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Introduction

Tutorials offer a great opportunity for the EMNLP conference attendees (both virtually and on-site), to
be introduced with or get up to speed with various research topics. They are lectured by people doing
cutting-edge research in those areas and often serve as very concise and useful summaries of previous
and ongoing research, also outlining challenges and future perspectives.

As in previous years, tutorials were selected by a unified review process: this year it spanned four
conferences (EACL, NAACL-HLT, ACL-IJCNLP, and EMNLP). We received a total of 35 submissions,
and six tutorial proposals or extremely high-quality were selected for presentation at EMNLP 2021. The
tutorials cover a range of diverse topics as follows: crowdsourcing and data collection (T1), financial
opinion mining (T2), knowledge-enriched natural language generation (T3), multi-domain multilingual
QA (T4), robustness and adversarial examples in NLP (T5), and syntax in end-to-end NLP models (T6).
We are pleased to see that our tutorial presenters are experts all around the world, and some tutorials
include trans-national and even trans-continental collaborations.

We would like to thank the 2021 tutorial co-chairs of EACL, NAACL-HLT and ACL-IJCNLP for
their work on tutorial selection, the EMNLP 2021 publication chairs Greg Durrett, Loic Barrault and
Yansong Feng for their help with preparing the proceedings, the general chair Marie-Francine Moens for
coordinating everything so smoothly, the program co-chairs Xuanjing Huang, Lucia Specia, and Scott
Wen-tau Yih, the website chair Miryam de Lhoneux, the handbook chair Els Lefever, as well as the
virtual infrastructure chairs Zhaopeng Tu, Dani Yogatama, and Quynh Do. We also extend our thanks to
all student volunteers and all the other people not named here who helped us one way or another during
the long months of selection and preparation. Finally, one big thankyou goes to the tutorial authors
for submitting their tutorial proposals and preparing their tutorial materials, and for their flexibility and
collaboration in these exceptional times of virtual and hybrid conferences.

Following the spirit of the whole EMNLP 2021 conference, the tutorial presentations will be a mixture
of online, on-site and hybrid presentations. We hope you’ll enjoy the tutorial program at EMNLP 2021!

EMNLP 2021 Tutorial Co-chairs
Jing Jiang
Ivan Vulić
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Abstract

Crowdsourcing from non-experts is one of the
most common approaches to collecting data
and annotations in NLP. Even though it is such
a fundamental tool in NLP, crowdsourcing use
is largely guided by common practices and the
personal experience of researchers. Develop-
ing a theory of crowdsourcing use for practi-
cal language problems remains an open chal-
lenge. However, there are various principles
and practices that have proven effective in gen-
erating high quality and diverse data. This tuto-
rial exposes NLP researchers to such data col-
lection crowdsourcing methods and principles
through a detailed discussion of a diverse set
of case studies.

1 Tutorial Description

Crowdsourcing from non-experts is one of the most
common approaches to collecting data and anno-
tations in NLP. It has been applied to a plethora
of tasks, including question answering (Rajpurkar
et al., 2016; Choi et al., 2018), textual entail-
ment (Williams et al., 2018; Khot et al., 2018),
instruction following (Bisk et al., 2016; Misra et al.,
2018; Suhr et al., 2019a; Chen et al., 2019a), vi-
sual reasoning (Antol et al., 2015; Suhr et al., 2017,
2019b), and commonsense reasoning (Talmor et al.,
2019; Sap et al., 2019b). Even though it is such
a fundamental tool, crowdsourcing use is largely
guided by common practices and the personal ex-
perience of researchers. Developing a theory of
crowdsourcing use for practical language problems
remains an open challenge. However, there are
various principles and practices that have proven
effective in generating high quality and diverse data.
This tutorial exposes NLP researchers to such data
collection crowdsourcing methods and principles
through a detailed discussion of a diverse set of
case studies.

The selection of case studies focuses on chal-
lenging settings where crowdworkers are asked to
write original text or otherwise perform relatively
unconstrained work. Through these case studies,
we discuss in detail processes that were carefully
designed to achieve data with specific properties,
for example to require logical inference, grounded
reasoning or conversational understanding. Each
case study focuses on data collection crowdsourc-
ing protocol details that often receive limited at-
tention in research presentations, for example in
conferences, but are critical for research success.
We introduce the task of each case study, and do not
assume prior knowledge. Where possible, we high-
light common trends, or otherwise key differences
between the discussed case studies.

Relevance to the NLP Community Crowd-
sourcing techniques are commonly used, but rarely
discussed in detail. This tutorial provides a detailed
description of crowdsourcing decisions in complex
scenarios and the reasoning behind them. NLP
researchers aiming to develop new datasets, tasks
and data collection protocols will find the content
directly applicable to their own work. A strong
understanding of data collection practices and the
range of decisions they include will also aid re-
searchers using existing dataset to critically assess
the data they use, including its limitations.

Post-tutorial Materials The tutorial videos,
slides and other material will be made available
publicly online following the tutorial.

2 Structure and Content Overview

The tutorial spans three hours (180 minutes), and
is divided into eight sections:

Introduction (10 min) A brief introduction to
the tutorial structure, its goals, and the case studies.
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Background (20 min) A high-speed recap of es-
tablished crowdsourcing concepts and terms. We
refer back to the content of this section in the case
studies. This section includes the basic structure
of a Mechanical Turk task (HIT), typical incen-
tive mechanisms, typical communication mecha-
nisms, typical worker qualification and screening
mechanisms, as well as relevant results about the
demographics and expressed preferences of crowd-
workers and the crowdworker community.

Case Study I: MultiNLI (45 min) We discuss
the MultiNLI (Williams et al., 2018) corpus, with
primary focus on experiments from subsequent pa-
pers that extend or evaluate the data collection pro-
tocol used to create this dataset. MultiNLI is built
around the task of natural language inference (a.k.a.
textual entailment; Dagan et al., 2006; MacCartney,
2009): given two sentences, the task is to identify
(roughly) whether the first sentence entails the sec-
ond. We start with this case study not because of
any unique success of the data collection proto-
col, but because MultiNLI and the natural language
inference task have emerged as a popular testbed
for data collection methods and for relevant data
analysis methods in NLP. Topics include:

• The development of a simple crowdworker-
writing protocol for natural language infer-
ence data (Marelli et al., 2014; Bowman et al.,
2015; Williams et al., 2018)

• Known issues with artifacts, social bias, and
debatable judgments in data collected under
this protocol (Rudinger et al., 2017; Tsuchiya,
2018; Gururangan et al., 2018; Poliak et al.,
2018; Pavlick and Kwiatkowski, 2019)

• Experiments evaluating data collection feasi-
bility under variants of the base task defini-
tion (Chen et al., 2020; Bowman et al., 2020)

• Studies evaluating the feasibility of collecting
data for the same task using alternative pro-
tocols (Nie et al., 2020; Kaushik et al., 2019;
Bowman et al., 2020; Vania et al., 2020; Par-
rish et al., 2021)

Case Study II: NLVR (25 min) Natural Lan-
guage for Visual Reasoning comprises two datasets,
NLVR (Suhr et al., 2017) and NLVR2 (Suhr et al.,
2019b), both study natural language sentences
grounded in visual context.1 The task is to de-

1http://lil.nlp.cornell.edu/nlvr/

termine whether a caption is true or false about a
paired image. The data was collected to require
reasoning about object quantities, comparisons be-
tween object properties, and spatial relations be-
tween objects. NLVR2 is used as evaluation data
for numerous language-and-vision systems (e.g.,
Tan and Bansal, 2019; Chen et al., 2019c). Both
datasets were crowdsourced with a contrastive cap-
tioning designed to elicit linguistically complex
sentences and to naturally balance the datasets be-
tween true and false examples. NLVR2 also uses
a tiered system during crowdsourcing including
distinct pools of annotation tasks for experienced
workers and new workers.

Case Study III: CerealBar (25 min) Cereal-
Bar (Suhr et al., 2019a) is a game designed for
studying collaborative natural language interac-
tions, released alongside a dataset of interactions
between human players.2 CerealBar emphasizes
collaboration through natural language instruction
between agents with differing abilities. Each of
the agents can be a human user or a learned model.
CerealBar has been used to design and train sys-
tems that follow instructions by grounding them
in the surrounding environment and acting in the
environment. The game rules were explicitly de-
signed with the intent of eliciting rich collaborative
interactions across many instructions, for exam-
ple by allowing a pair of players that is scoring
well to continue playing for longer, thereby col-
lecting more data from successful collaborations.
The CerealBar data collection process included a
development of a community of players, which has
demonstrated behavioral and linguistic change over
the crowdsourcing process.

Case Study IV: QuAC (25 min) Question An-
swering in Context is a dataset for studying infor-
mation seeking dialogs between a student and a
teacher (Choi et al., 2018). Given a subject head-
ing, a student questions a teacher, who responds
by copying spans from a Wikipedia article. The
goal of the pair is to maintain a dialog of suffi-
cient length without encountering too many unan-
swerable questions. The task is to play the role of
the teacher: answering questions of an interested
student. The collection protocol is unique in that
two unreliable workers had to be coordinated for
sufficient time to accomplish a meaningful dialog.
QuAC collection relied on several strategies to keep

2http://lil.nlp.cornell.edu/cerealbar/
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partners from leaving interactions, such as allowing
workers to simultaneously participate in multiple
related dialogs, a feedback system teachers used
to help students formulate questions, and scaling
incentives that included punitive elements.

Case Study V: SOCIALIQA (25 min) SO-
CIALIQA (Sap et al., 2019b) is the first large-scale
benchmark to test model emotional and social rea-
soning through 38k questions about everyday situ-
ations. The distributional nature of social common-
sense knowledge requires the answer candidates to
cover the plausible and likely, as well as the plausi-
ble but unlikely, as opposed to right/wrong answer
candidates as common in other QA benchmarks.
SOCIALIQA introduces a question-switching tech-
nique for crowdsourcing these unlikely answers, to
overcome the possible stylistic artefacts in negative
answers (e.g., negations, out-of-context responses;
Schwartz et al., 2017). Additionally, to achieve
large-scale and broad coverage, SOCIALIQA used
a multi-stage crowdsourcing pipeline to expand
seed events from the ATOMIC (Sap et al., 2019a)
commonsense knowledge graph into full-fledged
social situations.

Summary (5 min) A brief summary of the tuto-
rial, including the main takeaways from the differ-
ent cases studies and repeating themes.

3 Breadth

The set of case studies covers a broad and diverse
set of task types, including large-scale inference
tasks (e.g., NLI), small-scale interactive tasks (e.g.,
CerealBar), and multi-modal grounded tasks (e.g.,
NLVR). The aim of this broad distribution is to
cover the most common task and data scenarios in
NLP. We focus on details that are rarely discussed
fully in papers. The set of case studies covers a
broad and diverse set of task types, including large-
scale inference tasks (e.g., NLI), small-scale in-
teractive tasks (e.g., CerealBar), and multi-modal
grounded tasks (e.g., NLVR). The aim of this broad
distribution is to cover the most common task and
data scenarios in NLP. The case studies cover the re-
search of four distinct research labs. For each case
study, we will also discuss related work from other
authors as is relevant. For example, the MultiNLI
case study will include extensive discussion of fol-
lowup work and the SocialIQA case study will dis-
cuss related commonsense resources. In addition,
we will discuss relevant existing work to provide

all necessary background (e.g., Dumitrache et al.,
2018; Chen et al., 2019b; Ramı́rez et al., 2019).

4 Prerequistites

Broad familiarity with NLP tasks, empirical eval-
uation methods, and data collection practices. We
introduce all the necessary terms and the specifics
of each case study.

5 Reading List

We recommend reviewing the 2015 NAACL tuto-
rial on crowdsourcing.3 While we focus on uncon-
strained and complex case studies, the 2015 tutorial
provides an overview of basic terms and methods
that is a complementary background to our mate-
rial. However, we review the required material in
the background section, and do not assume a fa-
miliarity with the content of this prior tutorial. We
also recommend reading the main papers describ-
ing each of the case studies (Williams et al., 2018;
Suhr et al., 2017, 2019b,a; Choi et al., 2018; Sap
et al., 2019b).

6 Presenters

Alane Suhr
PhD Student, Cornell University
suhr@cs.cornell.edu
https://alanesuhr.com
Alane’s research focuses on grounded natural lan-
guage understanding. Alane has designed crowd-
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situated natural language understanding. Alane
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Clara Vania
Applied Scientist, Amazon
vaniclar@amazon.co.uk
https://claravania.github.io/
Her research focuses on crowdsourcing, transfer
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Nikita Nangia
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3http://crowdsourcing-class.org/tutorial.html
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1 Type and Length

We will provide a three-hour introductory tuto-
rial, named Financial Opinion Mining.

2 Goal of the Tutorial

When it comes to financial opinion mining, bullish
and bearish come into people’s minds. However,
more fine-grained information will be missed if
we only focus on the market sentiment analysis of
financial documents. Thanks to the recent “CS +
X” trend, more interdisciplinary cooperation exists
between computer science and other domains. In
the “NLP + Finance” community, lots of recent
works pay their attention to in-depth analysis of
different kinds of financial documents rather than
market sentiment prediction. For example, our pre-
vious works (Chen et al., 2018, 2019a) find that
the numeral information extracted from financial
social media data is comparable to the price targets
extracted from professional analysts’ reports. Keith
and Stent (2019) analyze the pragmatic and seman-
tic features in the earnings conference calls and
discuss how these features influence the investor’s
decision-making process. Zong et al. (2020) point
out the difference between the textual factors and
cognitive factors by comparing the accurate and in-
accurate professional analysts’ reports. The above-
mentioned works conclude the necessity of cap-
turing fine-grained opinions in the financial nar-
ratives. As the increasing interest of our commu-
nity on this topic, recently, more and more related
workshops spring up in the leading conferences,
including FinWeb-2021 in the Web Conference,
FinNLP-2021 in IJCAI, FinIR-2020 in SIGIR, and
FNP-2020 in COLING.

In this tutorial, we will show where we are and
where we will be to those researchers interested in
this topic. We divide this tutorial into three parts,
including coarse-grained financial opinion mining,

fine-grained financial opinion mining, and possible
research directions. This tutorial starts by introduc-
ing the components in a financial opinion proposed
in our research agenda (Chen et al., 2021b) and
summarizes their related studies. We also highlight
the task of mining customers’ opinions toward fi-
nancial services in the FinTech industry, and com-
pare them with usual opinions. Several potential
research questions will be addressed. The audi-
ences of this tutorial will gain an overview of finan-
cial opinion mining and figure out their research
directions.

3 Tutorial Outline

We will cover the following topics based on recent
works published in representative conferences and
workshops. Both technical details and the appli-
cation scenarios will be introduced. The contrast
of financial opinion mining with general opinion
mining will also be discussed. The characteristics
of different kinds of financial documents will be
listed.

3.1 Coarse-grained Financial Opinion
Mining

The topic of the first session gives the overview of
financial opinion mining, including the investor’s
opinion and the customer’s opinion. We start with
sentiment analysis in the financial domain. The
comparison between the general sentiment and the
market sentiment will also be discussed (Loughran
and McDonald, 2011; Chen et al., 2020b). The lex-
icons for the sentiment analysis (Bodnaruk et al.,
2015; Li and Shah, 2017; Sedinkina et al., 2019) in
financial documents and the applications of adopt-
ing sentiment analysis results (Bollen et al., 2011;
Du et al., 2019; Lin et al., 2020) will be included.
This session also covers the sentiment analysis of
financial narratives from different resources, includ-
ing formal documents such as financial statements
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and professional analyst’s reports and informal doc-
uments such as blogs and social media platforms.
The overview of applications on stock movement
prediction and volatility forecasting will also be
presented.

3.2 Fine-grained Financial Opinion Mining
The second session will focus on the fine-grained
financial opinion mining, which is the recent trend
in this field and also the research interest of the
presenters. This session will start by the discussion
of the aspect analysis of financial narratives (Maia
et al., 2018; Chen et al., 2019a). The numeral in
the textual data (Naik et al., 2019; Wallace et al.,
2019; Chen et al., 2018, 2019a, 2020c) and the nu-
meracy of the neural network models (Spithourakis
and Riedel, 2018; Chen et al., 2019b) attract lots
of attentions recently. In the financial narrative,
the proportion of numerals are higher than that
of other domains’ documents. Without numerals,
more important information will be missed. Thus,
we summarize the related works for understanding
the numerals in financial documents and provide a
systematic analysis on these studies. The linguistic
features of different kinds of financial documents
will also be discussed (Keith and Stent, 2019; Zong
et al., 2020), which can provide insights for the
future works on feature engineering. The results
of cross-document inference and comparison are
also included (Chen et al., 2018; Keith and Stent,
2019).

3.3 Possible Research Directions
In the last session, we will discuss four possible
research directions for future works (Chen et al.,
2020a), including (1) argument mining in finance,
(2) opinion quality evaluation, (3) implicit influ-
ence inference, and (4) opinion tracking in time
series. We will link the proposed directions with
the latest progress of NLP. For example, when in-
troducing the ideas of argument mining in finance,
we will provide a brief overview of current de-
velopment on argument mining (Cabrio and Vil-
lata, 2018; Lawrence and Reed, 2019), and fur-
ther present some instances for discussing the re-
lation between current works and the proposed di-
rections in financial opinion mining (Chen et al.,
2020c). When discussing opinion quality evalu-
ation, we will cover the studies of online review
quality evaluation (Eirinaki et al., 2012; Wei et al.,
2016; Ocampo Diaz and Ng, 2018), and show the
difference between dealing with online reviews and

dealing with financial opinions.
The audience will be inspired by this tutorial

and find an interesting research direction for their
work. With the discussion on the possible research
directions, many novel ideas will be figured out
during this tutorial.

4 Recommended Small Reading List

We recommend the audiences to read the following
papers, which will be discussed in the tutorial.

• For understanding the difference between gen-
eral sentiment analysis and financial sentiment
analysis: Loughran and McDonald (2011)

• For having the picture of the basic application
scenario: Bollen et al. (2011)

• The importance of numerals in the financial
documents: Chen et al. (2018)

• For capturing the idea and the intent of fine-
grained opinion mining: Keith and Stent
(2019)

• For conceiving the proposed research direc-
tions: Chen et al. (2021a)

5 Presenters

Chung-Chi Chen1 is currently a postdoctoral re-
searcher at the MOST Joint Research Center for
AI Technology and All Vista Healthcare, Taiwan.
He got the Ph.D. degree in the Department of Com-
puter Science and Information Engineering at Na-
tional Taiwan University. He received the M.S. de-
gree in Quantitative Finance from National Tsing
Hua University, Taiwan. His research focuses on
opinion mining and sentiment analysis in finance.
He is the organizer of FinNum shared task series
in NTCIR (2018-2022) and the FinNLP workshop
series in IJCAI (2019-2021). He is the presenter
of the AACL-2020 “Natural Language Processing
in Financial Technology Applications” tutorial and
the presenter of the EMNLP-2021 “Financial Opin-
ion Mining” tutorial. His work has been published
in ACL, WWW, SIGIR, IJCAI, and CIKM, and
served as PC members in ACL, AAAI, EMNLP,
CIKM, and WSDM. He won the 1st prize in both
the Jih Sun FinTech Hackathon (2019) and the
Standard Chartered FinTech competition (2018),
and the 2nd prize in both the Jih Sun FinTech

1http://cjchen.nlpfin.com/
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Hackathon (2018) and the E.SUN FHC FinTech
Hackathon (2017).
Hen-Hsen Huang2 is an assistant research fellow
at the Institue of Information Science, Academia
Sinica, Taiwan. His research interests include
natural language processing and information re-
trieval. His work has been published in ACL, SI-
GIR, WWW, IJCAI, CIKM, COLING, and so on.
Dr. Huang received the Honorable Mention of Doc-
toral Dissertation Award of ACLCLP in 2014 and
the Honorable Mention of Master Thesis Award of
ACLCLP in 2008. He served as the registration
chair of TAAI 2017, the publication chair of RO-
CLING 2020, and as PC members of representative
conferences in computational linguistics including
ACL, COLING, EMNLP, and NAACL. He was
one of organizers of FinNum Task at NTCIR and
FinNLP Workshop at IJCAI.
Hsin-Hsi Chen3 received the Ph.D. degree in elec-
trical engineering in 1988 from National Taiwan
University, Taipei, Taiwan. Since August 2018,
Hsin-Hsi Chen has been a distinguished profes-
sor in the Department of Computer Science and
Information Engineering, National Taiwan Univer-
sity. He was conference chair of IJCNLP 2013,
program co-chair of ACM SIGIR 2010, senior PC
members of ACM SIGIR 2006, 2007, 2008 and
2009, area/track chairs of AAAI 2020, EMNLP
2018, ACL 2012, ACL-IJCNLP 2009 and ACM
CIKM 2008, and PC members of many conferences
(IJCAI, SIGIR, WSDM, ACL, COLING, EMNLP,
NAACL, EACL, IJCNLP, WWW, and so on). He
will be conference chair of ACM SIGIR 2023. He
received Google research awards in 2007 and 2012,
MOST Outstanding Research Award in 2017, and
the AmTRAN Chair Professorship in 2018.
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1 Introduction

Natural Language Generation (NLG) aims at de-
liberately constructing a natural language text in
order to meet specified communicative goals. NLG
has been applied in many real-world applications,
including dialogue systems, biography generation,
technical paper draft generation, and multimedia
news summarization. Neural language models have
achieved impressive successes at automatic NLG,
especially on creative writing such as story com-
pletion and poetry generation. However, in many
downstream applications such as news summariza-
tion, counter-argument narrative generation, and
knowledge base description, the generation process
needs to be guided by certain level of knowledge
such as sentiment (Hu et al., 2017), topic (Xing
et al., 2017), and style (Tikhonov et al., 2019).

The usage of supportive knowledge in NLG
can be roughly divided into the following two lev-
els: (1) knowledge description (KD), which trans-
forms structured data into unstructured text, such
as topic-to-text (Dong et al., 2021; Yu et al., 2021),
knowledge base description (Gardent et al., 2017;
Liu et al., 2018a; Qin et al., 2019; Zeng et al.,
2021), table-to-text generation (Liu et al., 2018b;
Moryossef et al., 2019; Wang et al., 2020) and
its variants in low-resource (Ma et al., 2019) and
multi-lingual setting (Kaffee et al., 2018), data-
to-text (Wiseman et al., 2017; Puduppully et al.,
2019), and graph-to-text (Song et al., 2018; Zhu
et al., 2019; Yao et al., 2020); (2) knowledge syn-
thesis (KS), which obtain knowledge from external
knowledge resources (e.g, knowledge base) and
integrate it into text generation, such as image or
video caption generation (Whitehead et al., 2018;
Lu et al., 2018), knowledge graph-supported di-
alogue generation (Liu et al., 2019; Zhang et al.,
2020), knowledge-guided comment generation (Li
et al., 2019), and scientific paper generation (Wang

et al., 2019; Koncel-Kedziorski et al., 2019).
Knowledge-enriched text generation poses

unique challenges in modeling and learning, driv-
ing active research in several core directions, rang-
ing from integrated modeling of neural represen-
tations and symbolic information in the sequen-
tial/hierarchical/graphical structures, learning with-
out direct supervisions due to the cost of structured
annotation, efficient optimization and inference
with massive and global constraints, to language
grounding on multiple modalities, and generative
reasoning with implicit commonsense knowledge
and background knowledge. In this tutorial we will
present a roadmap to line up the state-of-the-art
methods to tackle these challenges on this cutting-
edge problem. We will dive deep into various tech-
nical components (as shown in Figure 1): how to
represent knowledge, how to feed knowledge into
a generation model, how to evaluate generation
results, and what are the remaining challenges?

2 Brief Tutorial Outline

2.1 Motivation and Overview [20 mins]

At the beginning of the tutorial we will motivate
the task of knowledge-driven NLG by showing
a large variety of applications (e.g., KD and KS)
in academia and industry which have been men-
tioned in the Introduction. We will present exam-
ples about the shortcomings of pure Seq2Seq or lan-
guage models as well as the opportunities of using
knowledge to enrich the generation. We categorize
the input source knowledge and related advanced
machine learning technologies in Figure 1. We
will present the overview of this tutorial including
language models (LMs) and knowledge representa-
tion, general learning and generation frameworks,
a variety of NLG methods enriched by knowledge
sources including semantics and structures, real-
world applications, and discussions.
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Figure 1: In this tutorial, we will present advanced NLG methods that inject knowledge from a variety of sources.

2.2 General Learning and Generation
Frameworks [40 mins]

We will present the general methods of knowledge-
enriched NLG, which provide the methodologi-
cal foundations for incorporating different types
of knowledge presented in the subsequent parts.
Those methods are categorized into three ma-
jor paradigms which incorporate knowledge
through (1) model architectures that facilitate the
use of knowledge, such as attention methods,
copy/pointer mechanisms, graph neural networks
(GNNs), knowledge-enriched embedding, etc; (2)
learning frameworks that inject knowledge infor-
mation into the generation models through training,
such as posterior regularization, constraint-driven
learning, semantic loss, knowledge-informed weak
supervision, etc; (3) inference methods which im-
poses on the inference process different knowl-
edge constraints to guide decoding, such as lexical
constraints, task-specific objectives, global inter-
dependency, etc.

2.3 NLG Methods Enhanced by Various
Knowledge Sources: Part I [30 mins]

In this part, we present semantic knowledge-driven
natural language generation. The semantic knowl-
edge sources mainly contain keywords, topics, lin-
guistic features, and other semantic constraints
(e.g., style, emotion, sentiment). We introduce how
the knowledge in each source can be encoded and
how the represented knowledge can be decoded
into natural language of high quality.

2.4 Coffee Break [30 mins]

2.5 NLG Methods Enhanced by Various
Knowledge Sources: Part II [30 mins]

In this part, we present structured knowledge-
driven natural language generation. The struc-

tured knowledge sources mainly contain tables,
knowledge bases, and knowledge graphs. We in-
troduce how the knowledge in each source can be
represented and integrated into generation frame-
works. Then, we introduce the methods that (i) find
relevant knowledge (e.g., a relational path) from
huge knowledge bases and knowledge graphs, and
(ii) construct structured knowledge from text, e.g.,
OpenIE. Lastly, we introduce recent work that inte-
grates multiple types of knowledge ranging from
semantic, unstructured, to structured knowledge.

We will give a review of the available structured
knowledge representation method, most of which
focus on the structured tables. Traditionally, re-
searchers tend to linearize the table for the input
with the concatenation of type information. With
computational advances in recent years, pre-trained
language model based approaches for the linearized
input have achieved significant success by combin-
ing type information as additional position embed-
ding. However, those methods fail to consider the
inter-dependency between different entities. We
will discuss two major ways to learn those rela-
tions: self-attention mechanism and GNNs.

2.6 Applications [30 mins]

In this application session, we first review exist-
ing potential applications using the knowledge-
driven generations. On one hand, the structured
knowledge provides additional guidance for the
major tasks such as dialogue systems, video cap-
tions , and summarizations. On the other hand, re-
searchers have built independent knowledge guided
generation tasks, starting from the data-to-text tasks
such as Wikibio generation tasks in low-resource
and multilingual setting, Webnlg contests, and RO-
TOWIRE, to more complex graph-to-text tasks
such as AMR-to-text generation, scientific paper
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generation tasks, and news comment generation.
Then, we will cover various post-processing ap-
proaches to enhance the quality of generation re-
sults for specific applciations, such as coverage
mechanism, self-attention mechanism, and table-
text optimal-transport matching loss. Finally we
will briefly present how knowledge-enriched NLG
is being used in several conversational AI systems
including Amazon Alexa. Other commercial ap-
plications for NLG include systems that can re-
trieve and summarize information from a relational
database into natural language text such as Sales-
force’s Einstein and Tableau.

2.7 Remaining Challenges and Future
Directions [30 mins]

At the end of the tutorial we will discuss the re-
maining challenges and some of the future direc-
tions, including the challenge of capturing the inter-
dependency of knowledge elements to make gener-
ated output coherent, knowledge reasoning, repre-
senting time and number, duplicate removal, aug-
menting massive pre-trained language models with
external commonsense and background knowledge,
and developing effective automatic evaluation met-
rics, and rigorous and efficient human evaluation
procedures. We will provide pointers to resources,
including data sets, software and on-line demos.

3 Diversity Considerations

The topic to be presented is of great interest to
diverse group of audience from academics and in-
dustry. We will cover a broad diversity of methods
and applications in many languages and domains.
In particular, enriching modeling and learning with
external knowledge, as the core topic in this tutorial,
is particularly helpful for low-resource language
modeling where no large data are available.

We have a diverse instructor team across mul-
tiple institutions (ND, UIUC, UCSD, and Sales-
force Inc.) with varying seniority (ranging from
junior/senior PhD students to assistant/full profes-
sors and senior researchers), two of whom are fe-
male researchers. The team has a diverse and broad
expertise in natural language processing and gener-
ation, machine learning, data mining, and various
application domains.

4 Prerequisites

This tutorial will present basic and advanced meth-
ods in NLG systematically to audience. The audi-

ence may find different useful content when have
different levels of prior knowledge: (with the num-
ber of ⭐ for how much a person may feel comfort-
able and confident with the subject matter)

• Familiar with Machine Learning from text,
e.g., “Understand classification tasks and clas-
sical supervised methods on text data” (⭐);

• Familiar with basic natural language process-
ing (NLP) frameworks, e.g., “Had experience
with LSTM, Seq2Seq, transformer” (⭐⭐);

• Familiar with some data forms of knowledge,
e.g., “Had machine learning experience with
topic modeling, knowledge bases, knowledge
graphs, data tables, etc.” (⭐⭐⭐).

5 Reading List

Full reading list:
https://github.com/wyu97/KENLG-Reading

Small reading list:
• Survey: KENLG (Yu et al., 2020)
• General learning and NLG frameworks

(1) Seq2Seq (Bahdanau et al., 2015),
(2) Transformer (Vaswani et al., 2017),
(3) Copy mechanism (Gu et al., 2016);

• Semantic knowledge for enhancing NLG
(4) Topic (Xing et al., 2017),
(5) Sentiment (Hu et al., 2017),
(6) Emotion (Zhou et al., 2018a);

• Structured knowledge for enhancing NLG
(7) Wikipedia KB (Liu et al., 2018b),
(8) Sports Tables (Wiseman et al., 2017),
(9) Commonsense KG (Zhou et al., 2018b),
(10) Scientific KG (Koncel et al., 2019).

6 Presenters

Wenhao Yu is a Ph.D. student in the Department
of Computer Science and Engineering at the Uni-
versity of Notre Dame. His research lies in con-
trollable knowledge-driven natural language pro-
cessing, particularly in natural language generation.
His research has been published in top-ranked NLP
and data mining conferences such as ACL, EMNLP,
AAAI, WWW, and CIKM. Additional information
is available at https://wyu97.github.io/

Meng Jiang is an assistant professor in the De-
partment of Computer Science and Engineering at
the University of Notre Dame. He received his B.E.
and Ph.D. in Computer Science from Tsinghua Uni-
versity and was a postdoctoral research associate
at the University of Illinois at Urbana-Champaign.
His research interests focus on knowledge graph
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construction and natural language generation for
news summarization and forum post generation.
The awads he received include Notre Dame Faculty
Award in 2019 and Best Paper Awards at ISDSA
and KDD-DLG in 2020. Additional information is
available at http://www.meng-jiang.com/.

Zhiting Hu is an assistant professor in
Halıcıoğlu Data Science Institute at UC San Diego.
He received his Ph.D. in Machine Learning from
Carnegie Mellon University. His research inter-
est lies in the broad area of natural language pro-
cessing in particular controllable text generation,
machine learning to enable training AI agents
from all forms of experiences such as structured
knowledge, ML systems and applications. His re-
search was recognized with best demo nomina-
tion at ACL 2019 and outstanding paper award at
ACL 2016. Additional information is available at
http://www.cs.cmu.edu/˜zhitingh/.

Qingyun Wang is a Ph.D. student in the Com-
puter Science Department at the University of Illi-
nois at Urbana-Champaign. His research lies in
controllable knowledge-driven natural language
generation, with a recent focus on the scientific
paper generation. He served as a program commit-
tee in generation track for multiple conferences in-
cluding ICML 2020, ACL 2019-2020, ICLR 2021,
etc. He previously entered the finalist of the first
Alexa Prize competition. Additional information is
available at https://eaglew.github.io/

Heng Ji is a professor at Computer Science
Department of University of Illinois at Urbana-
Champaign, and Amazon Scholar. She has pub-
lished on Multimedia Multilingual Information Ex-
traction and Knowledge-enriched NLG including
technical paper generation, knowledge base de-
scription, and knowledge-aware image and video
caption generation. The awards she received in-
clude “Young Scientist” by World Economic Fo-
rum, “AI’s 10 to Watch” Award by IEEE Intel-
ligent Systems, NSF CAREER award, and ACL
2020 Best Demo Award. She has served as
the Program Committee Co-Chair of many con-
ferences including NAACL-HLT2018, and she
is NAACL secretary 2020-2021. Additional in-
formation is available at https://blender.cs.

illinois.edu/hengji.html.

Nazneen Rajani is a senior research scientist
at Salesforce Research. She got her PhD in Com-
puter Science from UT Austin in 2018. Several
of her work has been published in ACL, EMNLP,

NACCL, and IJCAI including work on generat-
ing explanations for commonsense and physical
reasoning. Nazneen was one of the finalists for
the VentureBeat Transform 2020 women in AI Re-
search. Her work has been covered by several me-
dia outlets including Quanta Magazine, Venture-
Beat, SiliconAngle, ZDNet. More information on
https://www.nazneenrajani.com

6.1 Selected Past Tutorials

Heng Ji:
• ACL’18 and CCL’18: Multi-lingual Entity

Discovery and Linking
• SIGMOD’16: Automatic Entity Recognition

and Typing in Massive Text Data.
• ACL’15: Successful Data Mining Methods

for NLP.
• ACL’14 and NLPCC’14: Wikification and Be-

yond: The Challenges of Entity and Concept
Grounding.

• COLING’12: Temporal Information Extrac-
tion and Shallow Temporal Reasoning.

Meng Jiang:
• KDD’20: Scientific Text Mining and Knowl-

edge Graphs.
• KDD’20: Multi-modal Network Representa-

tion Learning: Methods and Applications.
• KDD’17: Mining Entity-Relation-Attribute

Structures from Massive Text Data.
• KDD’17: Data-Driven Approaches towards

Malicious Behavior Modeling.
• SIGMOD’17: Building Structured Databases

of Factual Knowledge from Massive Text.
• WWW’17: Constructing Structured Informa-

tion Networks from Massive Text Corpora.
Zhiting Hu:

• KDD’20: Learning from All Types of Expe-
riences: A Unifying Machine Learning Per-
spective.

• AAAI’20: Modularizing Natural Language
Processing.
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Abstract
Question answering (QA) is one of the most
challenging and impactful tasks in natural
language processing. Most research in QA,
however, has focused on the open-domain
or monolingual setting while most real-world
applications deal with specific domains or
languages. In this tutorial, we attempt to
bridge this gap. Firstly, we introduce stan-
dard benchmarks in multi-domain and multi-
lingual QA. In both scenarios, we discuss state-
of-the-art approaches that achieve impressive
performance, ranging from zero-shot trans-
fer learning to out-of-the-box training with
open-domain QA systems. Finally, we will
present open research problems that this new
research agenda poses such as multi-task learn-
ing, cross-lingual transfer learning, domain
adaptation and training large scale pre-trained
multilingual language models.1

1 Overall

Question answering (QA) has emerged as one
of the most popular areas in natural language
processing (NLP). Established benchmarks such
as the Stanford Question Answering Dataset
(SQuAD; Rajpurkar et al., 2016) are used as a stan-
dard testing ground for new models while open-
domain QA benchmarks such as Natural Questions
(Kwiatkowski et al., 2019) represent the frontier
of what is possible with current NLP technology
(Zaheer et al., 2020).

In this tutorial, we will review recent advances
in open-domain QA but focus on an area that
has received less attention both in research and
in past tutorials—multi-domain and multilingual
QA. Open-domain QA is of interest for building
general-purpose assistants that can answer ques-
tions about any topic (Adiwardana et al., 2019).

1The tutorial materials are available at
https://github.com/sebastianruder/
emnlp2021-multiqa-tutorial.

Most real-world applications of QA, however, deal
with the needs of specific domains. Multi-domain
QA is particularly promising as it allows us to adapt
models to new domains that are of practical impor-
tance, such as answering questions about COVID-
19 (Tang et al., 2020).

At the same time, over the course of the last year
we have seen the emergence of the first benchmarks
for multilingual QA (Lewis et al., 2020; Artetxe
et al., 2020; Clark et al., 2020). These benchmarks
are a step towards enabling access to technology
beyond English and building question answering
systems that serve all of the world’s approximately
6,900 languages. In addition to introducing stan-
dard datasets for multilingual QA, we will discuss
advances in cross-lingual learning that made such
benchmarks viable for the first time.

We generally aim to highlight methods and tech-
niques that can be applied to adapt to many do-
mains and languages in order to be helpful to the
majority of the audience. While multi-domain and
multilingual data differ in many ways both can be
formulated as transfer learning problems and ap-
proached using a similar set of fundamental tools
and principles, which we aim to convey to our au-
dience.

As one example of such a tool, we will cover
training procedures for large pre-trained language
models (LMs). For multi-domain QA, we will dis-
cuss adaptation of LMs e.g. BERT (Devlin et al.,
2019) or RoBERTa (Liu et al., 2019). For multi-
lingual QA, we will teach the methods for training
LMs from large multilingual supervised and un-
supervised data e.g. XLM-RoBERTa (Conneau
et al., 2019) and M4 (Arivazhagan et al., 2019).
Notably, our tutorial will highlight the challenges
of applying such methods to specific domains and
languages. Overall, we will aim to provide a set
of best practices that will enable researchers and
practitioners to train methods for their domain and
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language of interest, from the nature of the training
data, to model architectures and hyper-parameter
settings.
Type of the tutorial: Cutting-edge.
Prior QA tutorials at ACL: The broader area of
question answering has been a staple of tutorials
at NLP conferences e.g. ACL 2018, ACL 2020.
In general, we will demonstrate that techniques
from open-domain QA cannot be directly applied
to perform QA on unseen new domains (Tang
et al., 2020; Castelli et al., 2020) and emphasize
the importance of domain-specific training is
necessary. This is the first tutorial to focus
specifically on multi-domain and multilingual
question answering, which has not been taught
anywhere before.

Breadth: The tutorial will cover 90% of
work from the QA, machine reading comprehen-
sion, domain adaptation and multilingual literature
and 10% of the presenters work.
Diversity: The tutorial will cover multilingual
work including discussions of large multilingual
pre-trained language models and QA examples in
different languages. We will also discuss how meth-
ods scale to different languages and domains, in-
cluding how much training data is necessary to
achieve a certain performance.
Prerequisites: Familiarity with Transformer mod-
els and pre-trained language models such as BERT.

2 Brief Tutorial Outline

This is a 3 hour tutorial: hence, we will divide our
time between the following novel topics:

2.1 First half: Multi-Domain QA

1. Open-Domain monolingual QA and its
limitations [20 mins]: We will begin our tu-
torial by introducing our audience to the exist-
ing work on open-domain QA (also known
as reading comprehension) and its recent
progress on benchmark tasks such as SQuAD
(Rajpurkar et al., 2016, 2018) and Natural
Questions (Kwiatkowski et al., 2019). We will
then survey work on monolingual QA: giv-
ing a brief historical background, discussing
the basic setup and core technical challenges
of the research problem, and then describe
modern datasets with the common evaluation
metrics and benchmarks. Finally, we will dis-
cuss their limitations when applied to unseen

closed domains e.g. movies, information tech-
nology (IT) or biomedical questions and moti-
vate the next section.

2. Introduce Multi-domain QA [20 mins]:
We will focus on several recent benchmark
datasets e.g. TechQA (Castelli et al., 2020)
and DoQA (Campos et al., 2020), which intro-
duce more realistic QA scenarios. The former
introduces a dataset and a leaderboard for IT
that comes with only a limited amount of train-
ing data. The latter requires strong domain
adaptation as QA systems are trained on the
“cooking” domain and tested by answering
questions about movies and travel. DoQA is
rather challenging as QA systems need to take
narrative context into consideration, which
most reading comprehension systems do not.
We will furthermore discuss recent datasets
such as CovidQA (Tang et al., 2020), which
focus on emerging domains that are of practi-
cal importance.

3. Modeling and Evaluation [30 mins]: Fi-
nally, we will focus on various initial baselines
which can be adopted to achieve impressive
results via transfer learning on top of large
pre-trained language models such as BERT
(Devlin et al., 2019). We will also discuss
the evaluation methodology including the var-
ious metrics that measure document retrieval
and QA performance. Finally, we give an
overview of many practical ways to adapt to
another domain such as via in-domain pre-
training and task-adaptive pretraining, which
improves performance by adapting to a task’s
unlabeled data (Gururangan et al., 2020).

2.2 Coffee Break: [30 mins]
2.3 Hour 2: Multilingual QA and open

research problems
1. From Mono to large Multilingual Lan-

guage Models [15 mins]: In this half we
will first survey some of the large multilingual
language models e.g. mBERT (Devlin et al.,
2019), XLM (Conneau and Lample, 2019),
XLM-R (Conneau et al., 2019), M4 (Arivazha-
gan et al., 2019). We will show how they have
helped close the gap on cross-lingual tasks by
introducing zero-shot cross-lingual learning.

2. Multilingual QA [40 mins]: Then we will
give a comprehensive overview of several
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non-English multilingual question answering
datasets and systems such as DuReader (He
et al., 2018) and DRCD (Shao et al., 2018) in
Chinese, ARCD (Mozannar et al., 2019) in
Arabic, multi-domain QA (Gupta et al., 2018)
in Hindi-English, and visual QA (Gao et al.,
2016) in Chinese-English. We distinguish be-
tween datasets that have been created by ob-
taining naturally occurring data in a language
or via translations from SQuAD into Korean
(Lee et al., 2018; Li et al., 2018), French
and Japanese (Asai et al., 2018) and Italian
(Croce et al., 2019). Recent datasets such
as XQuAD (Artetxe et al., 2020) and MLQA
(Lewis et al., 2020) cover more languages
while the recently introduced TyDiQA (Clark
et al., 2020) and MKQA (Longpre et al., 2020)
can be seen as multilingual counterparts to
Natural Questions. Three of these datasets
are part of XTREME (Hu et al., 2020), a mas-
sively multilingual benchmark for testing the
cross-lingual generalization ability of state-of-
the-art methods. While state-of-the-art mod-
els have matched or surpassed human perfor-
mance in general-purpose monolingual bench-
marks such as GLUE (Wang et al., 2019),
current methods still fall short of human per-
formance on multilingual benchmarks, de-
spite recent gains (Chi et al., 2020). Multi-
lingual question answering consequently is
at the frontier of such cross-lingual general-
ization. We will generally aim to highlight
the settings where current methods fail, show-
ing validation examples in different languages,
and highlight best practices of how methods
can be adapted to better deal with them.

3. Open research problems [25 mins]: Finally,
we will discuss challenges and promising re-
search directions for multi-domain and multi-
lingual question answering.

3 Goals

3.1 What are the objectives of the tutorial?
Firstly, to familiarize the audience with the task of
monolingual question answering and latest bench-
marks on open-domain QA. We furthermore aim
to raise awareness of the challenges of QA across
multiple domains and languages, to demonstrate
the usefulness of adapting models to such settings,
and to teach best practices for different adaptation
scenarios.

3.2 Why is this tutorial important to include
at ACL?

Multi-domain and multilingual question answering
is a key technology to deal with emerging topics
and challenges around the world such as COVID-
19 (Tang et al., 2020). We expect that being familiar
and having access to the toolkit of multi-domain
multilingual QA will both enable researchers to
make progress on fundamental challenges and al-
low practitioners to leverage research advances in
real-world applications. In addition, highlighting
challenges and introducing the audience to tech-
niques for adapting QA models to other languages
may contribute to a broader, less English-centric
research landscape.

4 Presenters

• Name: Sebastian Ruder
Affiliation: DeepMind
Email: sebastian@ruder.io
Website: http://ruder.io
Sebastian is a research scientist at DeepMind
where he works on transfer learning and mul-
tilingual natural language processing. He has
been area chair in machine learning and mul-
tilinguality for major NLP conferences in-
cluding ACL and EMNLP and has published
papers on multilingual question answering
(Artetxe et al., 2020; Hu et al., 2020). He was
the Co-Program Chair for EurNLP 2019 and
has co-organized the 4th Workshop on Repre-
sentation Learning for NLP at ACL 2019. He
has taught tutorials on “Transfer learning in
natural language processing” and “Unsuper-
vised Cross-lingual Representation Learning“
at NAACL 2019 and ACL 2019 respectively.
He has also co-organized and taught at the
NLP Session at the Deep Learning Indaba
2018 and 2019.

Section: Sebastian will teach Multilingual
QA during this tutorial (Second 1 1/2 hrs).

• Name: Avirup Sil
Affiliation: IBM Research AI
Email: avi@us.ibm.com
Website: http://ibm.biz/avirupsil
Avi is a Research Scientist and the Team
Lead for Question Answering in the Mul-
tilingual NLP group at IBM Research AI.
His team (comprising of research scientists
and engineers) works on research on indus-
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try scale NLP and Deep Learning algorithms.
His team’s system called ‘GAAMA’ has ob-
tained the top scores in public benchmark
datasets (Kwiatkowski et al., 2019) and has
published several papers on question answer-
ing (Chakravarti et al., 2019; Castelli et al.,
2020; Glass et al., 2020). He is also the Chair
of the NLP professional community of IBM.
Avi is a Senior Program Committe Member
and the Area Chair in Question Answering for
major NLP conferences e.g. ACL, EMNLP,
NAACL and has published several papers on
Question Answering. He has taught a tutorial
at ACL 2018 on “Entity Discovery and Link-
ing”. He has also organized the workshop on
the “Relevance of Linguistic Structure in Neu-
ral NLP” at ACL 2018. He is also the track
coordinator for the Entity Discovery and Link-
ing track at the Text Analysis Conference.

Section: Avi will teach Multi-domain QA dur-
ing this tutorial (First 1 1/2 hrs).
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Abstract

Recent studies show that many NLP systems
are sensitive and vulnerable to a small pertur-
bation of inputs and do not generalize well
across different datasets. This lack of robust-
ness derails the use of NLP systems in real-
world applications. This tutorial aims at bring-
ing awareness of practical concerns about NLP
robustness. It targets NLP researchers and
practitioners who are interested in building re-
liable NLP systems. In particular, we will re-
view recent studies on analyzing the weakness
of NLP systems when facing adversarial in-
puts and data with a distribution shift. We will
provide the audience with a holistic view of
1) how to use adversarial examples to examine
the weakness of NLP models and facilitate de-
bugging; 2) how to enhance the robustness of
existing NLP models and defense against ad-
versarial inputs; and 3) how the consideration
of robustness affects the real-world NLP appli-
cations used in our daily lives. We will con-
clude the tutorial by outlining future research
directions in this area.

Type of Tutorial: Cutting edge.

1 Tutorial Description

Recent advances in data-driven machine learning
techniques such as deep neural networks have rev-
olutionized natural language processing. In partic-
ular, modern natural language processing (NLP)
systems have achieved outstanding performance on
various tasks such as question answering, textual
entailment, language generation. In many cases,
they even achieve higher performance than inter-
annotator agreement on benchmark datasets. It
may be tempting to conclude from results on these
datasets that current systems are as good as humans
at these NLP tasks.

Despite the remarkable success, recent studies
show that these systems often rely on spurious

correlations and fail catastrophically when given
inputs from different sources or inputs that have
been adversarially perturbed. For example, Jia and
Liang (2017) shows that state-of-the-art reading
comprehension systems fail to answer questions
about paragraphs that contain adversarially inserted
sentences, which are automatically generated to
distract computer systems without changing the
correct answer. Similarly, a series of studies (e.g.,
(Ribeiro et al., 2018; Alzantot et al., 2018; Iyyer
et al., 2018)) demonstrate that text classification
models are not robust against adversarial examples
that generated by synonym substitution, paraphras-
ing, and inserting/deleting characters in the text
input. This lack of robustness exposes troubling
gaps in current models’ language understanding ca-
pabilities and creates problems when NLP systems
are deployed to real users.

As NLP systems are increasingly integrated into
people’s daily lives and directly interact with end-
users, it is essential to ensure their reliability. For
example, systems that flag hateful social media
content for review must be robust to adversaries
who wish to evade detection (Hosseini et al., 2017).
Defending against these threats requires building
systems that are robust to whatever alterations an
attacker might apply to text in order to achieve the
desired classifier behavior. Besides, even if sys-
tems perform well on user queries on average, rare
but catastrophic errors can lead to serious issues. In
2017, Facebook’s machine translation system mis-
takenly translated an Arabic Facebook post with
the message “Good morning” into a Hebrew phrase
that meant “Attack them” (Berger, 2017). As a re-
sult, the Israeli police arrested the man who made
the post and detained him for several hours until the
misunderstanding is resolved. Therefore, deployed
systems must avoid egregious errors like wrongly
translating non-violent messages into violent ones
and should be tested on “worst-case” non-violent
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messages.
In this tutorial, we will review the history of

adversarial example generation and methods for
enhancing robustness of NLP systems. In particu-
lar, we will present recent community effort in the
following topics:

• Algorithms for generating adversarial exam-
ples to “debug” NLP systems. We will cover
a variety of approaches such as synonym sub-
stitution, syntactically controlled paraphras-
ing, character-level adversarial attacks and
many applications, including sentiment anal-
ysis, textural entailment, question answering,
and machine translation.

• Robustness to spurious correlations and meth-
ods for mitigating dataset bias.

• Adversarial data generation for collecting
datasets.

• Certified robustness in NLP.

• Debugging and behavior testing of NLP mod-
els by adversarial and automatic data genera-
tion.

• Lessons and discussion on how to build reli-
able, accountable NLP systems.

The tutorial will bring researchers and practition-
ers to be aware of the robustness issues of NLP
systems and encourage the research community
to propose innovative solutions to develop robust,
reliable, and accountable NLP systems.

2 Detail Outline

This tutorial presents a systematic overview of fron-
tier approaches to generating adversarial examples
to facilitate behavior testing and debugging of NLP
systems. We will also review the studies revealing
that NLP models make predictions based on spu-
rious correlations learned in the data and discuss
approaches to enhancing their robustness. We will
motivate the discussion using various NLP tasks
and will outline emerging research challenges on
this topic at the end of the tutorial. The detailed
contents covered in the tutorial are outlined below.

Motivation
We will motivate the audience by demonstrating
practical examples where NLP systems are brit-
tle to adversarial examples and data distributional

shifts. Then, we will outline the challenges of
building reliable and robust NLP systems.

Generating Adversarial Examples for Text
Classification

Many NLP problems such as document categoriza-
tion, sentiment analysis and textual entailment can
be modeled as a text classification task. However,
recent studies show that by slightly modifying a
correctly classified example can cause the high-
performing models to misclassify. We will discuss
various algorithms for generating such adversarial
examples and how these examples can be used to
test the behaviors of models and facilitate debug-
ging.

Certified Robustness and Defending against
Adversarial Attacks in NLP

Next, we will discuss methods for enhancing mod-
els against adversarial examples. Ensuring robust-
ness to seemingly simple perturbations, such as ty-
pos or synonym replacements, is already challeng-
ing. In particular, since multiple parts of a sentence
may be perturbed independently, there is a com-
binatorially large space of possible perturbations.
We will discuss methods that augment training data
with adversarial examples as well as methods that
produce certificates of robustness. The latter enjoy
computationally tractable guarantees that a model
is correct on every allowed perturbation of a given
input.

Robustness to Spurious Correlations

Aside from adversarial attacks, current models are
also prone to spurious correlations, i.e. predictive
patterns that work well on a specific dataset but
do not hold in general. As a result, models fail
under a mild distribution shift. In this part, we will
discuss methods that guard against known spurious
correlations in the data and the robustness of large-
scale pre-trained models.

Adversarial data collection

Given the flaws in existing datasets, it seems likely
that building robust NLP models will also require
better ways to collect training data. In this part,
we will discuss recent work that collects datasets
using an adversarial data generation process, typ-
ically involving humans in the loop. We will also
discuss connections with classical active learning
approaches to data collection.
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Adversarial Trigger and Text Generation
While most of the discussion in the tutorial focuses
on natural language understanding, many language
generation systems directly interact with end users
and ensuring their robustness is equivalently impor-
tant. In this part, we will discuss robustness issues
in language generation tasks. We will also intro-
duce adversarial triggers, input-agnostic sequences
of tokens that trigger a model to produce a specific
prediction when concatenated to any input from a
dataset, and its application in conditional language
generation.

Conclusion, Future Directions, and Discussion
We will conclude the tutorial by discussing future
directions to promote robustness in NLP.

3 Reading List

While the tutorial will include our own
work (Alzantot et al., 2018; Shi et al., 2019;
Pezeshkpour et al., 2019; Ribeiro et al., 2020,
2018; Jia and Liang, 2017; Jia et al., 2019; Jones
et al., 2020; He et al., 2019; Tu et al., 2020;
Wallace et al., 2019a), we anticipate that roughly
60% of the tutorial content will pull from work by
other researchers in NLP and machine learning
communities, including (Huang et al., 2019; Ye
et al., 2020; Nie et al., 2020; Wallace et al., 2019b;
Pruthi et al., 2019; Zellers et al., 2018; Ren et al.,
2019; Zhang et al., 2019; Belinkov et al., 2019;
Chen et al., 2018; Zheng et al., 2020; Cheng
et al., 2019; Hsieh et al., 2019; Abdou et al., 2020;
Karimi Mahabadi et al., 2020; Karpukhin et al.,
2019; Murray and Chiang, 2018; Iyyer et al., 2018;
Ebrahimi et al., 2018). A more comprehensive
list of related papers will be provided before the
tutorial.

4 Prerequisite Knowledge

Our target audience is general NLP conference at-
tendances; therefore, no specific knowledge is as-
sumed of the audience except basic machine learn-
ing and NLP background:

• Understand derivatives and gradient decent
methods as found in introductory Calculus.

• Understand the basic supervised learning
paradigm and commonly used machine learn-
ing models such as logistic regression and
deep neural networks.

• Familiar with common natural language pro-
cessing concepts (e.g., parse trees, word rep-
resentation) as found in an introductory NLP
course.

5 Tutorial Instructors

Our instructors consist of experts who have con-
ducted research in different aspects related to the
tutorial topic.

Kai-Wei Chang Kai-Wei Chang is an assistant
professor in the Department of Computer Science
at the University of California Los Angeles. His re-
search interests include designing robust, fair, and
accountable machine learning methods for building
reliable NLP systems (e.g., (Alzantot et al., 2018;
Shi et al., 2019)). His awards include the EMNLP
Best Long Paper Award (2017), the KDD Best Pa-
per Award (2010), and the Sloan Resaerch Fellow-
ship (2021). Kai-Wei has given tutorials at NAACL
15, AAAI 16, FAccT18, EMNLP 19, AAAI 20,
MLSS 21 on different research topics. Additional
information is available at http://kwchang.net.

He He He He is an assistant professor in the De-
partment of Computer Science and the Center for
Data Science at the New York University. Her re-
search interests include reliable natural language
generation and robust learning algorithms that
avoid spurious correlations in the data (e.g., (He
et al., 2019; Tu et al., 2020)). She has given tutori-
als at NAACL 15 and EMNLP 19. Additional infor-
mation is available at http://hhexiy.github.io.

Robin Jia Robin Jia is currently a visiting re-
searcher at Facebook AI Research, and will be an
assistant professor in the Department of Computer
Science at the University of Southern California
starting in the Autumn of 2021. His research fo-
cuses on making natural language processing mod-
els robust to unexpected test-time distribution shifts
(e.g., (Jia and Liang, 2017; Jia et al., 2019). Robin’s
work has received an Outstanding Paper Award at
EMNLP 2017 and a Best Short Paper Award at
ACL 2018. Additional information is available at
https://robinjia.github.io.

Sameer Singh Sameer Singh is an Assistant Pro-
fessor of Computer Science at the University of
California, Irvine. He is working on large-scale
and interpretable machine learning models for NLP
(e.g., (Wallace et al., 2019a; Pezeshkpour et al.,
2019)). His work has received paper awards at
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ACL 2020, AKBC 2020, EMNLP 2019, ACL 2018,
and KDD 2016. Sameer presented the Deep Ad-
versarial Learning Tutorial (Wang et al., 2019) at
NAACL 2019 and the Mining Knowledge Graphs
from Text Tutorial at WSDM 2018 and AAAI 2017,
along with tutorials on Interpretability and Expla-
nations in upcoming NeurIPS 2020 and EMNLP
2020. Sameer has also received teaching awards at
UCI. Website: http://sameersingh.org/

References
Mostafa Abdou, Vinit Ravishankar, Maria Barrett,

Yonatan Belinkov, Desmond Elliott, and Anders
Søgaard. 2020. The sensitivity of language models
and humans to Winograd schema perturbations. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics.

Moustafa Alzantot, Yash Sharma, Ahmed Elgohary,
Bo-Jhang Ho, Mani Srivastava, and Kai-Wei Chang.
2018. Generating natural language adversarial ex-
amples. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Process-
ing.

Yonatan Belinkov, Adam Poliak, Stuart Shieber, Ben-
jamin Van Durme, and Alexander Rush. 2019. On
adversarial removal of hypothesis-only bias in natu-
ral language inference. In Proceedings of the Eighth
Joint Conference on Lexical and Computational Se-
mantics (*SEM 2019).

Y. Berger. 2017. Israel arrests palestinian be-
cause facebook translated ‘good morning’ to
‘attack them’. https://www.haaretz.com/israel-
news/palestinian-arrested-over-mistranslated-good-
morning-facebook-post-1.5459427.

Hongge Chen, Huan Zhang, Pin-Yu Chen, Jinfeng Yi,
and Cho-Jui Hsieh. 2018. Attacking visual language
grounding with adversarial examples: A case study
on neural image captioning. In Proceedings of the
56th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers).

Minhao Cheng, Wei Wei, and Cho-Jui Hsieh. 2019.
Evaluating and enhancing the robustness of dialogue
systems: A case study on a negotiation agent. In
Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers).

Javid Ebrahimi, Daniel Lowd, and Dejing Dou. 2018.
On adversarial examples for character-level neural
machine translation. In Proceedings of the 27th In-
ternational Conference on Computational Linguis-
tics.

He He, Sheng Zha, and Haohan Wang. 2019. Unlearn
dataset bias in natural language inference by fitting

the residual. In Proceedings of the 2nd Workshop on
Deep Learning Approaches for Low-Resource NLP
(DeepLo 2019).

H. Hosseini, S. Kannan, B. Zhang, and R. Pooven-
dran. 2017. Deceiving Google’s Perspective API
built for detecting toxic comments. arXiv preprint
arXiv:1702.08138.

Yu-Lun Hsieh, Minhao Cheng, Da-Cheng Juan, Wei
Wei, Wen-Lian Hsu, and Cho-Jui Hsieh. 2019. On
the robustness of self-attentive models. In Proceed-
ings of the 57th Annual Meeting of the Association
for Computational Linguistics.

Po-Sen Huang, Robert Stanforth, Johannes Welbl,
Chris Dyer, Dani Yogatama, Sven Gowal, Krish-
namurthy Dvijotham, and Pushmeet Kohli. 2019.
Achieving verified robustness to symbol substitu-
tions via interval bound propagation. In Proceed-
ings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP).

Mohit Iyyer, John Wieting, Kevin Gimpel, and Luke
Zettlemoyer. 2018. Adversarial example generation
with syntactically controlled paraphrase networks.
In Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long Papers).

Robin Jia and Percy Liang. 2017. Adversarial exam-
ples for evaluating reading comprehension systems.
In Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing.

Robin Jia, Aditi Raghunathan, Kerem Göksel, and
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Abstract

This tutorial surveys the latest technical
progress of syntactic parsing and the role
of syntax in end-to-end natural language
processing (NLP) tasks, in which semantic
role labeling (SRL) and machine translation
(MT) are the representative NLP tasks that
have always been beneficial from informative
syntactic clues since a long time ago, though
the advance from end-to-end deep learning
models shows new results. In this tutorial,
we will first introduce the background and
the latest progress of syntactic parsing and
SRL/NMT. Then, we will summarize the key
evidence about the syntactic impacts over
these two concerning tasks, and explore the
behind reasons from both computational and
linguistic background.

1 Tutorial Content

Syntax is the insightfulness about formal relative
position inside languages, whose mathematical
formalism was pioneered by Chomsky (1957).
Syntactic parsing has been enduring for a
significant progress since deep learning was
fully introduced into natural language processing
(NLP). We identify two development stages for
parsing techniques by considering whether deep
learning was involved or not. For the parsers
that were built on traditional machine learning
models, most work focus on designing better
search algorithms or better structural modeling
about syntax, while few ever consider feature
engineering. For the parsers using deep learning
models, most work turn to more effective
and more salient representations, following the
same structural formalization since the times
of traditional parsers. We observe a series
of significant performance improvement since
2014 (Chen and Manning, 2014; Dozat and
Manning, 2017). In this part, we will survey

the key language representation improvement
for syntactic parsing. In general, syntactic
information contributes to other end-to-end NLP
tasks, such as SRL and MT. We summarize the
contribution of syntax to SRL and MT in Table 1.
Syntax in SRL. SRL or semantic parsing as a
computational job started since different semantic
annotated datasets were released in recent two
decades, which is trained by using PropBank
such as Palmer et al. (2005). During treebank
annotation, the semantic annotation may be
naturally assigned onto syntactic constituents, so
that it makes sense that the latter may help
the former in either of linguistic explanation or
machine learning procedure. Considering syn-
tactic information helps or not, the performance
variation of SRL may range about 5-10% in
terms of traditional models. However, there
has come new results since end-to-end SRL was
proposed. Nearly all state-of-the-art SRL models,
either span or dependency, have been based on
LSTM backbone since Zhou and Xu (2015a).
We attribute such a change of syntactic role
to the effective distributional and contextualized
representation offered by the LSTM from word
embedding. Note that word embedding may have
both syntactic and semantic sense.

Since the method by Zhou and Xu (2015b)
and Marcheggiani et al. (2017), deep-learning-
based SRL has obtained much less contribution
from syntactic input. For either span or
dependency SRL, deep models receive a less than
2% performance improvement even when perfect
syntax (gold syntax labels) is introduced as shown
by He et al. (2017a) and He et al. (2018a). We
re-implemented the model of Li et al. (2019)
and introduced a syntactic constraint in their span
selection from a strong parser, which indicates
that stronger syntax-agnostic models receive less
enhancement from syntax information.
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Tasks Attention Mechanism PreLM Syntax Effectiveness
attention self-attention biaffine

Syntactic parsing ++ ++ ++

SRL ++ ++
++ ++ + ++

NMT RNN ++ 0 + ++
Self-attention ++ 0 - -

Table 1: Role of different technical factors for the three NLP tasks. “++” denotes the significant performance
contribution when used alone; “+” denotes the moderate contribution; “0” denotes mainly studies in zero/low-
resource scenarios; “-” denotes negative or little impact. The mark in the rightmost column indicates whether it is
overall effective when all marked factors to the left are combined.

Syntax in MT also endures a methodology
change from statistical machine translation (SMT)
(Brown et al., 1993) to neural machine translation
(NMT) (Sutskever et al., 2014; Bahdanau et al.,
2015) as the task of SRL. For typical SMT,
besides phrase based SMT (Och et al., 1999;
Koehn et al., 2003), syntactic (tree) based methods
have been well developed (Yamada and Knight,
2001; Mi et al., 2008). In some scenarios,
especially when the domain of the MT corpus
is similar to the domain of the parsing corpus,
the performance of tree based SMT is better than
phrase based SMT (Koehn, 2009). For NMT, it so
far achieves significant progress by using end-to-
end based structure since 2014 (Sutskever et al.,
2014; Bahdanau et al., 2015). Recently, self-
attention based transformer (Vaswani et al., 2017)
has become new state-of-the-art architecture in
NMT and gives a series of new state-of-the-art
benchmarks (Bojar et al., 2018; Marie et al., 2018;
Wang et al., 2018a; Marie et al., 2019). Syntax
information has been shown that it can improve
the performances of the recurrent neural network
(RNN) based NMT on conditions (Eriguchi et al.,
2016, 2017; Chen et al., 2017a; Li et al., 2017; Wu
et al., 2017; Chen et al., 2017b, 2018). However,
so far it has not been shown significantly widely
useful in self-attention based NMT. There are only
a few work (Ma et al., 2019) adopted the syntactic
information into the positional embedding of
Transformer. We will give a detailed analysis on
this issue by surveying the key technique details.

Linguistic in MT. In addition, we will investigate
why linguistic cognition and prior knowledge can
enhance the control of the dominant end-to-end
neural framework, which makes the translation
between a language pair proceed according to
the expected and interpretable way. On one
hand, linguistic cognition enables translation
model (1) to reduce translation errors that violate

common sense, such as over/under-translation
questions (Tu et al., 2016), troublesome words
modeling (Zhao et al., 2018b) and so on; (2)
to have some basic abilities of human translator,
for example, word importance modeling (Chen
et al., 2020), translation refinement (Song et al.,
2020), structured information (Xu et al., 2020),
diverse feature (Chen et al., 2020) and so on.
On the other hand, linguistic prior knowledge
(i.e. alignment, bilingual lexicon, phrase table,
and knowledge graphs) to alleviate the problem
of inadequacy target translations which are caused
by the language model property of the encoder-
decoder framework (Feng et al., 2017; Zhang
et al., 2017; Zhao et al., 2018a; Wang et al.,
2018b). Moreover, linguistic differences between
the source language and target language can learn
natural language representations that are easy to be
understood by the translation model, for example,
word order difference (Chen et al., 2019; Ding
et al., 2020), morphological differences (Ji et al.,
2019) and so on. Meanwhile, linguistic shared
feature between the source language and target
language can also enhance the understanding
and generation of natural language in MT, for
example, shared words (Artetxe et al., 2018),
image information (Yin et al., 2020), video
information (Wang et al., 2020) and so on.

2 Relevance to the Computational
Linguistics Community

The topics included in this tutorial, i.e., syntax
parsing, SRL, and MT, are all the classic ones to
the entire NLP/CL community. This tutorial is
primarily towards researchers who have a basic
understanding of deep learning based NLP. We
believe that this tutorial would help the audience
more deeply understand the relationship between
three classic NLP tasks, i.e., syntax parsing and
SRL/MT.
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Presenter: Hai Zhao Presenter: Rui Wang and Kehai Chen
1. Syntactic Parsing (50 min) 3. Syntax in MT (40 min) 4. Summary (20 min)
1.1 Traditional syntactic parsing 3.1 Basics of MT 4.1 Conclusion
1.2 Neural syntactic parsing 3.2 Syntax in RNN-based MT 4.2 Future trends
1.3 Basic of end-to-end NLP 3.3 Syntax in self-attention based MT
2. Syntax in SRL (40 min) 4.Linguistic in MT (30 min)
2.1 Basic of SRL 4.1 Linguistic cognition for MT
2.2 Linguistic, Syntax, and Semantics 4.2 Linguistic prior knowledge for MT
2.3 Syntax in end-to-end base SRL

Coffee Break (30 min)

Table 2: Tutorial outlines

3 Type of the Tutorial: Cutting-edge

We introduce the cutting-edge technologies.

4 Tutorial Outlines

We will present our tutorial in three hours. The
detailed tutorial outlines are shown in Table 1.

5 Breadth

20-30% of the tutorial covers work by the tutorial
presenters and 70-80% by other researchers.

6 Diversity Considerations

N/A

7 Specification of Any Prerequisites for
the Attendees

This tutorial is primarily aimed at researchers who
have a basic understanding of NLP.

8 Small reading list

• Deep Learning: Deep learning (LeCun et al.,
2015)

• Syntactic Parsing: Deep biaffine attention
for neural dependency parsing (Dozat and
Manning, 2016) and Constituency parsing
with a self-attentive encoder (Kitaev and
Klein, 2018).

• SRL: Syntax for semantic role labeling, to
be, or not to be (He et al., 2018b) and
Deep semantic role labeling: What works
and whats next (He et al., 2017b).

• Machine Translation: Statistical machine
translation (Koehn, 2009) and Neural ma-
chine translation by jointly learning to align
and translate (Bahdanau et al., 2015).

9 Presenters

1. Dr. Hai Zhao, Professor, Department of
Computer Science and Engineering, Shanghai Jiao
Tong University, China.
zhaohai@cs.sjtu.edu.cn

http://bcmi.sjtu.edu.cn/˜zhaohai

His research interest is natural language
processing. He has published more than 120
papers in ACL, EMNLP, COLING, ICLR, AAAI,
IJCAI, and IEEE TKDE/TASLP. He won the
first places in several NLP shared tasks, such as
CoNLL and SIGHAN Bakeoff and top ranking in
remarkable machine reading comprehension task
leaderboards such as SQuAD2.0 and RACE.

He has taught the course “natural language
processing” in SJTU for more than 10 years. He
is ACL-2017 area chair on parsing, and ACL-
2018/2019 (senior) area chairs on morphology and
word segmentation.
2. Dr. Rui Wang, Tenured Researcher, Advanced
Translation Technology Laboratory, National
Institute of Information and Communications
Technology (NICT), Japan
wangrui.nlp@gmail.com

https://wangruinlp.github.io

His research focuses on machine translation
(MT), a classic task in NLP. His recent interests
are traditional linguistic based and cutting-edge
machine learning based approaches for MT. He
(as the first or the corresponding authors) has
published more than 30 MT papers in top-tier
NLP/ML/AI conferences and journals, such as
ACL, EMNLP, ICLR, AAAI, IJCAI, IEEE/ACM
transactions, etc. He has also won several first
places in top-tier MT shared tasks, such as WMT-
2018, WMT-2019, WMT-2020, etc.

He has given several tutorial and invited talks in
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conferences, such as CWMT, CCL, etc. He served
as the area chairs of ICLR-2021 and NAACL-
2021.
3. Dr. Kehai Chen, Postdoctoral Researcher,
Advanced Translation Technology Laboratory,
National Institute of Information and Communi-
cations Technology (NICT), Japan
khchen@nict.go.jp
https://chenkehai.github.io

His research focuses on linguistic-motivated
machine translation (MT), a classic NLP task in
AI. He has published more than 20 MT and NLP
papers in top-tier NLP/ML/AI conferences and
journals, such as ACL, ICLR, AAAI, EMNLP,
IEEE/ACM Transactions on Audio, Speech, and
Language Processing, ACM Transactions on
Asian and Low-Resource Language Information
Processing, etc. He served as a senior program
committee of AAAI-2021.

10 Previous Venues and Approximate
Audience Sizes

There are some tutorials focusing on single NLP
tasks, such as NMT in ACL-2016/IJCNLP-2018,
semantic parsing in ACL-2018. In particular,
the NMT tutorial at ACL-2016 (with around 800
registrations) had attracted around 150 attendees
and the one at IJCNLP-2017 (with around 300
registrations) had attracted around 40 attendees.

Our tutorial will become the first one that
explores the relationship between syntactic impact
and end-to-end NLP tasks. As our topic is rather
broader, we hope that this tutorial will attract
around 100-200 attendees.

11 Special Requirements

None

12 Preferable Venue(s)

ACL-IJCNLP/EMNLP/NAACL-HLT/EACL

13 Open Access

Yes
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