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Abstract

Event detection (ED) aims at detecting event
trigger words in sentences and classifying
them into specific event types. In real-world
applications, ED typically does not have suf-
ficient labelled data, thus can be formulated
as a few-shot learning problem. To tackle
the issue of low sample diversity in few-shot
ED, we propose a novel knowledge-based few-
shot event detection method which uses a
definition-based encoder to introduce external
event knowledge as the knowledge prior of
event types. Furthermore, as external knowl-
edge typically provides limited and imper-
fect coverage of event types, we introduce an
adaptive knowledge-enhanced Bayesian meta-
learning method to dynamically adjust the
knowledge prior of event types. Experiments
show our method consistently and substan-
tially outperforms a number of baselines by at
least 15 absolute F1 points under the same few-
shot settings.

1 Introduction

Event detection is an important task in informa-
tion extraction, aiming at detecting event triggers
from text and then classifying them into event
types (Chen et al., 2015). For example, in “The po-
lice arrested Harry on charges of manslaughter”,
the trigger word is arrested, indicating an “Arrest”
event. Event detection has been widely applied in
Twitter analysis (Zhou et al., 2017), legal case ex-
traction (de Araujo et al., 2017), and financial event
extraction (Zheng et al., 2019), to name a few.

Typical approaches to event detection (Chen
et al., 2015; McClosky et al., 2011; Liu et al., 2019)
generally rely on large-scale annotated datasets for
training. Yet in real-world applications, adequate
labeled data is usually unavailable. Hence, meth-
ods that generalize effectively with small quantities
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Figure 1: A 3-way 3-shot event detection example, in
which the model uses the support set to predict the
event types of query samples.

of labeled samples and adapt quickly to new event
types are highly desirable for event detection.

Various approaches have been proposed to en-
able learning from only a few samples, i.e., few-
shot learning (Finn et al., 2017; Snell et al., 2017;
Zhang et al., 2018a). Yet few-shot event detection
(FSED) has been less studied until recently (Lai
et al., 2020a; Deng et al., 2020). Although these
methods achieve encouraging progress on typical
N -way M -shot setting (Figure 1), the performance
remains unsatisfactory as the diversity of examples
in the support set is usually limited.

Intuitively, introducing high-quality semantic
knowledge, such as FrameNet (Baker et al., 1998),
is a potential solution to the insufficient diversity
issue (Qu et al., 2020; Tong et al., 2020; Liu et al.,
2016, 2020). However, as shown in Figure 2, such
knowledge-enhanced methods also suffer from two
major issues: (1) the incomplete coverage by the
knowledge base and (2) the uncertainty caused by
the inexact alignment between predefined knowl-
edge and diverse applications.

To tackle the above issues, in this paper, we pro-
pose an Adaptive Knowledge-Enhanced Bayesian
Meta-Learning (AKE-BML) framework. More
specifically, (1) we align the event types between
the support set and FrameNet via heuristic rules.1

(2) We propose encoders for encoding the sam-

1For event types that cannot be accurately aligned to
FrameNet, we match the nearest super-ordinate frame for
them.
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Figure 2: An example of FrameNet. Left side: the rela-
tion between frame ‘Chatting’ and its sub-frame. Right
side: the definitions and LUs (Lexical Units) of frame
Chatting and Discussion. The blue words represent the
mentions of arguments in definition. It can be seen that,
in FrameNet, the definition of the sub-frame is similar
to the definition of its super-frame. External knowl-
edge base can provide rich semantic information, yet
the knowledge base is typically incomplete, such as the
missing of a desired frame “online-chat”.

ples and knowledge-base in the same semantic
space. (3) We propose a learnable offset for re-
vising the aligned knowledge representations to
build the knowledge prior distribution for event
types and generate the posterior distribution for
event type prototype representations. (4) In the
prediction phrase, we adopt the learned posterior
distribution for prototype representations to clas-
sify query instances into event types.

We conduct comprehensive experiments on the
aggregated benchmark dataset of few-shot event
detection (Deng et al., 2020). The experimental
results show that our method consistently and sub-
stantially outperforms state-of-the-art methods. In
all sixN -way-M -shot settings, our model achieves
a large F1 superiority of at least 15 absolute points.

2 Related Work

Event Detection. Recent event detection meth-
ods based on neural networks have achieved good
performance (Chen et al., 2015; Sha et al., 2016;
Nguyen et al., 2016; Lou et al., 2021). These
methods use neural networks to construct the con-
text features of candidate trigger words to clas-
sify events. Pre-trained language models such as
BERT (Devlin et al., 2019) have also become an
indispensable component of event detection mod-
els (Yang et al., 2019; Wadden et al., 2019; Shen
et al., 2020). However, neural models rely on large-
scale labeled event datasets and fail to predict the
labels of new event types. A recent study utilized
the basic metric-based few-shot learning method
for event detection (Lai et al., 2020b). Deng et

al. (2020) tackles few-shot learning for event clas-
sification with a dynamic memory network. To
enhance background knowledge, ontology embed-
ding is used in ED (Deng et al., 2021). These
methods have achieved encouraging results in the
few-shot learning setting. However, they do not
address the problem of insufficient sample diver-
sity in the support set. Our method leverages the
knowledge in FrameNet to augment the support set
for event detection.

Few-shot Learning and Meta-learning. Few-
shot learning trains a model with only a few la-
beled samples in a support set and predicts the la-
bels of unlabeled samples in the query set. Various
approaches have been proposed to solve the few-
shot learning problem, which mainly fall into three
categories: (1) metric-based methods (Vinyals
et al., 2016; Snell et al., 2017; Garcia and Bruna,
2012; Sung et al., 2018), (2) optimization-based
methods (Finn et al., 2017; Nichol et al., 2018;
Ravi and Larochelle, 2016), and (3) model-based
methods (Yan et al., 2015; Zhang et al., 2018b;
Sukhbaatar et al., 2015; Zhang et al., 2018a). How-
ever, these methods rely heavily on the support set
and suffer from poor robustness caused by insuffi-
cient sample diversity of the support set.

Bayesian meta-learning (Ravi and Larochelle,
2016; Yoon et al., 2018) can construct the poste-
rior distribution of the prototype vector through
external information outside the support set. The
effectiveness of this method has been shown in the
few-shot relation extraction task (Qu et al., 2020).
It inspires us to solve the problem of insufficient
sample diversity in the task of few-shot event de-
tection by introducing external knowledge. How-
ever, this method ignores the semantic deviation
between knowledge and target types. Specifically,
a knowledge base may provide incomplete cover-
age of target types in a given support set, which
leads to inaccurate matching between a target type
and knowledge.

3 Problem Definition

In this paper, the Few-Shot Event Detection (FSED)
problem is defined as a typical N-way-M-shot prob-
lem. Specifically, a tiny labeled support set S is
provided for model training. S contains N dis-
tinct event types and each event type has only M
labeled samples, where M is typically small (e.g.
M = 5, 10, 15). More precisely, in each FSED task
we are given a small support set S = {(xs, ys)}.
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Let XS = {xs}s∈S represent the samples in the
support set S, i.e. xs = (Is, tts), where Is is the
sentence of the sample xs and tts is the candidate
trigger word of xs. We denote by YS an ordered
list of event types, i.e. YS = {ys}s∈S , where each
ys is the ground-truth event type of sample xs. For
each support set S, we only consider a subset of
event types Ts from the entire set of event types T .
Hence, in the N -way-M -shot setting, |TS | = N
and |XS | = |YS | = N ∗M .

Moreover, we assume an external knowledge
base F that contains a number of frames. Each
frame Ft ∈ F consists of three parts: Ft =
(Dt, At, Lt), where Dt, At and Lt are the defini-
tion, arguments, and linguistic units (LUs) of the
frame respectively. Please see Appendix A for de-
tails of FrameNet.

For each support set S, we are also given a query
set Q composed of some unlabeled samples XQ =
{xq}q∈Q, where xq = (Iq, ttq), Iq is the sentence
of sample xq, and ttq is the candidate trigger word
of xq. Our goal is to learn a neural classifier for
these event types by using the external knowledge
and the support set. We will apply the classifier to
predict the labels of the query samples in Q, i.e.,
YQ = {yq}q∈Q with each yq ∈ TS . We do this by
learning p(YQ|XQ, XS , YS ,F ).

4 Adaptive Knowledge-Enhanced
Bayesian Meta-Learning

We now present our adaptive knowledge-enhanced
few-shot event detection approach. The overall
structure of our method is shown in Figure 3. Our
method represents each event type t with a proto-
type vector vt, which is then used to classify the
query sentences. We use VTS = {vt}t∈TS to rep-
resent the collection of prototype vectors for all
event types in TS . Then the conditional distribu-
tion p(YQ|XQ, XS , YS ,F ) can be represented as:∫

p(YQ|XQ, VTS )p(VTS |XS , YS ,F ) dVTS . (1)

To calculate Eq. 1, we first introduce the sample
encoder and knowledge encoder to give the vector
representations of samples and the knowledge of
event types. Then we use the sample representa-
tions and knowledge representation to construct the
adaptive knowledge-enhanced posterior distribu-
tion p(VTS |XS , YS ,F ) of VTS and give the likeli-
hood p(YQ|XQ, VTS ) by VTS and sample represen-
tations. Finally we leverage Monte Carlo sampling

to approximate the posterior distribution and draw
each prototype sample by the stochastic gradient
Langevin dynamics (Welling and Teh, 2011) to op-
timize model parameters in an end-to-end fashion.
We now explain the framework in more details.

4.1 Sample and Knowledge Encoder

The purpose of encoding knowledge is to make up
for the lack of diversity and coverage of the support
set. Thus we align the knowledge and sample en-
coding and map them into the same semantic space.
Intuitively, trigger and arguments are the main fac-
tors for entity detection. Hence, to align the trigger
and arguments from samples and external knowl-
edge, we design two encoders for the knowledge
and samples, generating the final knowledge en-
coding ht and the sample encoding E(x) with the
same dimensions.
Knowledge Encoder. Given a knowledge frame
Ft = {Dt, At, Lt} for the event type t, we encode
it into a real-valued vector to represent the seman-
tics of t. As shown in Figure 2, for a frame Ft,
the linguistic units Lt can represent the features of
the trigger words, the arguments At can represent
the context of the trigger words in samples, and
Dt describes the semantic relationship between At
and t.

For each event type t, the proposed knowledge
encoder uses BERT to generate the text encoding
EDt and ELt from the description Dt and the LUs
Lt respectively. Moreover, the arguments encoding
EAt is a sequence of e(i)

At
, i.e., the average token

encoding in the i-th argument mention inDt, which
ensures that the encoding of At fully contains the
semantics of the event type t. Then, as shown
in Figure 3, the trigger word prior encoding and
argument prior encoding are generated by follows:
• Trigger word prior encoding. We use attention

to get the weighted sum of words in Lt as the
trigger word prior encoding e∗Lt

. The query of
the attention is EDt , key and value are both ELt .

• Argument prior encoding. An attention mech-
anism is used to aggregate the arguments infor-
mation into e∗At

, where the query of the attention
is e∗Lt

, key and value are both EAt .
Finally, we concatenate the trigger word prior

encoding e∗Lt
and the argument prior encoding e∗At

,
and use a feed forward network fh to generate the
knowledge encoding vector ht of event type t,

ht = fh
([

e∗At
; e∗Lt

])
. (2)
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Figure 3: Framework overview. Our method combines both the external knowledge and the support set into a prior
distribution of event prototype. We customize two encoders to generate sample representations and knowledge
representations. Then we utilize the support set to generate a learnable offset for revising the aligned knowledge
representations to generate the prior distribution for prototype representations. Finally, we use Monte-Carlo sam-
pling and stochastic gradient Langevin dynamics to draw samples of prototypes for prediction.

Sample encoder. We follow the same strategy
to build a sample encoder. Given each sample
x = (I, tt), i.e., a candidate trigger word tt and its
context I , we first utilize BERT to encode x and
select the encoding of tt as the trigger representa-
tion e∗tt. As arguments are not explicitly given in
x, we use an attention mechanism to aggregate the
implicit argument information for current trigger
tt, in which the query is e∗tt, key and value are both
token encoding generate from I . We denote the
argument encoding as e∗a.

Finally, we concatenate the trigger word encod-
ing e∗tt and the argument encoding e∗a, and use a
feed forward network fE to generate the sample
encoding vector E(x),

E(x) = fE ([e∗a; e∗tt]) . (3)

4.2 Adaptive Knowledge-Enhanced Posterior
The posterior distribution can be factorized into a
prior distribution (given the event knowledge) and
a likelihood on the support set (Qu et al., 2020) as,

p(VTS |XS , YS ,F ) ∝ p(YS |XS ,VTS )p(VTS |F ),
(4)

where p(YS |XS ,VTS ) is the likelihood on the sup-
port set, and p(VTS |F ) is the adaptive knowledge-
based prior for the prototype vectors. We describe
the details of these two components as follows:
Adaptive Knowledge-based Prior. As we dis-
cussed in Section 1, an event type t may not have
an exact/perfect match in the knowledge base F .
In such situations, we resort to finding the super-
ordinate frame of t, which is semantically clos-
est to t. As shown in Figures 1 and 2, where

the event type t in the support set ‘online-chat’ is
matched against the knowledge prior Ft ‘Chatting’
in FrameNet, a super-ordinate frame. In order to
enable the knowledge encoding to accurately re-
flect the characteristics of the corresponding event
type, we add a learnable knowledge offset to ht.
We denote the knowledge offset between the event
type t and its knowledge encoding ht by ∆ht. Re-
call that the knowledge in ht is encoded from the
exactly-matched frame or the super-ordinate frame.
∆ht is defined as follows:

∆ht = λt � (mt − ht), (5)
where � is the element-wise product, and mt is the
mean of the encodings E(x) of all the samples x
in the support set. λt ∈ [0, 1]|ht| is the adaptive
weight (gate), which is obtained from the sample
encoding mt and the knowledge encoding ht:

λt = σ(Wλ [mt; mt − ht; ht] + bλ), (6)
where σ is the nonlinear sigmoid function, and Wλ

and bλ are trainable parameters.
Putting it altogether, the knowledge prior distri-

bution has the following form,
p(VTS |F ) =

∏
t∈TS

p(vt|ht,∆ht)

=
∏
t∈TS

N (vt|ht + ∆ht, I),
(7)

where N (vt|ht + ∆ht, I) is multivariate Gaussian
with the mean ht+∆ht and covariance I (the iden-
tity matrix). So, each prototype vector has a prior
distribution containing knowledge from FrameNet
adaptively adjusted according to the support set.
Likelihood. With the given prototype vectors VTs

distributed according to p(VTS |XS , YS ,F ), the
likelihood for support samples is defined as,
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p(YS |XS ,VTS ) =
∏
s∈S

p(ys|xs,VTS ) (8)

p(ys = t|xs,VTS ) :=
exp(E(xs) · vt)∑

t′∈TS exp(E(xs) · vt′)
.

The dot product of the sample encoding E(xq) and
the event type prototype vector vt estimates their
similarity. We use softmax to normalize the result
to the probability of xs belonging to event type t.

4.3 Optimization and Prediction
For prediction, the model computes and maximizes
the log-probability log p(YQ|XQ, XS , YS ,F ).
However, according to Eqn (1), the log-probability
relies on the integration over prototype vectors,
which is difficult to compute. Hence, we estimate
it with Monte Carlo sampling (Qu et al., 2020),

p(YQ|XQ, XS , YS ,F )

= Ep(VTS
|XS ,YS ,F ) [p(YQ|XQ,VTS )]

≈ 1

Ns

Ns∑
i=1

p(YQ|XQ,V
(s)
TS

) (9)

where Ns is the number of samples, and V(s)
TS

is
a sample drawn from the posterior distribution,
i.e. V(s)

TS
∼ p(VTS |XS , YS ,F ). p(YQ|XQ,V

(s)
TS

)
is the likelihood for query samples which has the
same form as Eqn 8. To sample from the posterior,
we use the stochastic gradient Langevin dynam-
ics (Welling and Teh, 2011) with multiple stochas-
tic updates. Formally, we initialize the sample V̂TS

and iteratively update the sample as,

V̂TS ←V̂TS +
√
εz (10)

+
ε

2
∇V̂TS

log p(YS |XS , V̂TS )p(V̂TS |F ),

where z ∼ N (0, I), and ε is a small real num-
ber representing the update step size. The gradi-
ent∇V̂TS

log p(YS |XS , V̂TS )p(V̂TS |F ) in Eqn 10
balances the effect of the knowledge and the sup-
port set on the prototype vector. Please see Ap-
pendix B for derivation details and intuitive expla-
nations of its influence.

The Langevin dynamics requires a burn-in pe-
riod. To speed up the convergence, we follow the
previous method (Qu et al., 2020) and initialize the
sample as follows,

V̂TS ← {v̂t}t∈TS
v̂t ← mt + ht + ∆ht −m,

(11)

where m is the mean encoding of all the samples
in the support set.

Algorithm 1: Training Process
Input: Event type set T
Input: Event knowledge from FrameNet

1 while not convergence do
2 Sample a subset TS from T to build a FSED task
3 Sample disjoint support and query sets for TS

4 Compute the sample encodings (Eq. 3)
5 Compute the {mt}t∈TS for each t ∈ TS

6 Compute knowledge encodings {ht}t∈TS (Eq. 2)
7 Compute knowledge offset {∆ht}t∈TS (Eq. 5)
8 Initialize prototype vectors {Vs

TS
}Ns
s=1 (Eq. 11)

9 Update prototype vectors iteratively (Eq. 12)
10 Compute and maximize log-likelihood (Eq. 9)

After obtaining prototype samples from the pos-
terior, log p(YQ|XQ, XS , YS ,F ) is end-to-end ap-
proximated according to Eqn (9). During the train-
ing stage, we optimize the log-likelihood of the
query set and update the model parameters by gra-
dient descent. In the prediction stage, the log-
likelihood will determine the probability that a
query sample belongs to each event type. The train-
ing process is shown in Algorithm 1.

5 Experiments

We conduct evaluation with the following goals:
(1) to compare our adaptive knowledge-enhanced
Bayesian meta-learning method with existing few-
shot event detection methods and few-shot learning
baseline methods; (2) to assess the effectiveness
of introducing external knowledge in different N -
way-M -shot settings; and (3) to provide empirical
evidence that our adaptive knowledge offset can
flexibly adjust the impact of the support set and
prior knowledge on event prototypes, making the
model more accurate and generalizable.

5.1 Experimental Settings

We evaluate our method on an aggregated few-shot
event detection dataset FewEvent2 (Deng et al.,
2020). FewEvent combines two currently widely-
used event detection datasets, the ACE-2005 cor-
pus3 and the TAC-KBP-2017 Event Track Data4,
and adds external event types in specific domains
including music, film, sports and education (Deng
et al., 2020). As a result, FewEvent contains 70,852
samples for 19 event types that are further divided
into 100 event subtypes.

In order to match the few-shot settings , we use

2https://github.com/231sm/Low_
Resource_KBP

3http://projects.ldc.upenn.edu/ace/
4https://tac.nist.gov/2017/KBP/Event/

index.html

https://github.com/231sm/Low_Resource_KBP
https://github.com/231sm/Low_Resource_KBP
http://projects.ldc.upenn.edu/ace/
https://tac.nist.gov/2017/KBP/Event/index.html
https://tac.nist.gov/2017/KBP/Event/index.html
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88 event types covering a total of 15,681 samples
to construct experimental data. 68 event types are
selected for training, 10 for validation, and the rest
10 for testing. Note that there are no overlapping
types between the training, validation and testing
sets. In order to obtain a convincing result, we con-
ducted 5 random divisions of training and testing
for all event types, and the experimental results are
averaged as the final result.

The comparisons with our AKE-BML are per-
formed in two aspects, the sample encoder and the
few-shot learner. We combine different encoders
and few-shot learners to obtain different base-
line models. We consider four sample encoders
including CNN (Kim, 2014), Bi-LSTM (Huang
et al., 2015), DMN (Kumar et al., 2016) and our
trigger-attention-based sample encoder TA. For
few-shot learners, we consider Matching Networks
(MN) (Vinyals et al., 2016) and Prototypical Net-
works (PN) (Snell et al., 2017). We also compare to
the SOTA few-shot event detection method DMN-
MPN (Deng et al., 2020), which uses a dynamic
memory network (DMN) as the sample encoder
and a memory-based prototypical network as the
few-shot learner. In addition, in order to verify the
effectiveness of our proposed method, we perform
an ablation study on our model, which evaluate
the model without external knowledge and without
dynamic knowledge adaptation.

As a result, the following methods are compared
in our experiments:

• AKE-BML, our adaptive knowledge-enhanced
Bayesian meta-learning method which uses TA
encoder as the sample encoder.

• KB-BML, a variant of AKE-BML without dy-
namic knowledge adaption.

• TA-BML, a variant of AKE-BML using our TA
encoder but without using external knowledge.

• DMN-MPN, dynamic-memory-based prototypi-
cal network (Deng et al., 2020).

• Encoder+Learner, combinations of various
sample encoders and event type learners (e.g.
CNN+MN and TA+PN).

We use stochastic gradient descent (Bottou,
2012) as the optimizer in training with the learning
rate 1 × 10−5. The sampling times Ns of Monte
Carlo sampling and update step size ε are set to 10
and 0.01 respectively. The update times of stochas-
tic gradient Langevin dynamics M is set to 5. We
use dropout after the sample encoder and the knowl-
edge encoder to avoid over-fitting; the dropout rate

is set to 0.5. We evaluate the performance of event
detection with F1 and Accuracy scores.

5.2 Main Results
As shown in Table 1, we compare methods on F1

and Accuracy scores. We observe the followings:
• Our full model AKE-BML outperforms all other

methods on both Accuracy and F1 scores across
all settings. Compared with the SOTA method
DMN-MPN, AKE-BML achieves a substan-
tial improvement of 15–23 absolute F1 points
in all N -way-M -shot settings. It shows our
adaptive knowledge-enhanced Bayesian meta-
learning method can effectively utilize external
knowledge and adjust it according to the support
set, thus build better prototypes of event types.
Please see Appendix C and D for a detailed
performance analysis over various N -way and
M -shot settings.

• With the sample encoders (Bi-LSTM, CNN,
DMN and TA) fixed, it can be observed that pro-
totypical networks (PN) consistently outperforms
matching networks (MN). DMN-MPN performs
better than PN-based methods, because the dy-
namic memory network can extract key infor-
mation from the support set through multiple
iterations. However, DMN-MPN only considers
the information of a few samples in each sup-
port set, hence suffering from insufficient sample
diversity similar to PN- and MN-based methods.

• TA-BML performs similarly with DMN-MPN
under the settings of N -way-5-shot and N -way-
10-shot, but slightly worse under the N -way-15-
shot setting. One possible explanation is that
when the number of samples in the support set
is larger, MPN can generate higher-quality proto-
types. In addition, the performance of TA-BML
is not as good as KB-BML, which shows the
importance of introducing external knowledge.

• Compared with KB-BML, our full model AKE-
BML can effectively solve the problem of devi-
ation between knowledge and event types, and
generate event prototypes with better general-
ization through knowledge. Compared with TA-
BML, which does not incorporate external knowl-
edge, AKE-BML achieves an even larger perfor-
mance advantage, which further demonstrates the
effectiveness of external knowledge.

5.3 Case Study
We present a case study on the dynamic knowl-
edge adaptation between the support set and the
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Model 5-Way-5-Shot 5-Way-10-Shot 5-Way-15-Shot 10-Way-5-Shot 10-Way-10-Shot 10-Way-15-Shot
F1/Accuracy F1/Accuracy F1/Accuracy F1/Accuracy F1/Accuracy F1/Accuracy

Bi-LSTM+MN§ 58.19/58.48 61.26/61.45 65.55/66.04 46.43/47.62 51.97/52.60 56.27/56.47
CNN+MN§ 59.30/60.04 64.81/65.15 68.35/68.58 44.85/45.80 50.14/50.67 54.13/54.49
DMN+MN§ 66.09/67.18 68.92/69.33 70.88/71.17 52.81/54.12 58.04/58.38 61.63/62.01
TA+MN 66.83/67.55 69.12/69.64 71.13/71.59 53.49/55.47 59.58/60.01 62.41/63.11

Bi-LSTM+PN§ 62.42/62.72 64.65/64.71 68.23/68.39 53.15/53.59 55.87/56.19 60.34/60.87
CNN+PN§ 63.69/64.89 69.64/69.74 70.42/70.52 51.12/51.51 53.80/54.01 57.89/58.28
DMN+PN§ 72.08/72.43 72.47/73.38 73.91/74.68 59.95/60.07 61.48/62.13 65.84/66.31
TA+PN 73.66/73.92 73.81/74.63 75.69/76.31 61.25/61.88 63.89/64.31 66.21/67.59

DMN-MPN§ 73.59/73.86 73.99/74.82 76.03/76.57 60.98/62.44 63.69/64.43 67.84/68.35

TA-BML 73.37/73.59 74.02/74.63 75.52/75.83 61.43/62.59 63.28/63.96 66.27/67.49
KB-BML 74.63/75.07 75.06/75.63 80.69/81.12 65.99/66.82 67.47/68.08 73.89/74.06
AKE-BML 88.99/89.36 90.10/91.48 91.40/92.34 84.55/84.94 86.03/87.73 87.13/87.45

Table 1: Accuracy and F1 scores of all compared methods. § denotes the results that are directly taken from the
original paper (Deng et al., 2020), due to the unavailability of the source code.

corresponding event knowledge to demonstrate our
model’s ability to learn robust event prototypes.

5.3.1 Predictions for Specific Cases
We select three event types as target categories to
illustrate the contributions of each main component
of our model. The event types are Music.Compose,
Music.Sing and Film.Film Productution. The
sample contexts of Music.Compose and Mu-
sic.Sing are similar, while Music.Compose and
Film.Film Productution share the same frame,
which is Behind the scenes.

As shown in Table 2, only AKE-BML correctly
predicts on all samples. TA-BML, the model
without introducing knowledge, wrongly predicts
the second sample of Music.Compose to be Mu-
sic.Sing, due to their similar contexts. By intro-
ducing knowledge, both KB-BML and AKE-BML
avoid this error, indicating that external knowl-
edge can enrich event information based on the
support set. For KB-BML, as Music.Compose
and Film.Film Productution share the same super-
ordinate frame, the prototype of Music.Compose
cannot distinguish between Music.Compose and
Film.Film Productution, so it wrongly classifies the
third sample as Music.Compose. With our adaptive
knowledge offset, AKE-BML can deal with sam-
ple similarity and knowledge deviation issues at the
same time, thus it correctly classifies all samples.

5.3.2 Visualization of Prototypes
We use Latent Dirichlet Allocation (LDA) (Blei
et al., 2003) to reduce the dimensionality of the
prototypes, sample encodings and prior knowl-
edge encodings. Figure 4 visualizes five event
type prototypes (large solid shapes), their aligned
frames (large solid shapes with circle outlines) in
FrameNet and some corresponding samples (small

Figure 4: Visualization of event prototypes, prior
knowledge, and event samples learned by AKE-BML
in the 5-way-5-shot setting. The large, solid shapes de-
note event prototypes, the large shapes with circle out-
lines denote the prior knowledge, and the small shapes
denote samples. Samples are marked by the color of
their corresponding event types. The arrows indicate
the adaption of prior knowledge to the prototype. Note
that Music.Compose and Film.Film-Production share
the same frame Behind the scenes.

solid shapes). Each event type and its samples are
coded with the same color.

In general, the samples and prototypes belonging
to one event type are close in the space and different
event types are far away from each other. Prior
knowledge is distributed in different places in the
space, which roughly determines the distribution
of event prototypes. For example, the samples of
Life.Pregnancy and Sports.Fair-Play are close to
their respective event prototypes. Meanwhile, the
distances between their prior knowledge is large,
making their prototypes easily distinguishable.

It can also be seen that the event prototypes are
closer to their samples than to the prior knowledge,
which reflects the benefits of our proposed learn-
able knowledge offset. The visualization demon-
strates the effectiveness of introducing external
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Table 2: A case study of three event types. Words in bold indicate candidate trigger words.

Table 3: λt values corresponding to different event types. The larger the λt, the greater the dependence of the
prototype vector on the support set.

knowledge and our adaptive knowledge offset’s
ability to balance the impact of the support set and
prior knowledge on the event prototypes.

5.3.3 λt of Different Event Types

As shown in Formula (5), we use the learnable
parameter λt to generate knowledge offsets. λt
accounts for the deviation of the prior knowledge
(i.e. a frame) from the event type it represents, and
adaptively corrects this deviation using information
of the support set. When the frame corresponding
to the event type accurately expresses its semantics,
the λt value should be small. When the knowl-
edge is the super-ordinate frame of the event type
(i.e., the frame cannot accurately describe the event
semantics), the λt value should be large, so that
the support set can be used to modify the prior
knowledge to ensure that the prototype precisely
represents the current event type.

Table 3 shows four different event types, their
corresponding frames and λt values. The λt of Con-
flict.Attack is a small value 0.132, as the event type
Conflict.Attack closely matches the frame Attack.
The event type Contact.Letter-Communication
matches the frame Communication. Communica-
tion does not contain the semantics of ”by writ-
ing letters”, but the core semantics is the same
as Contact.Letter-Communication. Therefore, λt
is small, at 0.228, which is still larger than the
λt of Conflict.Attack. The event types Film.Film-
Production and Music.Compose share the same
super-ordinate frame Behind the scenes as prior

knowledge, but the semantics of Behind the scenes
is too abstract for Film.Film-Production and Mu-
sic.Compose. Thus, it can be seen that the λt values
corresponding to these two event types are rela-
tively large: 0.386 for Film.Film-Production and
0.421 for Music.Compose.

The above cases demonstrate that our model is
able to balance the influence of the support set
and the knowledge on event prototypes through
λt, and consequentially obtain highly accurate and
generalizable prototypes.

6 Conclusion

In this paper, we proposed an Adaptive Knowledge-
enhanced Bayesian Meta-Learning (AKE-BML)
method for few-shot event detection. We alleviate
the insufficient sample diversity problem in few-
shot learning by leveraging the external knowledge
base FrameNet to learn prototype representations
for event types. We further tackle the uncertainty
and incompleteness issues in knowledge coverage
with a novel knowledge adaptation mechanism.

The comprehensive experimental results demon-
strate that our proposed method substantially out-
performs state-of-the-art methods, achieving a per-
formance improvement of at least 15 absolute
points of F1. In the future, we plan to extend
our proposed AKE-BML method to the few-shot
event extraction task, which considers both event
detection and argument extraction. We also plan to
explore the zero-shot and incremental event extrac-
tion scenarios.
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Appendix

A FrameNet

An important problem in the few-shot event de-
tection task is the insufficient diversity of support
set samples. There are only a few labeled samples
in the support set, which results in the model un-
able to construct high-quality prototype features of
event types. To address this problem, we introduce
the FrameNet (Baker et al., 1998) as an external
knowledge base of event types. FrameNet is a lin-
guistic resource storing information about lexical
and predicate-argument semantics. Each frame in
FrameNet can be taken as a semantic frame of an
event type (Liu et al., 2016), which can be used
as background knowledge for event types to assist
event detection (Liu et al., 2016; Fillmore et al.,
2006). Figure 2 shows an example frame defining
Attack. We can see the arguments involved in an
Attack event and their roles. The linguistic units
(LUs) of the frame Attack are the possible trigger
words for the corresponding event. The frame is
an important complementary source of knowledge
to the support set. We match a frame in FrameNet
to each event type, based on the event name, as its
knowledge. In practice, FrameNet does not pro-
vide complete coverage of all event types, nor does
every event type have an exact frame matched in
FrameNet. For event types that cannot be exactly
matched, we assign the frame corresponding to
their super-ordinate event. For example, there is
no corresponding frame for Contact.Online-Chat,
so we assign it to the frame Chatting, which corre-
sponds to the event type Contact.Chat.

B Gradient of posterior distribution

In order to show the change of the prototype vec-
tor after adding the knowledge shift, the gradient
∇V̂TS

log p(YS |XS , V̂TS )p(V̂TS |F ) in iteration

V̂TS ← V̂TS +
√
εz (12)

+
ε

2
∇V̂TS

log p(YS |XS , V̂TS )p(V̂TS |F ),

is expanded. For ease of explanation, we only cal-
culate the gradient of the prototype vector v̂t. We
denote the gradient of the original posterior distri-
bution as gov̂t , the gradient of the knowledge-shifted
posterior distribution as gsv̂t . We first calculate gov̂t :

gov̂t =∇v̂t log p(YS |XS , V̂TS )po(V̂TS |F )

=∇v̂t log p(YS |XS , V̂TS ) + log po(V̂TS |F )

=∇v̂t log p(YS |XS , V̂TS )+

∇v̂t log po(V̂TS |F )

=∇v̂t log
∏

s∈S,ys=t

p(ys|xs, v̂t)+

∇v̂t log po(v̂t|F )

=go,lv̂t + go,pv̂t ,
(13)

where go,lv̂t = ∇v̂t log
∏
s∈S,ys=t p(ys|xs, v̂t) and

go,pv̂t = ∇v̂t log po(v̂t|F ). The prior distribution is

po(v̂t|F ) = N (vt|ht, I)

= (2π)−
d
2 e−

1
2

(v̂t−ht)
2

,
(14)

the gradient of the logarithm of prior distribution
to v̂t is:

go,pv̂t =
(

log (2π)−
d
2

)
(ht − v̂t)

= C (ht − v̂t) ,
(15)

where C = log (2π)−
d
2 is a constant, d is the di-

mension of prototype. The gradient of the log-
likelihood on support set is

log
∏

s∈S,ys=t

p(ys|xs, v̂t)

= log
∏

s∈S,ys=t

exp(E(xs) · v̂t)∑
t′∈TS exp(E(xs) · v̂t′)

=
∑

s∈S,ys=t

log
exp(E(xs) · v̂t)∑

t′∈TS exp(E(xs) · v̂t′)
.

(16)

The gradient of the log-likelihood to v̂t is

go,lv̂t =∇v̂t

∑
s∈S,ys=t

log
exp (E(xs) · v̂t)∑

t′∈TS exp ((E(xs) · v̂t′)

=
∑

s∈S,ys=t

∇v̂t log
exp(E(xs) · v̂t)∑

t′∈TS exp(E(xs) · v̂t′)

=
∑

s∈S,ys=t

∇v̂t(E(xs) · v̂t)

−∇v̂t log
∑
t′∈TS

exp(E(xs) · v̂t′)

=
∑

s∈S,ys=t

E(xs)−
E(xs)exp(E(xs) · v̂t)∑
t′∈TS exp(E(xs) · v̂t′)

=
∑

s∈S,ys=t

(1− p(t)
s )E(xs),

(17)
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where p(t)
s = p(ys|xs, v̂t) is the probability of cor-

rect classification of sample s in support set. Then
we get

gov̂t =
∑

s∈S,ys=t

(1− p(t)
s )E(xs) + C(ht − v̂t).

(18)
Then we calculate gsv̂t , The only difference between
calculating gsv̂t and gov̂t is gsv̂t use the knowledge-
shifted prior distribution

p(v̂t|F ) = N (vt|ht + ∆ht, I)

= (2π)−
d
2 e−

1
2

(v̂t−ht−∆ht)
2

.
(19)

Same as the original posterior gradient, we have

gsv̂t =∇v̂t log
∏

s∈S,ys=t

p(ys|xs, v̂t)

+∇v̂t log p(v̂t|F )

=gs,lv̂t + gs,pv̂t ,

(20)

where gs,lv̂t = go,lv̂t =
∑

s∈S,ys=t(1 − p
(t)
s )E(xs).

The gradient of the logarithm of knowledge-shifted
prior distribution to v̂t is:

gs,pv̂t =
(

log (2π)−
d
2

)
(ht + ∆ht − v̂t)

= C (ht + λt � (mt − ht)− v̂t)
= C ((1− λt)� ht − v̂t) + Cλt �mt,

(21)
where 1 is a |ht|-dimensional vector, and each ele-
ment of 1 is 1. then we get

gsv̂t =gs,lv̂t + gs,pv̂t

=
∑

s∈S,ys=t

(1− p(t)
s )E(xs)

+ C ((1− λt)� ht − v̂t)
+ Cλt �mt,

(22)

bring mt = 1
M

∑
s∈S,ys=t E(xs) into the above

formula, we get

gsv̂t =
∑

s∈S,ys=t

[
(1− p(t)

s )E(xs) +
Cλt
M
� E(xs)

]
+ C ((1− λt)� ht − v̂t) .

(23)
Note that, when knowledge adaption is not used,

the form of the prior knowledge distribution of the
prototype is as follows,

po(VTS |F ) =
∏
t∈TS

po(vt|ht) =
∏
t∈TS

N (vt|ht, I).

(24)

To intuitively show the influence of the
knowledge-adapted posterior distribution on the
prototype vector, we expand the gradient
∇V̂TS

log p(YS |XS , V̂TS )p(V̂TS |F ) in Eqn 12.
For ease of explanation, we only calculate the gradi-
ent of the prototype vector v̂t. Denote the gradient
of the original posterior distribution without knowl-
edge adaption as gov̂t ,

gov̂t =
∑

s∈S,ys=t

(1−p(t)
s )E(xs)+C(ht− v̂t), (25)

and the gradient of the knowledge-adapted pos-
terior distribution as gsv̂t from Eqn 23.

Comparing Eqn 23 and Eqn 25, it can be seen
that the posterior distribution without knowledge
adaption cannot dynamically balance the influence
of the knowledge and the support set on the proto-
type vector, whereas the knowledge-adapted pos-
terior distribution can adjust their contributions to
the prototype vector through λt. The parameters
in Eqn 6 will be updated by the log-likelihood on
the query set. This allows the model to reasonably
choose the weight of the knowledge and the sup-
port set, and obtain prototype vectors with better
generalization.

C M -shot Evaluation

In this section, we illustrate the effectiveness
of adaptive knowledge-enhanced Bayesian meta-
learning under different M -shot settings, such
as N -way-5-shot, N -way-10-shot and N -way-15-
shot. As shown in Table 1 in the main paper, as
M increases, the performance of all models im-
proves, which shows that increasing the number
of samples in the support set can provide more
pertinent event type-related features. At the same
time, it can be seen that from 15-shot to 5-shot, the
previous methods suffer a significantly larger per-
formance degradation than AKE-BML. This obser-
vation shows our model’s strong robustness against
low sample diversity due to the incorporation of
external knowledge.

The performance of KB-BML is close to that of
DMN-MPN in the case of N -way-5-shot and N -
way-10-shot, and the performance is better in the
case of N -way-15-shot. This can be attributed to
two factors: (1) the introduction of knowledge can
improve the generalization of event prototypes; and
(2) increasing the number of samples can reduce
the impact of the deviation between knowledge and
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Figure 5: N -way (N = 2, . . . , 10) evaluation and fixed
shot numbers. (a) N -way-5-shot. (b) N -way-15-shot.

event types. When the support set is sufficiently
large, the samples in the support set can compen-
sate for the deviation between knowledge and event
types, and the knowledge can also improve the gen-
eralization of the prototype vector. However, when
M is small, the deviation between knowledge and
event types will affect the quality of the prototype
vectors.

AKE-BML can well balance the effects of sam-
ples and knowledge on the event type prototypes.
It can be seen that when M is small, the perfor-
mance of AKE-BML does not decline as quickly
as other models, which also proves the effective-
ness of knowledge in dealing with the problem of
insufficient diversity of the support set. At the same
time, compared with KB-BML, our adaptive knowl-
edge offset can effectively use the information in
the support set to correct the knowledge deviation.

D N -Way Evaluation

Figure 5 also illustrates model performance with re-
spect to different way values (i.e. N ), while fixing
the shot values. It can be seen from the figure that
when N increases, the performance of previous
models decreases faster than AKE-BML, which
shows that those models, only relying on the sup-
port set, cannot generate more recognizable event
prototypes. The performance of KB-BML also
declines significantly when N increases. This is
because many event types can only be partially
aligned in FrameNet, to its super-ordinate frame,
which causes the event prototypes to be indistin-
guishable to similar event types.

On the contrary, the performance of AKE-
BML does not decrease significantly when N in-
creases, which shows that our adaptive knowledge-
enhanced Bayesian meta-learning method can en-
hance the distinguishability of prototype vectors
through the learnable knowledge offset. These
results indicate that our adaptive knowledge-

enhanced Bayesian meta-learning is more robust to
the changes in the number of ways.


