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Abstract

With counterfactual bandit learning, models
can be trained based on positive and negative
feedback received for historical predictions,
with no labeled data needed. Such feedback
is often available in real-world dialog systems,
however, the modularized architecture com-
monly used in large-scale systems prevents the
direct application of such algorithms. In this
paper, we study the feedback attribution prob-
lem that arises when using counterfactual ban-
dit learning for multi-domain spoken language
understanding. We introduce an experimental
setup to simulate the problem on small-scale
public datasets, propose attribution methods
inspired by multi-agent reinforcement learning
and evaluate them against multiple baselines.
We find that while directly using overall feed-
back leads to disastrous performance, our pro-
posed attribution methods can allow training
competitive models from user feedback.

1 Introduction

Spoken language understanding (SLU) is a key
component of task-oriented dialog systems (Tur
and De Mori, 2011). It is commonly modeled as
two tasks: Intent classification (IC), which assigns
an intent to an utterance, and slot labeling (SL),
which recognizes boundaries and types of slots
in the utterance’s tokens. In recent years, neural
models that jointly learn both tasks, in combination
with pre-trained transformers (Chen et al., 2019;
Zhang et al., 2019), have become the state-of-the-
art approach to SLU (Louvan and Magnini, 2020;
Weld et al., 2021). However, a sufficient amount of
manually labeled data is needed for fine-tuning.

If dialog systems are actively used, a cost-
efficient alternative to manually labeled data is to
leverage user feedback, which can appear explicitly
(e.g. "no stop", "thank you") and implicitly (e.g.
retries, interruptions). Such positive and negative
feedback in response to a prediction is known as
bandit feedback. Compared to ground truth labels

it is less informative, as negative feedback does
not reveal which prediction would have been better,
but on the other hand, it is available in large quanti-
ties without manual effort. Recent work proposed
multiple possible ways in which such feedback can
be used to improve dialog systems (Muralidharan
et al., 2019; Ponnusamy et al., 2020; Kim and Kim,
2020; Falke et al., 2020). In this work, we focus
on leveraging it via counterfactual bandit learning,
a well-studied approach for training models with
historical bandit feedback (Langford et al., 2008;
Dudík et al., 2011; Joachims et al., 2018).

The key challenge addressed in this paper is
the feedback attribution problem arising in large-
scale multi-domain SLU systems (see Figure 1).
In such systems, a common architecture is to com-
bine domain-specific IC and SL models with a do-
main classifier (DC) (Jeong and Lee, 2009; Xu and
Sarikaya, 2014; Hakkani-Tür et al., 2016), which
allows to more easily update domain-specific be-
havior regularly without being bottlenecked by a
single joint model. However, for the bandit learn-
ing setting, this introduces additional challenges:
Given negative feedback for a combined prediction,
it is unclear which individual model caused the er-
ror, and thus how to use the feedback for training.
If it is given directly to all models, already correct
predictions will be penalized. A three-fold attribu-
tion problem, consisting of task-level, domain-level
and token-level attribution (see Section 3.2), needs
to be solved to use the feedback effectively.

In this paper, we make several contributions to
address the feedback attribution problem: First, we
propose an experimental setup based on SNIPS
(Coucke et al., 2018) and TOP (Schuster et al.,
2019) to simulate the problem on small-scale public
datasets. Second, we propose first attribution meth-
ods inspired by multi-agent reinforcement learning.
And third, we evaluate them against multiple base-
lines on the two datasets. We find that while using
the overall feedback without attribution leads to dis-
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Figure 1: In modularized multi-domain SLU systems, a domain classifier (DC) is combined with multiple domain-
specific intent classification (IC) and slot labeling (SL) models to interpret an utterance. Given utterance-level
negative user feedback, it needs to be attributed (FA) to the individual models to effectively use it for training.

astrous performance, the proposed attribution meth-
ods allow learning competitive models if the logged
feedback data contains sufficient exploration.

2 Counterfactual Bandit Learning

In counterfactual bandit learning, we have ac-
cess to a dataset of n tuples of bandit feedback
(xi, yi, pi, δi) collected by a logging policy1 π0. In
each tuple, yi is the prediction made by π0 for
input xi with probability pi = π0(yi|xi), called
propensity, and δi is the feedback received for that
prediction. We assume δi ∈ R and higher is better.
The goal is to find a new policy π that maximizes
the expected feedback of that policy:

R(π) = E
x∼P (X)

E
y∼π(Y |x)

δ(x, y) (1)

Given the bandit dataset, we can estimate R(π) via
importance sampling with the inverse propensity
scaling (IPS) estimator (Langford et al., 2008):

R̂IPS(π) =
1

n

n∑
i=1

δi
π(yi|xi)
pi

(2)

Note that Eq. 2 relies only on the logged predic-
tion yi for which feedback was given. This makes
it possible to use the partial bandit feedback di-
rectly to train a classifier. It is different from super-
vised learning, which instead requires access to the
ground truth label y∗i (see Eq. 3).

Several improvements to the IPS estimator have
been proposed to learn more effectively, includ-
ing adding self-normalization (Swaminathan and
Joachims, 2015; Joachims et al., 2018) or by com-
bining IPS with a direct feedback estimation mod-
els (Dudík et al., 2011; Wang et al., 2019). We

1We use policy and model interchangeably in this paper.

rely on vanilla IPS for our experiments, but make
no assumptions that would prevent using a more
advanced bandit learning method instead.

A crucial assumption of most counterfactual ban-
dit learning methods is that the logging policy is
stochastic, i.e. feedback is for predictions that were
sampled from π0 and thus cover different labels
for the same input. However, real-world systems,
as Lawrence et al. (2017) points out, typically use
argmax predictions to deliver the best possible user
experience in each case, which limits the amount
of exploration that is present in historical data. In
their work, they find that counterfactual learning
can be possible even with fully deterministic log-
ging policies (Lawrence et al., 2017; Lawrence and
Riezler, 2018). For the case of multi-domain SLU,
we address that question in this work.

3 Application to Multi-Domain SLU

The goal of SLU is to predict, given an utterance x
with T tokens, its domain yD, intent yI and token-
wise slot labels (ySt )

T
t=1. In the modularized multi-

domain setup considered here, such predictions are
produced by a DC model πD and domain-specific
IC and SL models πI,d and πS,d (see Figure 1). At
inference time, the IC and SL predictions of the top
domain predicted by DC are used as the prediction.

3.1 Supervised Training

Given a dataset of examples with ground truth la-
bels DS = {(xi, y∗Di , y∗Ii , (y

∗S
i,t )

Ti
t=1}ni=1, the mod-

els in the multi-domain setting can be trained as
follows: For the DC model, all examples of DS are
used, and for each domain-specific IC or SL model,
the subset of examples of that domain, defined by
y∗Di , is used. The standard loss to train πD, πI,d
and πS,d with such data is cross entropy, applied at
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the token level in the case of πS,d:2

LCE(π) = −
1

n

n∑
i=1

log(π(y∗i |xi)) (3)

3.2 Bandit Training and Attribution

In the bandit setting, we have instead a dataset
DB = {(xi, yDi , yIi , (ySi,t)

Ti
t=1, δi}ni=1 with overall

feedback δi (omitting logging propensities for read-
ability). It can be used to train the individual mod-
els πD, πI,d and πS,d by minimizing the negative
IPS estimate of Eq. 2 (at the token level for πS,d):

LIPS(π) = −R̂IPS(π) (4)

However, since δi is overall feedback, using it di-
rectly is problematic: If only some parts of the pre-
dicted labels are wrong, which is typically the case,
using the negative feedback directly to train all
models via Eq. 4 is detrimental for the already cor-
rect predictions. Three attribution challenges arise:
Feedback should be attributed to the responsible
model (task-level attribution) and sub-prediction
(token-level attribution for SL). In addition, it is
unclear which examples to use to train domain-
specific IC/SL models, as the true domain is un-
known (domain-level attribution). To cope with
these challenges, we aim to attribute by mapping
δi to fine-grained feedback δDi , δIi and (δSi,t)

Ti
t=1.

3.3 Attribution Methods

We propose and evaluate two methods for fine-
grained feedback attribution:

Propensity-based FA The first method relies on
the propensities of the logging policy, following
the idea that the policy might be self-aware of
some mistakes and reflects them in the propensities.
Given overall feedback δi and propensities pDi , p

I
i

and (pSi,t)
Ti
t=1, we attribute according to

δci = δi
1− pci

3− pDi − pIi − pSi
c ∈ {D, I, S} (5)

δSi,t = δSi
1− pSi,t∑(
1− pSi,t′

)Ti
t′=1

t ∈ [1, Ti] (6)

with pSi being the average of token-level propensi-
ties. This distributes the feedback proportional to
the uncertainty reflected in the propensities.

2For SL, a CRF loss is an alternative to token-level cross
entropy, but is not necessarily superior (Chen et al., 2019).

Advantage-based FA For the second method,
we follow the credit assignment idea of COMA
(Foerster et al., 2018, Eq. 4), a method for rein-
forcement learning in a multi-agent setting. It uses
an advantage function for each agent that subtracts
a baseline estimated based on a joint Q-function.

In our setup, this idea translates to using an over-
all feedback estimator f(x, yD, yI , (ySt ))→ δ and
using it in an advantage function as follows for DC:

δDi = f(xi, y
D
i , y

I
i , (y

S
i,t)

Ti
t=1)

−
∑
y′∈YD

wy′ · f(xi, y′, yIi , (ySi,t)
Ti
t=1) (7)

The second part of Eq. 7 computes the average
estimated feedback across a set of alternative do-
main predictions YD by replacing the original yDi
with the alternatives (and leaving the IC and SL
predictions constant). By subtracting this baseline
from the estimate for the originally predicted do-
main (first part of Eq. 7), we obtain the DC-specific
feedback δDi . If the original prediction was truly
better or worse than the alternatives, that difference
will be larger and can serve as a corresponding
model-specific feedback signal. If it made no dif-
ference however, δDi will be close to zero and the
attribution thereby reflects this irrelevance.

We use variations of Eq. 7 to also attribute to
IC and SL: While for DC, alternatives YD in Eq. 7
are all domains, we use for IC and SL the domain-
specific label space of intents and slots. For SL,
the equation is applied per token and we restrict
alternatives YS to the two highest-propensity labels
per token to limit computational complexity. We
test different weights wy′ (see Section 4).

Both FA methods are only applied if δi is negative
feedback, as positive feedback does not require
attribution. And finally, to address domain-level
attribution, we only use those examples that have
positive δDi after FA for IC and SL, as for other
examples it is unclear what domain to use them in.

4 Experiments

4.1 Setup

We use two English SLU benchmarks, SNIPS
(Coucke et al., 2018) and the English part of multi-
lingual TOP (Schuster et al., 2019). TOP has 34.7k
train/dev and 8.6 test examples spanning 12 intents
that are already grouped into 3 domains (Alarms,
Reminders, Weather). For SNIPS, which has 13.8k
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Method SNIPS TOP

DC-Acc IC-Acc SL-F1 Sem-Acc DC-Acc IC-Acc SL-F1 Sem-Acc

Log. Policy 97.48±0.6 96.97±0.5 79.14±1.1 57.87±2.3 99.57±0.1 97.30±0.3 87.36±3.6 76.07±4.4

Bandit Learning, feedback for argmax prediction

Overall 76.70±4.2 60.01±4.9 39.06±12.0 49.60±4.3 92.29±6.4 79.40±5.5 62.49±9.5 74.78±5.2

Positive 98.66±0.2 98.22±0.3 89.51±0.5 78.14±0.9 99.88±0.0 98.55±0.2 93.48±0.7 87.14±1.0

Propensity 94.57±3.0 94.14±3.0 86.16±1.6 75.38±1.8 99.80±0.1 97.03±3.6 91.01±5.4 86.11±3.6

Prop-All 94.57±3.0 91.87±3.1 75.79±6.5 69.90±3.8 99.80±0.1 94.59±5.2 85.43±6.0 83.74±4.4

Adva-Uni 98.37±0.6 97.96±0.8 88.73±1.6 77.47±1.9 99.86±0.0 98.47±0.4 93.25±1.1 86.97±1.4

Adva-Prop 98.41±0.7 98.07±0.6 88.37±0.8 77.13±1.4 99.86±0.1 98.03±1.9 92.56±3.1 86.60±2.9

Oracle 99.36±0.2 99.10±0.2 95.43±0.6 89.09±1.4 99.93±0.0 99.04±0.1 95.41±0.3 91.06±0.2

Bandit Learning, feedback for 5 sampled predictions

Overall 61.06±7.7 50.52±5.1 33.07±10.6 45.73±4.2 84.25±8.1 73.05±7.6 56.35±14.9 69.51±7.4

Positive 98.76±0.4 98.46±0.4 91.44±0.5 82.53±0.8 99.90±0.0 98.84±0.2 94.66±0.5 89.51±0.7

Propensity 98.46±0.2 98.11±0.3 89.25±1.2 78.99±2.0 99.71±0.3 98.36±0.5 92.93±2.2 88.17±1.7

Prop-All 98.46±0.2 97.03±1.0 83.49±3.2 74.27±1.7 99.71±0.3 96.51±1.5 86.71±4.0 85.67±1.5

Adva-Uni 98.89±0.3 98.57±0.3 91.09±0.7 81.77±1.1 99.89±0.0 98.79±0.3 94.72±0.3 89.55±0.5

Adva-Prop 98.77±0.3 98.06±0.7 87.31±1.5 76.87±2.0 99.88±0.0 98.86±0.2 94.19±0.6 89.33±1.0

Oracle 99.34±0.2 99.34±0.2 97.85±0.4 94.53±0.7 99.94±0.0 99.21±0.0 96.08±0.1 92.02±0.2

Table 1: Test set performance for bandit learning with different FA methods (mean and std. dev. over 10 runs).

train/dev and 700 test examples, we introduce do-
mains by grouping the 7 intents into 3 domains.3

We split the train/dev part of each dataset into
5% labeled data (DS), on which the logging policy
π0 is trained with full supervision, and use the
rest to create bandit data DB . For each utterance
xi in DB , we take either the argmax prediction
or sample from the predicted class distribution of
π0 and determine (perfect) overall feedback δi by
comparing the prediction to the ground truth. If any
of the domain, intent or slot labels are incorrect,
we set δi = −1, if not δi = 1.

We compare seven methods to attribute δi:

• Overall No attribution, δi is used directly.

• Positive Only examples with positive feed-
back are used, which requires no attribution.

• Propensity Propensity-based FA following
Eq. 5 and 6. Note that the method can change
the magnitude of feedback per component, but
it will always stay negative as the sign cannot
change in the computation. As IC/SL models
use only data with δDi > 0, they will use just
positive feedback. We thus also include a vari-
ation Prop-All that instead uses all examples
for IC/SL, at the risk of giving noisier signals.

• Adva Advantage-based FA following Eq. 7.
The feedback estimator is trained on DB min-

3(AddToPlaylist, PlayMusic), (RateBook, SearchCreative-
Work), (BookRestaurant, SearchScreeningEvent, GetWeather).

imizing mean squared error. We evaluate two
variations, Adva-Uni using uniform weights
wy′ and Adva-Prop using π0’s propensities.

• Oracle Perfect attribution by setting −1 or 1
based on ground truth labels (upper bound).

Note that all methods use positive feedback right
away and attribute only negative feedback (except
for Positive which completely drops the negative
feedback examples).

In our multi-domain setup, we train a DC and
three IC/SL models. We rely on DistilBERT (Sanh
et al., 2019) and fine-tune it with an utterance-level
classifier for DC or, for IC/SL, with jointly trained
utterance and token-level classifiers similar to Chen
et al. (2019). In each case, we use a 256-d hidden
ReLU layer. For π0, all four models are trained
with cross entropy (Eq. 3) on DS . For bandit learn-
ing, we train the same models, using π0 as initial
weights, but use IPS loss (Eq. 4) and DB . The
overall feedback estimator f is trained with mean
squared error on DB . Additional details and hyper-
parameters, tuned per FA method, can be found in
the Appendix. Evaluation is done on the standard
test sets and we report accuracy for DC and IC, slot-
based F1 for SL and overall accuracy (Sem-Acc),
all averaged over 10 runs.

4.2 Results

Table 1 shows results for both datasets and feed-
back setups. We make the following observations:
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Multi-domain SLU can be learned from bandit
feedback. The initial logging policy, trained with
only 5% of the usual data, leaves substantial room
for improvement on both datasets, especially in
SL. All models trained with counterfactual bandit
learning, except for the naive Overall baseline, ef-
fectively use the bandit feedback to improve over
the logging policy. With perfect feedback assign-
ment (Oracle), bandit learning can yield models
that come even close to the performance of models
trained supervised on 100% of the labels.

Feedback attribution is crucial. As the Overall
baseline illustrates, using the overall feedback di-
rectly without any attribution hurts the models and
decreases the performance below the logging pol-
icy, confirming the need to address this challenge.
The perfect attribution (Oracle) as the upper bound
on the other hand shows how well the learning can
work with properly attributed feedback, resulting in
large improvements over Overall. The assignment
methods that we evaluated are capable of using
some of that potential, but also still leave room to
improve performance with better attribution.

Advantage-based FA beats propensity-based
FA. The propensity-based approach does poorly
compared to other methods, especially Prop-All.
One shortcoming is that it is not equipped to solve
the domain-level attribution problem and thus can-
not use feedback effectively for IC/SL, but, more
importantly, another shortcoming is that the at-
tribution relies completely on the model’s self-
awareness of errors and does not leverage the feed-
back itself for attribution. The advantage-based
methods leverage the feedback via the estimation
model and show better performance, in particular
the uniform-weighting variant.

Exploration is crucial. Side-stepping the attri-
bution problem by not leveraging the negative feed-
back at all (Positive) shows strong results in both
experimental settings, the one where feedback for
only the argmax prediction is available and the
one with feedback for 5 samples. Only in the 5-
sample-setting, where the feedback estimator can
be more effectively trained as the data contains
some amount of exploration, Adva-Uni can beat
Positive in some cases, demonstrating the potential
of additionally using negative feedback. We would
like to emphasize that even in this case the explo-
ration in the dataset is limited, as the sampled pre-
dictions are still equal to the argmax in most cases

(for DC/IC/SL on SNIPS 98.5%/98.2%/92.8% and
TOP 99.7%/98.7%/96.9% of examples), and the
setting is thus still far from the supervised set-
ting where feedback for all possible predictions
is known. We expect further improvements when
using bandit data with higher exploration.

5 Conclusion

In this paper, we studied feedback attribution for
bandit learning in multi-domain SLU. We proposed
multiple attribution methods together with an eval-
uation setup and found that attribution is crucial
to learning. Advantage-based FA helps if histor-
ical exploration is available. In future work, we
plan to extend the setup to use true user feedback,
which can be noisy and inconsistent, and to include
components beyond SLU in the attribution scope.

Ethical Considerations

In this work, we study training SLU models di-
rectly from user feedback via counterfactual bandit
learning. While making the model training more
cost-efficient, this also has the benefit that the sys-
tem behavior can be more in line with user expec-
tations and as a result improve the user experience.
However, optimizing models directly towards user
feedback can also have negative consequences: The
optimization could emphasize the feedback given
by the largest user groups and thereby amplify
model biases and undesired system behavior for
minority groups. In addition, some users might
even adapt their behavior to influence the system
directly to their advantage or the disadvantage of
other users. To mitigate such risks, we propose to
verify the model performance on carefully curated
offline test sets before deploying trained models
and to try to filter out problematic user behavior
from bandit data before training. As counterfac-
tual bandit learning is fully offline, such measures
can be implemented easily compared to the more
challenging online learning setting.
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A Training Details

SLU Models For the logging policy, we fine-
tune the base uncased version of DistilBERT (Sanh
et al., 2019) with batch size 16, dropout 0.1, Adam
with learning rates 1e-4 (DC) and 5e-4 (IC/SL) and
gradually unfreeze the BERT layers over the first
two epochs. All models are trained until the loss
stops decreasing in the validation set. For bandit
learning, we use the same architecture, initialized
with the final weights of the logging policy mod-
els, and continue training with batch size 16. The
model has between 66.6M (DC) and 66.8M (IC/SL)
parameters (with slight differences depending on
the size of a domain’s label space).

Feedback Estimator For the feedback estimator
f(x, yD, yI , (ySt ))→ δ, we fine-tune the same pre-
trained BERT model, but with a regression output
on top of a 256-d hidden ReLU layer. As input,
we provide a single sequence consisting of the pre-
dicted domain, intent and, token by token, the ut-
terance and slot labels. To represent domain, intent
and slot labels we use tokens reserved for such pur-
poses in the pre-trained model’s vocabulary. The
model is trained to minimize mean squared error
predicting the overall feedback in DB . The batch
size is 32. It has around 66.6M parameters.

Parameter Tuning To ensure a fair comparison,
we tune the learning rates used for bandit learning
(including for training the feedback estimator) for
each feedback assignment method separately and
pick the rate with best validation loss, for DC and
IC/SL separately. That is especially important as
feedback assigned with different methods can be
of different magnitude. Table 2 shows the results.
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Dataset Feedback FA DC LR IC/SL LR f LR

Explored Learning Rates 5e-7 5e-6 1e-4
1e-6 1e-5 5e-4
5e-6 5e-5 1e-3
1e-5 1e-4 5e-3

SNIPS argmax Overall 5e-6 5e-5
SNIPS argmax Positive 5e-6 5e-5
SNIPS argmax Propensity 1e-5 5e-5
SNIPS argmax Prop-All 1e-5 1e-5
SNIPS argmax Adva-Uni 5e-6 1e-5 1e-3
SNIPS argmax Adva-Prop 5e-6 5e-5 1e-3
SNIPS argmax Oracle 5e-6 5e-5

SNIPS 5 samples Overall 5e-6 1e-5
SNIPS 5 samples Positive 5e-6 1e-5
SNIPS 5 samples Propensity 5e-7 1e-5
SNIPS 5 samples Prop-All 5e-7 1e-5
SNIPS 5 samples Adva-Uni 5e-6 1e-5 1e-4
SNIPS 5 samples Adva-Prop 5e-6 5e-5 1e-4
SNIPS 5 samples Oracle 1e-6 1e-5

TOP argmax Overall 1e-6 1e-5
TOP argmax Positive 1e-5 5e-6
TOP argmax Propensity 5e-7 5e-6
TOP argmax Prop-All 5e-7 5e-6
TOP argmax Adva-Uni 1e-5 1e-5 1e-3
TOP argmax Adva-Prop 5e-6 1e-5 1e-3
TOP argmax Oracle 1e-5 1e-5

TOP 5 samples Overall 1e-6 5e-6
TOP 5 samples Positive 1e-5 1e-5
TOP 5 samples Propensity 5e-7 1e-5
TOP 5 samples Prop-All 5e-7 1e-5
TOP 5 samples Adva-Uni 5e-7 5e-6 1e-4
TOP 5 samples Adva-Prop 5e-7 1e-5 1e-4
TOP 5 samples Oracle 1e-6 5e-6

Table 2: Learning rates used for model training.


