
c

m(g(xq, tc), wc), (2)

where g(xq, tc) denote the feature extracted from
class name token tc.

We will leave the detailed comparison results
and discussion of those schemes to Section 4.2 and
Section 4.3. Here, we report our major discovery.
(1) For supporting set samples, extracting sentence
features from different positions leads to similar
performance. Extracting features from ”[CLS]”
and ”[CLS]+Tag” in general is slightly better than
other options. (2) For query samples, without ap-
pending all class-label names leads to the overall
best performance for our best performed method.
In the following, we by default consider the set-
ting of extracting features from ”[CLS]” and not
appending class names to a query sample unless
otherwise specified.

3.4 Upgrade existing meta-learner with
LaSAML

The proposed LaSAML can be incorporated into a
variety of existing meta-learning frameworks. In
our study, we mainly consider Prototypical Net-
work (Snell et al., 2017) as the meta-learning frame-
work and upgrade it with LaSAML.

The Prototypical Network (Snell et al., 2017) is
a metric-based meta-learning framework, which
calculates the class vector by averaging the same-
class features extracted from the support set. In its
LaSAML-upgraded version (denoted as LaSAML-
PN), we calculate the class vector wc by

wc =
1

|X c
s |

∑
(xc

s,t
c
s)∈X c

s

f(xcs, t
c
s), (3)

where f(xcs, t
c
s) indicates the feature extracted by

incorporating class name information.
Then, we make the decision by comparing the

feature extracted from a query sample against
{wc}:

P (c|xq) =
exp(−d(g(xcq),wc))∑

c′∈C exp(−d(g(xcq),wc′))
(4)

where d(·, ·) is the squared Euclidean distance.

4 Experimental results

In this section, we conduct experiments to evaluate
the performance of LaSAML. We first introduce
our experimental setting. Then, we present the
main results by comparing LaSAML against vari-
ous existing few-shot text classification approaches.
Finally, we provide ablation studies to investigate
multiple factors in the proposed method.

4.1 Experimental Setting

4.1.1 Datasets
Three text classification datasets are used in our
experiment.
HuffPost is a dataset including a wide range of
news topics. The dataset consists of 36900 news
headline samples and 900 samples for each class.
Following the settings from (Bao et al., 2020), we
use the same 20/5/16 classes for training, valida-
tion, and testing, respectively, for a fair compari-
son. Due to the limited number of classes, we only
consider the 5-way 1-shot and 5-way 5-shot text
classification tasks in this dataset.
Banking77 published by (Casanueva et al., 2020)
is a dataset for intent classification tasks. The
dataset covers 13,083 fine-grained intents from 77
classes in the banking domain. We construct the
few-shot tasks in 10-way 1-shot, 10-way 5-shot,
15-way 1-shot, and 15-way 5-short. The dataset
is partitioned into a training, a validation, and a
testing dataset. 30, 15, and 32 classes are sampled
for each partition3.
Clinc150 is a cross-domain intent classification
dataset which was originally proposed in (Larson
et al., 2019). It provides 22,500 in-scope queries
and 150 intent classes from 10 domains. Each do-
main contains 15 intent classes, and there is no
overlap between those classes. We use this dataset
to evaluate the performance of meta-learner under
domain shift. We split the datasets into 4/1/5 do-
mains for training, validation, and testing.

4.1.2 Comparing methods
We compare the proposed method against sev-
eral commonly used few-shot learning approaches,
which have shown promising results in both com-
puter vision and natural language processing fields.
For all the compared methods expect distributional
signature (Bao et al., 2020) which shows better per-
formance without BERT, we re-implement them

3We released the partition of Banking77 and Clinc150
along with our code.
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Models
HuffPost Banking77 Clinc150 (cross domain)

5-way 10-way 15-way 10-way 15-way
1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

BERT+PN* 0.4059 0.5348 0.6305 0.7860 0.5918 0.7412 0.5743 0.7290 0.5231 0.6606
BERT+PN 0.4611 0.6556 0.7622 0.8883 0.7028 0.8582 0.7130 0.8798 0.6303 0.8163
BERT+RN 0.4080 0.5187 0.6388 0.7348 0.5629 0.6457 0.5465 0.6009 0.4654 0.5883
BERT+IN 0.3996 0.5079 0.4872 0.6432 0.4945 0.5527 0.4652 0.5765 0.4172 0.4998

BERT+RRML 0.4078 0.6198 0.7045 0.8780 0.6346 0.8565 0.6272 0.8713 0.5761 0.8076
DS+RRML 0.4134 0.6248 0.5933 0.8371 0.5337 0.7896 0.5556 0.7876 0.5341 0.7969

LaSAML-PN 0.6216 0.7011 0.8278 0.8806 0.7877 0.8443 0.7760 0.8831 0.7248 0.8489

Table 2: Experiment results of 5-way 1-shot and 5-way 5-shot on HuffPost Dataset, 10-way 1-shot, 10-way 5shot,
15-way 1-shot and 15-way 5-shot on Banking77 and Clinc150 (cross domain) datasets. The model BERT+PN*
contains MLP in PN to process BERT embeddings before applying the distance metric.

Support Features

LaSAML-PN LaSAML-RRML
HuffPost Clinc150 HuffPost Clinc150
5-Way 15-Way 5-Way 15-Way

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot
CLS 0.6216 0.7011 0.7248 0.8489 0.6260 0.6808 0.6201 0.8051
Sent 0.6223 0.6713 0.6834 0.8359 0.6095 0.6781 0.5811 0.7342
Tag 0.6264 0.6758 0.6936 0.8199 0.5960 0.6358 0.6470 0.7604

CLS + Sent 0.6250 0.6998 0.6955 0.8303 0.6286 0.6927 0.6160 0.8064
CLS + Tag 0.6325 0.6946 0.7348 0.8275 0.6055 0.627 0.6485 0.7952
Sent + Tag 0.6289 0.6964 0.6974 0.8364 0.609 0.6488 0.6532 0.7738

Weighted All 0.6211 0.7003 0.6996 0.8245 0.6022 0.6448 0.6599 0.7938

Table 3: Ablation study results of extracting support data features from varies positions and its combinations on
HuffPost and Clinc150 (cross domain). According to the results on another ablation study in Table 5, we pick up
different query settings 1 and 2 in Figure 2 for LaSAML-PN and LaSAML-RRML individually.

with the BERT encoder as the feature extractor.
Note that this might lead to different (in most cases
higher) performance than the one originally re-
ported.
Prototypical Network (Snell et al., 2017) is a
metric-based few-shot learning method. Our
LaSAML-PN is an upgraded version of it. We
use two implementations of PN. One extracts fea-
tures from the [CLS] token, and another applies a
multi-layer-perceptron (MLP) for the embedding
of [CLS] token. The latter was used in a recent
study (Bao et al., 2020). We denote the original
implementation of Prototypical Network as PN and
the implementation with an MLP as PN*.
Relation Network (Sung et al., 2018) (RN) does
not directly compare class vector against the query
feature but compare through a relation module
learned during meta-training.
Induction Network (Geng et al., 2019) (IN) in-
tegrates the dynamic routing algorithm into the
relation network to learn the class vectors during
the meta-learning process. The original induction
network uses LSTMs as the encoder. To make a

fair comparison, we replace the encoder with the
BERT encoder in our experiment.
Ridge Regression Meta-Learner (Bertinetto
et al., 2019) (RRML) calculates the class vector
by solving a Ridge regression problem on the sup-
port set. The solution has a closed-form, and thus it
is possible to directly back-propagate training error
to the feature extractor used in the optimization
problem.
Distributional Signature (Bao et al., 2020) (DS)
learns how to use the statistic pattern of tokens to
selectively attend key information of the input text
and build a meta-learner with better generalization
performance. The method in (Bao et al., 2020) can
be applied to a wide variety of meta-learning meth-
ods. In (Bao et al., 2020), the combination with
RRML shows the best performance (DS+RRML).

4.1.3 Implementation Details

In our methods, BERTBASE is employed as the
feature encoder and meta-learner. We construct
100, 100, and 1000 random sampled tasks for each
training, validation, and testing epoch individually.
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Moreover, we use the Adam algorithm (Kingma
and Ba, 2015) as the optimizer. For better train-
ing performance, we set different learning rates for
the BERT encoder and the other modules, that is,
2e−5 for the BERT encoder and 1e−3 for other
modules. Both Relation Network and Induction
Network consist of a relation module, and we set
the dense hidden layer dimension to 50 for the rela-
tion module. We follow other settings of Induction
Network in the original paper (Geng et al., 2019).

4.2 Main results of LaSAML

The main experiment results are displayed in Table
1. From the result, we make the following obser-
vations: (1) The proposed LaSAML-PN achieves
significant performance improvement over the orig-
inal PN, especially on the one-shot classification
setting: on average, the improvement is around 6%
to 16%. With more training data, the gap between
LaSAML-PN and PN becomes smaller: on Bank-
ing77, LaSAML-PN and PN become comparable;
but we can still see 3-5% improvement on Clinc150
and HuffPost. This is understandable because,
with more samples, the class-related text patterns
become more pronounced. However, this might
be data-dependent. In general, if the difference
between classes is more subtle, i.e., fine-grained
classes, more samples might be needed and conse-
quently, the guidance from class name/definition
will be more beneficial. (2) We find that the orig-
inal implementation of the Prototypical network
performs much better than the one used in (Bao
et al., 2020) which employs an additional MLP.
The former achieves even higher performance than
the method proposed in (Bao et al., 2020) (which is
DS+R2D2. Our re-implementation achieves almost
the same performance in (Bao et al., 2020)). (3)
Another surprising finding is that the Relation Net-
work and Induction network do not perform better
than the traditional Prototypical network. From the
above observations, we may conclude that using
modules without prior information of a language
model, e.g., the MLP whose parameters are ran-
domly initialized rather than pre-trained as in the
PLM, leads to poor generalization performance. In
contrast, methods directly fine-tuning parameters
inside a PLM, e.g., PN, RRML, and our methods,
tend to perform better. This observation can some-
how be supported by the argument in (Bao et al.,
2020). In (Bao et al., 2020), it points out that in
NLP, “the lexical features highly informative for

Model
HuffPost Clinc150

5-way 15-way
1-shot 5-shot 1-shot 5-shot

BERT+PN 0.4611 0.6556 0.6303 0.8163
LaSAML-PN 0.6216 0.7011 0.7248 0.8489

BERT+RRML 0.4078 0.6198 0.5761 0.8076
LaSAML-RRML 0.6260 0.6808 0.6201 0.8051

Table 4: Ablation study results for integrating
LaSAML with RRML and testing performance on
HuffPost and Clinc150 (cross domain).

one task may be insignificant for another. ” Thus,
the weight learned from those randomly initialized
modules may overfit the meta-training set and can-
not generalize well to the target task. In (Bao et al.,
2020), the authors suggest a solution by building
a meta-learner with the generalizable statistics of
words. In our study, we find that this solution might
not be stable in all cases. For example, DS+RRML
does not perform well in Banking77 and Clinc150.
Instead, our results suggest an alternative solution:
building the meta-learner by not introducing addi-
tional parameters to BERT parameters, since the
latter is pre-trained from a large corpus and tends
to generalize better across tasks.

4.3 Ablation Study

In this section, We investigate LaSAML in depth by
answering three questions. First, whether LaSAML
is applicable to other meta-learning frameworks.
Second, what is the impact of different ways of
extracting features from BERT for support set sam-
ples? Third, how to leverage class name informa-
tion for query samples? We conduct a serial of
experiments on HuffPost and Clinc150 datasets to
answer those questions.
LaSAML with other meta-learning framework
To further explore the potential of LaSAML, we in-
corporate it into the Ridge Regression Meta-learner
(RRML) (Bertinetto et al., 2019), which is achieved
by simply replacing the feature extractor f and g
with the feature extractors used in LaSAML-PN.
The results are shown in Table4. As seen, using
LaSAML leads to significant improvement in one-
shot cases for the RRML. For five-shot cases, the
improvement gain becomes smaller for Clinic-150
but still significant in HuffPost. This experiment
result suggests that the proposed LaSAML has a
great potential to upgrade a wide variety of meta-
learning approaches.
Comparing support set feature extraction
strategies In LaSAML, the input format of a sup-
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Figure 4: Visualization of BERT attention maps for LaSAML-PN and PN. The darker red color refers to higher
attention weight.

port set sample is “[CLS] sentence [SEP] class
name [SEP]”. As mentioned in Section 3.3, we
may extract sentence features from the last layer
embedding of the [CLS] token, the average embed-
ding of sentence tokens, the embedding (average
embedding) of the class name, and various combi-
nation of them. Table 3 provides the comparison
of the results. From the results, we can see that
no single strategy achieves consistently better per-
formance than the others. Their performance, in
most cases, is also similar. Therefore, we extract
the sentence feature from the last layer embedding
of the [CLS] token for simplicity.
Comparing query feature extraction strategies
In this section, we further investigate the impact of
the input format for query samples. Three configu-
rations, not appending class names and extracting
features from [CLS] (L: None F: CLS), appending
all class names but extracting features from [CLS]
(L: All F: CLS), appending all class names but ex-
tracting features from the respective class (L: All
F: Tag), and make a prediction by using Eq. 2. We
also make our comparison with the LaSAML up-
graded PN, or LaSAML-RRML. The experiment
results are shown in Table 5. From the results, we
can see that the best strategy seems to be method
dependent. Appending all class names leads to
better performance for LaSAML-RRML, but for
LaSAML-PN, the best strategy is not appending
any class names. Another observation is that ex-
tracting features from the respective class tag and
comparing them against the respective class vector
may lead to worse performance. However, extract-
ing features from the respective class tag is capable
of achieving better performance (or comparable
performance on 5-shot classification in Clinc150
dataset) than previous state-of-the-art methods.

5 What has been learned in LaSAML

In this section, we demonstrate what has been
learned by LaSAML-PN. We use an example
in Figure 4 to highlight the difference between
LaSAML-PN and the standard prototypical net-

HuffPost Clinc150
5-way 5-way 15-way 15-way
1-shot 5-shot 1-shot 5-shot

M L F
LaSAML-PN None CLS 0.6216 0.7011 0.7248 0.8489
LaSAML-PN All CLS 0.6291 0.6726 0.6962 0.8423
LaSAML-PN All Tag 0.6365 0.6560 0.6680 0.7877

LaSAML-RRML None CLS 0.6284 0.6631 0.5751 0.7834
LaSAML-RRML All CLS 0.6260 0.6808 0.6201 0.8051
LaSAML-RRML All Tag 0.5814 0.6782 0.5599 0.7897

Table 5: Ablation study results for process query data
in three different ways. M refers to the models includ-
ing: prototypical network, relation network and ridge
regression classifier. L refers to whether query samples
append all class names or none. F refers to the features
used. Here, support data append related class name and
use [CLS] token features.

work. By investigating the attention weight with
respect to the [CLS] token (we average the attention
value across all heads in the last layer of BERT),
we can see that the prototypical network fails to
attend the words relevant to the class. In contrast,
LaSAML-PN successfully attends the relevant key-
words.

6 Conclusion

In this paper, we systematically study the poten-
tial of using class name information for few-shot
text classification tasks. We identify that append-
ing the class name to the sentence as the input to
a BERT encoder can lead to more discriminative
sentence features. By adopting this scheme to meta-
training, we propose a new meta-learning frame-
work called LaSAML. Implementing this frame-
work with the Prototypical network (Snell et al.,
2017), we achieve significant improvement over
the existing few-shot text classification methods.
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