
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, pages 1275–1279
August 1–6, 2021. ©2021 Association for Computational Linguistics

1275

Grammar-Constrained Neural Semantic Parsing with LR Parsers

Artur Baranowski

Technische Hochschule Köln
Institut für Nachrichtentechnik

German Aerospace Center (DLR)
Institute for Software Technology

artur.baranowski@mailbox.org

Nico Hochgeschwender

Hochschule Bonn-Rhein-Sieg
Department of Computer Science

German Aerospace Center (DLR)
Institute for Software Technology

nico.hochgeschwender@h-brs.de

Abstract

Target meaning representations for semantic
parsing tasks are often based on programming
or query languages, such as SQL, and can be
formalized by a context-free grammar. As-
suming a priori knowledge of the target do-
main, such grammars can be exploited to en-
force syntactical constraints when predicting
logical forms. To that end, we assess how
syntactical parsers can be integrated into mod-
ern encoder-decoder frameworks. Specifically,
we implement an attentional SEQ2SEQ model
that uses an LR parser to maintain syntacti-
cally valid sequences throughout the decod-
ing procedure. Compared to other approaches
to grammar-guided decoding that modify the
underlying neural network architecture or at-
tempt to derive full parse trees, our approach is
conceptually simpler, adds less computational
overhead during inference and integrates seam-
lessly with current SEQ2SEQ frameworks. We
present preliminary evaluation results against
a recurrent SEQ2SEQ baseline on GEOQUERY
and ATIS and demonstrate improved per-
formance while enforcing grammatical con-
straints.

1 Introduction

Semantic parsing aims at delivering granular, struc-
tured representations of natural language utter-
ances, referred to as meaning representations or
logical forms. Thus, it goes beyond shallow seman-
tic analysis involving argument identification and
role labeling (Collobert et al., 2011; Roth and Lap-
ata, 2016). Meaning representations based on pro-
gramming or query languages (PYTHON, SQL) are
describable by (deterministic) context-free gram-
mars and used for general purpose code genera-

tion (Xiao et al., 2016; Yin and Neubig, 2017).
Our work targets this particular subset of logical
forms. A context-free grammar may be exploited to
constrain a semantic parser to only produce token
sequences derivable from the grammar. Specifi-
cally, we investigate how syntax constraints can
be enforced in semantic parsers based on mod-
ern encoder-decoder frameworks in a non-intrusive,
computationally inexpensive way at inference time.
We show that enforcing grammatical constraints
with LR parsers is particularly well suited for mod-
ern autoregressive neural network architectures
used in neural machine translation (Sutskever et al.,
2014; Vaswani et al., 2017). We do not require
any modifications to standard SEQ2SEQ neural net-
work architectures and make very little assump-
tions about the inputs and outputs of such models.
In contrast, most grammar-constrained decoders
attempt to model the grammar explicitly within
the neural network, complicating the architecture.
Moreover, they predict complete syntax trees or
derivation sequences. Our approach predicts source
code token streams, preserving syntactic validity
throughout the decoding procedure. Enforcing syn-
tactical constraints relieves neural networks mod-
els from having to learn the syntactic structure of
the target language, which is particularly benefi-
cial for ensuring balanced expressions over long
ranges (Bahdanau et al., 2014; Ling et al., 2016).
Also, when integrating our models into larger ap-
plication environments, we may want to preclude
specific failure modes (i.e., syntax errors) when ex-
ecuting the generated program snippets to increase
robustness. Preliminary evaluation results on the
GEOQUERY and ATIS data sets demonstrate that
simply enforcing syntactical constraints on the pre-

1276

dicted lexical tokens at inference time improves
the performance of the semantic parser against a
recurrent SEQ2SEQ baseline.

2 Related Work

Enforcing grammatical constraints within neural
network models has sparked a fair amount of re-
search interest. (Xiao et al., 2016) take a deriva-
tional viewpoint when decoding derivation trees,
demonstrating improved performance when ac-
counting for grammatical constraints. They predict
leftmost derivation sequences, each uniquely asso-
ciated with a corresponding derivation tree. Em-
ploying a constrained loss over probabilities p′(ŷt),
where ŷt are the permissible continuations of a
derivation sequence, constraints are enforced at
training time. We take inspiration from (Xiao et al.,
2016), however, enforce grammatical constraints
at inference time and on lexical token streams in
a bottom-up fashion, eliminating the need to de-
rive entire syntax trees and effectively reducing
the sequence length. Similarly, (Yin and Neubig,
2017) predict entire syntax trees sequentially using
a SEQ2SEQ model, starting from the root node and
generating tree nodes in depth-first, left-to-right
order, deterministically converting them to the cor-
responding surface code. They define a dedicated
grammar model that predicts action sequences that
either apply a production rule or generate a lexical
token. (Krishnamurthy et al., 2017) additionally
ensure that decoder predictions satisfy type con-
straints by providing a type-constrained grammar.
(Rabinovich et al., 2017) propose a decoder that
employs a separate neural network module for each
construct in the grammar. The decoder generates
an abstract syntax tree (AST) through mutual recur-
sion between modules. At each decoding step, the
decoder either generates a symbol or propagates the
decoder state to the next module. (Yin and Neubig,
2018) developed a transition-based abstract syntax
parser (TRANX) guided by a grammar specified un-
der ASDL (Wang et al., 1997). TRANX uses ASTs
as general-purpose intermediate meaning represen-
tations, decoupling the semantic parsing procedure
from domain-specific grammars. A user-defined
grammar converts ASTs to domain-specific mean-
ing representations. Similar to (Yin and Neubig,
2017) an AST is generated using a sequence of
tree-constructing actions. All approaches enforce
syntactical constraints by first predicting the tree-
structured syntax tree top-down. Instead, we pro-

pose to directly generate lexical tokens (the values
of syntax tree leaves) and constrain the decoding
process by means of an bottom-up LR parser.

3 Problem Statement

Informally, we aim at translating a set of natural
language utterances X to a structured representa-
tion of their meaning. We assume the syntax of
target meaning representations is describable by a
deterministic context-free grammar and that it is
known at training time. Given a grammar G, our
goal is to enforce the constraints imposed by G
during decoding. That is, the image of our model
f shall be the language generated by G.

f : X → L(G) (1)

We achieve this by means of a recurrent encoder-
decoder model as proposed by (Sutskever et al.,
2014) and an LR parser. We briefly introduce
recurrent encoder-decoder NMT models and the
specifics of our model.

3.1 SEQ2SEQ Model

All modern encoder-decoder frameworks define a
probability distribution P (y|x) (Kalchbrenner and
Blunsom, 2013; Sutskever et al., 2014), where in
our case, x represents a natural language input.
For a target source code string, y represents the
token stream generated by a lexical analyzer and
a corresponding lexical grammar (see section 3.2).
P (y|x) is factorized as:

p(y1, ..., yκ|x) =
κ∏
t=1

p(yt|x, y1, ..., yt−1) (2)

The encoder portion of the neural network encodes
x into a vector-valued, so-called context. Condi-
tioned on the context and all previous decoder hid-
den states, the decoder generates the output tokens
y = (y1, ..., yκ). Both encoder and decoder are
distinct recurrent neural networks (LSTM’s in our
case). The decoder generates a sequence of hidden
states and outputs a hidden state hLt at the topmost,
L-th layer at timestep t. The individual factors in
Eq. 2 are finally obtained using a feedforward neu-
ral network with a softmax layer that maps each
hidden state to a probability distribution over the
token vocabulary VD of the decoder. We optimize
standard cross-entropy loss.

1277

3.2 Grammar-Constrained Decoder

LR parsers are used to verify that a given token
stream is derivable from a deterministic context-
free grammar G. The parsing stage is usually pre-
ceded by lexical analysis. During lexical analysis,
a source code string is converted into a sequence
of tokens, ready to be consumed by the parser. LR
parsers employ ACTION and GOTO tables associ-
ated with the grammar, governing the applicable
shift-reduce decisions the parser can make on each
token input and determining the error states of the
parser. The decoder stage in the SEQ2SEQ model
can be viewed as taking the role of the lexical ana-
lyzer in the parsing process (see Figure 1).

Decoder Parser

get_next()

get_state()

Figure 1: The parser requests the next token from the
decoder. The decoder queries the current parser state
to determine the set of applicable tokens, generates a
token and returns it to the parser.

Algorithm 1 : LR(1) Assisted Decoder

let s ← top of stack state;
let h ← encoder context vector;
let a ← Token(SOS, ’<SOS>’);

while ACTION(s, a) 6= acc do
let et ← EXPECTED(s);
if |et| > 1: h, a ← DECODE(h, et, a);
else: a ← et;

if ACTION(s, a) = shift i:
push state i onto stack;

elif ACTION(s, a) = reduce [i, A→ β]:
pop |β| symbols off stack;
push GOTO(i, A) onto stack;

s ← top of stack state;

The decoder determines the set of applicable to-
kens in its vocabulary by consulting the parser’s
ACTION table. We generate a probability distri-
bution as described in section 3.1 over the actions
(identified by lexical tokens) in the current parser
state and return the most likely token to the parser.
The parser consumes the token, updates its state,
and requests the next token. This process continues
until the parser encounters a token that indicates ac-

ceptance (an EOF token “$”). The neural network
model is implemented using PYTORCH 1. The
parser implementation relies on the parsing toolkit
LARK 2. The output vocabulary VD consists of
all source code tokens defined by the given gram-
mar. Literals, such as string or integer values, are
usually tokenized by matching them with a regular
expression. We explicitly include all occurrences
of literal values in the data sets as distinct tokens
in the vocabulary. Algorithm 1 describes our modi-
fied LR parsing procedure relying on the decoder
module providing the token stream. The procedure
is initialized with the context vector obtained from
the encoder and the parser start state. Given the
state s, we determine the set of possible tokens et
by looking in the parser’s ACTION table. Condi-
tioned on the previous hidden state, we invoke the
DECODE function and generate an output distribu-
tion ŷ over all output vocabulary tokens. We finally
choose a = max(ŷet) as our prediction, where ŷet
are the elements of ŷ indexed by et. The next hid-
den state ht is returned, and the parser updates its
state by parsing a. On shift actions, we push the
associated state i onto the stack and request the
next token. On reduce actions, we pop the recog-
nized handle off the stack and push the left-hand
side of the production onto the stack. The decoding
procedure concludes when the parser encounters a
token that indicates acceptance (corresponding to
action “acc”). Note, that the decoder is invoked
only if |et| > 1, i.e., when there is more than one
applicable token. Otherwise, we simply set a = et.
The additional computational overhead of running
a single parsing step is constant at each decoding
step. Although most programming languages are
close to deterministic, generalizing our approach to
GLR parsers (and thus to context-free grammars)
may incur an additional computational cost pro-
portional to the non-determinism in the grammar
(Tomita, 1985).

3.3 Model Training

Algorithm 1 is only used during inference. Thus,
during model training, the decoder may generate
sequences s /∈ L(G). Furthermore, since the de-
coder is only invoked when |et| > 1, there is a
mismatch between sequences seen during training
and during test time. To account for this mismatch,
each target sample is parsed prior to training, and

1https://github.com/pytorch
2https://github.com/lark-parser/lark

https://github.com/pytorch
https://github.com/lark-parser/lark

1278

for each state s for which EXPECTED(s) = 1, we
filter the corresponding target sequence element
from the target sample.

4 Experimental Evaluation

We present preliminary evaluation results and com-
pare our approach to a recurrent SEQ2SEQ base-
line (see section 3.1) and an attentional SEQ2SEQ

model as reported in (Finegan-Dollak et al., 2018).
Our attentional model extends the recurrent base-
line with an attention layer as proposed by (Bah-
danau et al., 2014).

4.1 Datasets

For our trials we use the canonicalized and anno-
tated semantic parsing data sets for text-to-SQL

tasks provided by (Finegan-Dollak et al., 2018).
Compared to data sets like WIKISQL, GEOQUERY

and ATIS feature complex queries with low levels
of redundancy. We hypothesize that the benefits
of a grammar-constrained decoder will be particu-
larly pronounced in data sets with high complex-
ity and variability. To ensure comparability, we
use identical training, validation and test splits as
(Finegan-Dollak et al., 2018).

4.2 Setup

We run trials without entity anonymization and
with anonymized entities. We refer to trials with the
standard dataset, i.e., the trials without anonymized
entities, as standard trials. Trials with entity
anonymization are referred to as oracle trials.
Greedy-search was used for generating output se-
quences. We measured the exact match classifica-
tion accuracy. A predicted token sequence that is
identical to the token sequence in the correspond-
ing test set example constitutes an exact match.
Stochastic gradient descent with momentum (0.9)
and a learning rate of 0.1 was used for each trial.
The batch sizes ({16, 32, 64} for GEOQUERY and
{128, 256} for ATIS), hidden and embedding di-
mensions ({64, 96, 128, 256}), the dropout rate
for embeddings and hidden units ({0.05, 0.1, 0.2,
0.4}), the number of layers ({1, 2}) and the teacher-
forcing ratio ({1.0, 0.9, 0.8, 0.7}) were determined
using grid search. We tested the models with best
validation set performance during training and set
an early stopping criterion.

4.3 Results
In Table 1 and Table 2 we present the results of the
evaluation. We see the greatest improvements in
the oracle trials without an attention layer. This ver-
ifies that the main utility of enforcing syntactical
constraints lies with resolving the complex syntacti-
cal structures of target logical forms. Correctly rec-
ognizing entities and inserting the appropriate liter-
als into the query is more akin to a slot-filling task
than a semantic parsing task, and we observe no
added value in enforcing grammatical constraints
to resolve such literals in the standard trials. Apply-
ing an attention mechanism to both our approach
and the basic recurrent model of (Finegan-Dollak
et al., 2018) further puts the results into perspective.
An attention layer in recurrent SEQ2SEQ models
helps with resolving long range dependencies that
may occur when expanding non-terminals, for ex-
ample, involving long sub-queries (Bahdanau et al.,
2014). Similarly, long range dependencies are re-
solved by virtue of the LR parser, ensuring that
any non-terminal node is fully expanded, even if it
involves sub-expressions that are expanded to long
token sequences. Thus, using an attention mecha-
nism, syntactic relationships between tokens can be
learned much better, although syntax errors cannot
be completely precluded as with an LR parser.

GEOQUERY

Standard Oracle

Ours 34% 63%
+ Attention 51% 69%

Finegan-Dollak et al. 27% 49%
+ Attention 63% 73%

Table 1: Exact match accuracy on GEOQUERY.

ATIS

Standard Oracle

Ours 9% 48%
+ Attention 33% 55%

Finegan-Dollak et al. 8% 14%
+ Attention 46% 57%

Table 2: Exact match accuracy on ATIS.

5 Conclusion and Future Work

We showed that grammatical constraints can be en-
forced with LR parsers, imposing no assumptions

1279

on the neural machine translation model used and
adding little computational overhead. We intend
to expand the trials to include other logical forms
than SQL and comparable approaches to enforcing
grammatical constraints (Xiao et al., 2016; Yin and
Neubig, 2017). Moreover, we intend to general-
ize our approach to context-free grammars using
GLR parsers and enforce grammatical constrains
at training time.

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2014. Neural machine translation by jointly
learning to align and translate.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa. 2011.
Natural language processing (almost) from scratch.
J. Mach. Learn. Res., 12:2493–2537.

Catherine Finegan-Dollak, Jonathan K. Kummerfeld,
Li Zhang, Karthik Ramanathan, Sesh Sadasivam,
Rui Zhang, and Dragomir Radev. 2018. Improving
text-to-SQL evaluation methodology. In Proceed-
ings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 351–360, Melbourne, Australia. Asso-
ciation for Computational Linguistics.

Nal Kalchbrenner and Phil Blunsom. 2013. Recurrent
continuous translation models. In Proceedings of
the 2013 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1700–1709, Seattle,
Washington, USA. Association for Computational
Linguistics.

Jayant Krishnamurthy, Pradeep Dasigi, and Matt Gard-
ner. 2017. Neural semantic parsing with type con-
straints for semi-structured tables. In Proceedings
of the 2017 Conference on Empirical Methods in
Natural Language Processing, pages 1516–1526,
Copenhagen, Denmark. Association for Computa-
tional Linguistics.

Wang Ling, Phil Blunsom, Edward Grefenstette,
Karl Moritz Hermann, Tomáš Kočiský, Fumin
Wang, and Andrew Senior. 2016. Latent predictor
networks for code generation. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
599–609, Berlin, Germany. Association for Compu-
tational Linguistics.

Maxim Rabinovich, Mitchell Stern, and Dan Klein.
2017. Abstract syntax networks for code generation
and semantic parsing. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1139–
1149, Vancouver, Canada. Association for Computa-
tional Linguistics.

Michael Roth and Mirella Lapata. 2016. Neural seman-
tic role labeling with dependency path embeddings.
In Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 1192–1202, Berlin, Germany.
Association for Computational Linguistics.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural networks.
In Proceedings of the 27th International Conference
on Neural Information Processing Systems - Vol-
ume 2, NIPS’14, page 3104–3112, Cambridge, MA,
USA. MIT Press.

Masaru Tomita. 1985. Efficient Parsing for Natural
Language: A Fast Algorithm for Practical Systems.
Kluwer Academic Publishers, USA.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, undefine-
dukasz Kaiser, and Illia Polosukhin. 2017. Attention
is all you need. In Proceedings of the 31st Interna-
tional Conference on Neural Information Processing
Systems, NIPS’17, page 6000–6010, Red Hook, NY,
USA. Curran Associates Inc.

Daniel C. Wang, Andrew W. Appel, Jeff L. Korn, and
Christopher S. Serra. 1997. The zephyr abstract syn-
tax description language. In Proceedings of the Con-
ference on Domain-Specific Languages on Confer-
ence on Domain-Specific Languages (DSL), 1997,
DSL’97, page 17, USA. USENIX Association.

Chunyang Xiao, Marc Dymetman, and Claire Gardent.
2016. Sequence-based structured prediction for se-
mantic parsing. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1341–
1350, Berlin, Germany. Association for Computa-
tional Linguistics.

Pengcheng Yin and Graham Neubig. 2017. A syntactic
neural model for general-purpose code generation.
In Proceedings of the 55th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 440–450, Vancouver, Canada.
Association for Computational Linguistics.

Pengcheng Yin and Graham Neubig. 2018. TRANX: A
transition-based neural abstract syntax parser for se-
mantic parsing and code generation. In Proceedings
of the 2018 Conference on Empirical Methods in
Natural Language Processing: System Demonstra-
tions, pages 7–12, Brussels, Belgium. Association
for Computational Linguistics.

https://doi.org/10.18653/v1/P18-1033
https://doi.org/10.18653/v1/P18-1033
https://www.aclweb.org/anthology/D13-1176
https://www.aclweb.org/anthology/D13-1176
https://doi.org/10.18653/v1/D17-1160
https://doi.org/10.18653/v1/D17-1160
https://doi.org/10.18653/v1/P16-1057
https://doi.org/10.18653/v1/P16-1057
https://doi.org/10.18653/v1/P17-1105
https://doi.org/10.18653/v1/P17-1105
https://doi.org/10.18653/v1/P16-1113
https://doi.org/10.18653/v1/P16-1113
https://doi.org/10.18653/v1/P16-1127
https://doi.org/10.18653/v1/P16-1127
https://doi.org/10.18653/v1/P17-1041
https://doi.org/10.18653/v1/P17-1041
https://doi.org/10.18653/v1/D18-2002
https://doi.org/10.18653/v1/D18-2002
https://doi.org/10.18653/v1/D18-2002

