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Abstract

A new metric BaryScore to evaluate text
generation based on deep contextualized em-
beddings (e.g., BERT, Roberta, ELMo) is in-
troduced. This metric is motivated by a new
framework relying on optimal transport tools,
i.e., Wasserstein distance and barycenter. By
modelling the layer output of deep contextu-
alized embeddings as a probability distribu-
tion rather than by a vector embedding; this
framework provides a natural way to aggregate
the different outputs through the Wasserstein
space topology. In addition, it provides the-
oretical grounds to our metric and offers an
alternative to available solutions (e.g., Mover-
Score and BertScore). Numerical evaluation
is performed on four different tasks: machine
translation, summarization, data2text genera-
tion and image captioning. Our results show
that BaryScore outperforms other BERT
based metrics and exhibits more consistent be-
haviour in particular for text summarization.

1 Introduction

Automatic Evaluation (AE) of Natural Language
Generation (NLG) is a key problem towards better
systems (Specia et al., 2010). It allows to assess
the quality of generated text without relying on hu-
man evaluation campaigns that are expensive and
time consuming (Belz and Reiter, 2006; Sai et al.,
2020). For instance, it becomes crucial to design
automatic and effective metrics with simultaneous
goals: (i) to be able to compare, to control and
to debug systems without relying on human anno-
tators (Peyrard, 2019a,b); and (ii) to improve the
learning phase of models by deriving losses that
are better surrogate of human judgment than the
widely used cross-entropy loss (Clark et al., 2019).

A plethora of automatic metrics has been intro-
duced these last few years and may be grouped into
two general classes: trained (Ma et al., 2017; Shi-
manaka et al., 2018; Lowe et al., 2016; Lita et al.,
2005) and untrained metrics (Doddington, 2002;

Popović, 2015). In this paper, we mainly focus on
untrained metrics that can be further split into three
subgroups: string matching (Papineni et al., 2002;
Lin, 2004; Banerjee and Lavie, 2005; Doddington,
2002; Popović, 2015), edit based (Leusch et al.,
2006; Snover et al., 2006; Wang et al., 2016) and
embedding based metrics (Chow et al., 2019; Kus-
ner et al., 2015; Lo and Wu, 2011; Lo, 2019). Both
string matching and edit based metrics fail to assign
reliable scores when reference and candidate con-
vey the same meaning with distinct surface forms
(Reiter and Belz, 2009) (e.g., case of synonyms
and paraphrases). These shortcomings have been
addressed by metrics based on continuous represen-
tations. Recently, they have benefited from contex-
tual embeddings such as ELMO (Peters et al., 2018)
and BERT (Devlin et al., 2018; Liu et al., 2019b).
Perhaps, the most known are BERTScore (Zhang
et al., 2019), MoverScore (Zhao et al., 2019b) or
Sentence Mover (Clark et al., 2019) which opti-
mise Word Mover Distance (WMD) (Kusner et al.,
2015)1, a particular instance of optimal transport
(OT) problem.
Originally introduced by Kusner et al. (2015) the
WMD is used to compute the Wasserstein distance
between text documents relying on a single layer
embedding such as GloVe (Pennington et al., 2014)
or Wor2Vect (Mikolov et al., 2013). To apply
WMD with multi layers embedding several recipes
have been proposed. BertScore selects the best
layer based on a validation set. However, the se-
lection of the validation set is arbitrary while on
the other hand, a single layer selection does not ex-
ploit the information available in other layers (Voita
et al., 2019; Hewitt and Liang, 2019; Liu et al.,
2019a). MoverScore and Sentence Mover attempt
to leverage the information available in other lay-
ers by aggregating the layers using a power mean
(Rücklé et al., 2018b). In addition to adding extra

1(Zhao et al., 2019b) shows that BertScore can be viewed
as a non-optimized transport problem.
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hyper-parameters, this aggregation method relies
on euclidean topology which induces a geometrical
discrepancy as the final cost is computed using a
Wasserstein distance.
Our contributions. We introduce BaryScore
a novel metric, which addresses aforementioned
aggregation pitfalls by relying on Wasserstein
barycenters and evaluate its performance on four
different tasks: neural machine translation, text
summarization, image captioning and data2text
generation. Our main contributions can be sum-
marized as follow:

1. A novel metric to measure the semantic equiv-
alence between two texts. This metric relies on
the embedding geometry of the layers induced in
Wasserstein spaces. In order to overcome the ge-
ometric distortion generated by the aggregation
techniques used to compute WMD with deep em-
beddings (e.g., BERT, ELMo and Roberta), we
aggregate layers information using the Wasserstein
barycenter. This new formulation offers a topo-
logical advantage, i.e., using barycenters giving
meaning to the use of OT based distance after-
wards and is parameter-free, i.e., it avoids choosing
by hand the best layer (as for BertScore) or se-
lecting the exponent in the power means (as for
MoverScore). Our formulation provides an alter-
native and a generalization to the WMD formula-
tion (Kusner et al., 2015) (originally introduced for
Word2Vec) when applied to embeddings which are
coming from multi-layer neural networks and thus,
it provides theoretical motivation to BaryScore2

a new metric that aggregates deep contextualized
embedding using Wasserstein barycenters.

2. Applications and numerical results. We
demonstrate that BaryScore provides better re-
sults than a large variety of state-of-art untrained
metrics on four text generation tasks: namely NMT,
summarization, image captioning, data2text sug-
gesting that Wasserstein barycenters offer a promis-
ing direction moving forward.

2 Related Work

The goal of NLG is to generate coherent, read-
able and informative text from some input data
(e.g., texts, images and tables). However, the exact
definition of each of these three criteria remains
task-dependent and thus, making it hard to provide
a unique metric for all tasks. As an example, NMT
focuses on fluency, fidelity and adaquatie (Hovy,

2Bary stands for Barycenter.

1999; White et al., 1994) in contrast to summariza-
tion where annotators have to focus on coherence,
content, readability, grammatically, coherence and
conciseness (Mani, 2001). In the following, we
describe for each of the four considered tasks (i.e.,
NMT, text summarization, image captioning and
data2text generation) the most used metrics.

Metrics for NMT. Most of the metrics commonly
used in NMT rely on comparing surface form
(e.g., word, subword, n-gram overlap and edit
based distances (Levenshtein, 1966)) between text
and candidates. Perhaps the most popular met-
rics are the ones used for WMT shared tasks
(Mathur et al., 2020; Ma et al., 2019, 2018; Bojar
et al., 2017b) which include SENTBLEU, BLEU
(Papineni et al., 2002), CHARACTER (Wang
et al., 2016), COMET (Rei et al., 2020), YISI
(Lo et al., 2018), MEE (Mukherjee et al., 2020),
EED (Stanchev et al., 2019), CHRF (Popović, 2015,
2017), ESIM (Chen et al., 2016), PRISM (Thomp-
son and Post, 2020) to only mention a few among
others. A new family of metrics based on pre-
trained transformers (i.e., BertScore, MoverScore)
has recently emerged with very good performance
in NMT, incorporating deeper semantic informa-
tion through contextualized representations.

Metrics for summarization. Designing better
summarization metrics is an active area of research
(Scialom et al., 2021) and many of these met-
rics can be further optimized to produce better
summaries (Böhm et al., 2019). Popular metrics
include machine translation metrics (i.e., CHRF,
BLEU, METEOR (Banerjee and Lavie, 2005;
Guo and Hu, 2019; Denkowski and Lavie, 2014),
BertScore, MoverScore or SentenceMover (Clark
et al., 2019)), ROUGE (Lin, 2004; Ganesan, 2018)
or data statistics (e.g., density and compression
ratio) (Grusky et al., 2018).

Metrics for data2text. Data2text generation aims
at generating text from structured data (Kim and
Mooney, 2010; Chen and Mooney, 2008; Wiseman
et al., 2017). In the present work, we focus on the
WebNLG 2020 challenge (Perez-Beltrachini et al.,
2016; Gardent et al., 2017) which ranks the system
using five automatic metrics: BLEU, METEOR,
BERTScore, TER and CHRF++.

Metrics for image captioning. Task specific met-
rics for image captioning include CIDEr (Vedantam
et al., 2015) that rely on n-grams, LEIC (Cui et al.,
2018) using scene graph similarity and pretrained
metrics such as SPICE (Anderson et al., 2016). In
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recent work by (Zhang et al., 2019; Zhao et al.,
2019b), these metrics are compared with NMT spe-
cific metrics (e.g., BLEU and METEOR).

3 Background on Optimal Transport

The Wasserstein distance (i.e., Earth Mover Dis-
tance) which arises from the idea of optimal trans-
port provides a way to measure dissimilarities be-
tween two probability distributions. Due to its ap-
pealing geometric properties, it has found many
applications in machine learning such as genera-
tive models (Arjovsky et al., 2017; Tolstikhin et al.,
2018; Gulrajani et al., 2017), domain adaptation
(Courty et al., 2017), clustering (Ho et al., 2017;
Ye et al., 2017), adversarial examples (Wong et al.,
2019), robustness (Staerman et al., 2021) or NLP
(Kusner et al., 2015; Zhao et al., 2019b; Singh
et al., 2020). First designed as an optimal trans-
port optimization problem, it relies on minimizing
a transport cost between points drawn from all pos-
sible coupling measures. Its ability to take into
account the underlying geometry of the space as
well as capture information from distributions with
non-overlapping supports makes it a powerful al-
ternative to several dissimilarity measures such as
the family of f -Divergences.
Wasserstein distance. Let M1

+(Rd) denote the
space of all probability distributions defined on
Rd with d ∈ N∗. The Wasserstein distance be-
tween two arbitrary measures µ ∈ M1

+(X ) and
ν ∈ M1

+(Y) is defined through the resolution of
the Monge-Kantorovitch mass transportation prob-
lem (Villani, 2003; Peyré and Cuturi, 2019):

W(µ, ν) = min
π ∈ U(µ,ν)

(∫
X×Y
||x− y||pdπ(x, y)

)1/p

, (1)

where U(µ, ν) = {π ∈ M1
+(X × Y) :∫

π(x, y)dy = µ(x);
∫
π(x, y)dx = ν(y)} is the

set of joint probability distributions with marginals
µ and ν. In the remainder of this paper, we fo-
cus on the Wasserstein distance associated with
the quadratic cost, i.e., p = 2. Thus, the Wasser-
stein distance aims to find the best possible way
to transfer the probability mass from µ to ν while
minimizing the transportation cost defined by the
euclidian distance.
Wasserstein barycenters. Because optimal trans-
port is based on mass displacement, it also de-
fines an interesting way to interpolate between sev-
eral input measures. The Wasserstein barycenter,

Euclidian Wasserstein

Figure 1: Euclidian (left) and Wasserstein (right) in-
terpolation between densities of two Gaussian distribu-
tions.

first introduced and studied in (Agueh and Car-
lier, 2011), defines an interpolation measure be-
tween several probability distributions. The main
asset of Wasserstein barycenters is to take into ac-
count the geometry of the space where input mea-
sures live in (cf. Fig. 1). Given N probability
distributions: µ1, . . . , µN ∈M1

+(Rd) and weights
(α1, . . . , αN ) ∈ R+, the Wasserstein barycenter
optimization problem of these distributions w.r.t.
the weights is defined as:

µ = argmin
µ∈M1

+(Rd)

N∑
i=1

αiW(µi, µ), (2)

where the support of µ may be unknown. Equa-
tion 2 defines a weighted average in the Wasserstein
space. To make it computationally tractable, the
measure µ is often constrained to be a discrete mea-
sure with free (Cuturi and Doucet, 2014; Álvarez
Esteban et al., 2016; Cuturi and Peyré, 2016; Luise
et al., 2019) or fixed support (Benamou et al., 2015;
Dvurechenskii et al., 2018; Lin et al., 2020; Janati
et al., 2020). For the purpose of our approach, we
focus on free support barycenter with fixed weights
in the following.

4 BaryScore Metric

The construction of automatic metrics usually re-
lies on two paradigms depending on the availability
of a reference sentence for each candidate (Specia
et al., 2010). Here and throughout the paper, we as-
sume that at least one reference is available for each
candidate. Denote by C = {ωc1, . . . , ωcnc

} the can-
didate and R = {ωr1 , . . . , ωrnr

} the reference com-
posed of nc and nr words, respectively. Our goal is
to design a metric m : (C,R) 7→ m(C,R) ∈ R+

such that the closer to zero the better candidate is.
Algorithm. Our metric m, named Baryscore,
can be summarized in two steps:

(i) Find the Wasserstein barycentric distributions
of contextual encoder layers for C and R;
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Figure 2: Schema of the different layers aggregation step: (a) Wasserstein barycenter (as used in BaryScore),
(b) Power mean (as used in MoverScore), (c) best layer selection (case of BertScore). µ̂·,` ` ∈ [1, L] stands for
either the empirical distribution of the reference R or the candidate C text. Similarly, for words denoted by ω·

i.

(ii) Evaluate these barycentric distributions using
the Wasserstein distance.
Wasserstein barycenters. Assume that a contex-
tual encoder, (e.g. BERT and ELMo), is composed
of L layers, i.e., φ1, . . . , φL functions that map
a candidate text C and a reference text R respec-
tively into φ`(C) ∈ Rnc×d and φ`(R) ∈ Rnr×d,
for every 1 ≤ ` ≤ L. In our approach, we
consider the discrete probability distributions in-
duced by φ`(C) and φ`(R), where φ`(C)i and
φ`(R)j represent the embedding of the i-th to-
ken and j-th token of the candidate and reference
text, respectively. Precisely, 2L empirical mea-
sures are constructed from these layers functions
such that µ̂C,` =

∑nc
i=1 αiδφ`(ωc

i )
and µ̂R,` =∑nr

j=1 βjδφ`(ωr
j )

, where α = {α1, . . . , αnc} and
β = {β1, . . . , βnr} are the vector of inverse doc-
ument frequencies of each word ωi of C and R,
respectively, and δx is the dirac mass at point x.
Further, Wasserstein barycenters (see Eq. (2)) are
computed on the candidate C and the reference R
leading to two barycentric embedding measures
µ̂C and µ̂R with fixed sizes nc and nr, respectively.
Considering weights of the barycentric measures
as uniform, as for the layers weights, the optimiza-
tion problem is equivalent to find locations {xci}

nc
i=1

such that:

argmin
(xc1,...,x

c
nc

)∈Rd

L∑
`=1

W(µ̂c,`, µ̂c) (3)

with µ̂c = 1
nc

nc∑
i=1

δxci . The previous formulation is

similar for the reference text, replacing C byR and
α by β in notations. The final embedding, denoted
by Φ, is then considered as the locations of the
barycentric measures, i.e., Φ(C) = {xc1, . . . , xcnc

}

and Φ(R) = {xr1, . . . , xrnr
}.

Computing the Wasserstein distance. The last
step of our approach is then to evaluate discrete
measures induced by the final embeddings, i.e.,
the candidate and reference barycentric measures
µ̂C and µ̂R, using the Wasserstein distance, lead-
ing to the Baryscore given by m(C,R) =
W(µ̂C , µ̂R). This step boils down to computing
the WMD and is similar to the final step in Mover-
Score or SentenceMover. The entire procedure is
summarized in Algorithm 1.

Algorithm 1 BaryScore
INPUT: C = {ωc1, . . . , ωcnc

}, R = {ωr1 , . . . , ωrnr
},

(φ1, . . . , φL) pre-trained layers from BERT or
ELMo.
Compute layers embeddings:
φ`(C) and φ`(R) for every 1 ≤ ` ≤ L.

Compute measures: {µ̂C,`, µ̂R,`}L`=1.

Compute Wasserstein barycenters:

µ̂C = argmin
µ̂

L∑
`=1

W(µ̂C,`, µ̂),

µ̂R = argmin
µ̂

L∑
`=1

W(µ̂R,`.µ̂),

OUTPUT: W(µ̂R, µ̂C).

Parameters of BaryScore metric. Our metric is
dependant on the choice of the continuous represen-
tations (e.g., BERT, ELMo and Roberta) and then
its performance will be influenced by the choice
of the model. As it is common in concurrent work
(Zhang et al., 2019; Zhao et al., 2019b; Clark et al.,
2019) all the results in the paper are obtained with
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one single model: namely BERT-base-uncased.
Additionally, we report results obtained with the
BERT fine-tuned on NLI release in (Zhao et al.,
2019b), this model is referred as BaryScore+ in
the following. In contrast to previous work (e.g Sen-
tenceMover) that integrates a preprocessing step by
removing the stopwords based on a static list, we
keep all words. Also, our framework provides a nat-
ural way to exploit all available layers of the model
while previous work relies on a specific subset of
them (e.g., MoverScore and BertScore). We believe
this strengthens the robustness of our approach.
Comparison with the Moverscore. Following the
footstep of (Zhang et al., 2019), the Moverscore
(Zhao et al., 2019b) applied optimal transport to
the output of Contextualized Encoders (CE) such
as BERT or ELMo. Precisely, let’s assume that
a CE is composed of L layers, the Moverscore’s
context representation is given for each word ωj by
Φ(ωj) = T (φ1(ωj), . . . , φL(ωj)), where the trans-
formation T is either power means (Rücklé et al.,
2018a) or aggregation routines depicted in (Zhao
et al., 2018, 2019a). The score is then defined by
the Wasserstein distance between the empirical dis-
tributions given by Φ(C) and Φ(R).

The main weakness of this approach is the ag-
gregation step. Taking into account the role of the
underlying geometry of the probability distribu-
tion as well as the interpretability of the transporta-
tion flow are high benefits of Optimal transport.
However, performing Wasserstein distance after
applying power means, i.e., an aggregation in an
euclidian space (see e.g., Figure 1), does not al-
low a proper evaluation of the geometry induced
by the CE layers in the Wasserstein space. Indeed,
Moverscore evaluates a distorted geometry induc-
ing wrong interpretability of the transportation flow.
The advantage of exploiting Wasserstein barycenter
over euclidean aggregation relies on rehabilitating
this geometry, as shown in Section 6.

5 Experimental Settings

In this section, we present our evaluation methods
as well as the various dataset used to benchmark
our metric.
Extension of notations. In the previous section,
we have only considered a candidate and a refer-
ence sentence. In order to evaluate and compare
different metrics, we need to extend the previous
notations to include the system that generates each
sentence. To this end, we will assume that we have

a dataset: D = {Ri, {Csi , h(Csi )}Ss=1}Ni=1, where
Cji is the i-th text generated by the j-th system,
h(Cji ) is human score assign to Cji and Ri the ref-
erence text associated to Cji ; N is the number of
available texts; S the number of different systems.

5.1 Evaluating automatic evaluation of NLG

The quality of the evaluation metric is measured by
its correlation with the human judgment (Chatzik-
oumi, 2020; Specia et al., 2010; Koehn, 2009;
Banerjee and Lavie, 2005). Three correlation mea-
sures can be considered: Pearson (Leusch et al.,
2003), Spearman (Melamed et al., 2003) or Kendall
(Kendall, 1938). In addition, two different levels
of granularity are considered to compute theses
correlation coefficients.
System level correlation. These can be consid-
ered when assessing the discrimination capability
between two systems. This level of correlation tries
to answer the question: “Can the metric be used to
compare the performance of two systems?”. For-
mally, the system level correlation Ksys measures
the quality of a metric m defined as:

Ksys =K(M sy, Hsy), (4)

M sy =

[
1

N

N∑
i=1

m(Ri, C
1
i ),· · ·, 1

N

n∑
i=1

m(Ri, C
s
i )

]
,

Hsy =

[
1

N

N∑
i=1

h(C1
i ), · · · , 1

N

N∑
i=1

h(CSi )

]
,

where K is the considered correlation coefficient.
Text level correlation. This is computed to evalu-
ate the ability of a metric to measure the semantic
equivalence between a candidate and a reference
sentence. Such a level of correlation aims at pro-
viding an answer to the question: “Can the metric
be used as a loss or reward of a system?”. By in-
troducing similar notations to those in Equation 4,
we obtain the text level correlation Ktext:

Ktext =
1

N

N∑
i=1

K(M text
i , Htext

i ), (5)

M text
i =

[
m(Ri, C

1
i ), · · · ,m(Ri, C

S
i )
]
,

Htext
i =

[
h(C1

i ), · · · , h(CSi )
]
.

Significance testing. To ensure that observed im-
provement is statistically significant we follow
common consensus (Deutsch et al., 2021; Graham,
2015; Graham et al., 2015; Graham and Baldwin,
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2014) in NMT and rely on William test (Steiger,
1980) as considered observations are correlated3.

5.2 Choice of datasets

We motivate our choice of datasets for each tasks.
Translation. Multiple translation datasets are
available from the WMT translation shared tasks
(Bojar et al., 2014, 2015, 2016, 2017a). Keeping
in mind the work by (Card et al., 2020) stressing
the importance of the size of the dataset, we fol-
low (Zhang et al., 2019) and choose to work with
WMT16 and additionally report results on WMT15
that both offer over 500 sentences per language
(in contrast to new versions (Bojar et al., 2018;
Barrault et al., 2019, 2020) that rely on a lower
number–around 50–of annotated texts).
Summarization. Several datasets have been in-
troduced to compare metrics for summarization.
Classical choices include MSR Abstractive Text
Compression dataset (Toutanova et al., 2016), TAC
datasets (Dang and Owczarzak, 2008; McNamee
and Dang, 2009) or on news summarization from
CNN/DailyMail (Hermann et al., 2015; Nallapati
et al., 2016). TAC datasets and contains flaws
(Rankel et al., 2013; Peyrard, 2019b; Bhandari
et al., 2020), thus in this work we rely on the CNN
introduced in (Bhandari et al., 2020). It is com-
posed of 11,490 summaries comming from 11 ex-
tractive systems (Lewis et al., 2019; Yoon et al.,
2020; Raffel et al., 2019; Gehrmann et al., 2018;
Dong et al., 2019; Liu and Lapata, 2019; Chen and
Bansal, 2018; See et al., 2017) and 14 abstractive
systems (Zhong et al., 2020; Wang et al., 2020;
Zhong et al., 2019; Liu and Lapata, 2019; Zhou
et al., 2018; Narayan et al., 2018; Dong et al., 2019;
Kedzie et al., 2018; Zhou et al., 2018).
Data2Text. In contrast to previous work that rely
on old task-oriented dialogue datasets (i.e., BAGEL
(Mairesse et al., 2010), SFHOTEL (Wen et al.,
2015)), we focus on the WebNLG challenge (Perez-
Beltrachini et al., 2016; Gardent et al., 2017; Fer-
reira et al., 2018, 2020) as sentence available in
this challenge is more representative of progress
of NLG4. The data provides from 15 systems re-
lying on either symbolic or neural approaches. In
this challenge, multiple evaluation criteria are used
to assess the quality of the text. Due to the space
limitations, we compute correlation on the three

3An example code is provided by the authors at https:
//github.com/ygraham/nlp-williams

4System description and performance are available at
https://webnlg-challenge.loria.fr/
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Figure 3: Significance testing on de-en for WMT16. In
the matrix is reported the p-value of the William Test
in percent.

following criteria: (1) data coverage which mea-
sures if the generated text contains all the available
information present in the input data, (2) relevance
which characterizes if the generated text is solely
composed with information available in the input,
(3) correctness which measures if all input infor-
mation is both correct and adequately introduced.
Image captioning. To evaluate metrics on image
captioning, there is a consensus to exploit COCO
datasets (Lin et al., 2014) and to compute correla-
tion at the system level. On average each image
has five reference captions. Each of the 12 systems
is evaluated on 5 criteria. Following (Anderson
et al., 2016; Zhao et al., 2019b; Zhang et al., 2019),
we only compute correlation on M1, M2 which are
related to the overall quality of the caption.

6 Numerical Results

In this section, we study the performance of
BaryScore on the four aforementioned tasks.

6.1 Translation

Overall results. Table 1 and Table 2 gather correla-
tion to human judgments on WMT15 and WMT16.
We conduct a statistical analysis to ensure that the
observed improvements are statistically meaningful
(see Figure 3).

We observe that BaryScore+ is the best per-
forming metric on both datasets for all languages.
Similarly to (Zhao et al., 2019b), we observe an
improvement when using their pretrained version
of BERT on MNLI (Wang et al., 2018). By compar-
ing the best performance achieved by BaryScore
compared to MoverScore, we hypothesize that
Wasserstein barycenter preserves more geometric
properties of the information learnt by BERT.
Correlation analysis. Figure 4 reports the inter-
correlation across metrics according to the Kendall

https://github.com/ygraham/nlp-williams
https://github.com/ygraham/nlp-williams
https://webnlg-challenge.loria.fr/
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cs - en de - en ru - en fi - en

r ρ τ r ρ τ r ρ τ r ρ τ

BaryS+ 75.9 75.2 56.9 75.8 74.5 56.2 77.6 75.0 56.7 79.9 78.7 59.7
BaryS 74.2 73.8 54.9 74.1 72.2 53.1 73.7 70.6 53.2 76.6 74.5 56.3
BertS-F 74.3 73.5 54.3 72.2 70.7 52.9 74.0 70.5 52.5 74.7 72.5 54.1
MoverS+ 71.0 71.1 52.0 71.1 68.2 50.3 67.3 64.7 47.3 72.2 72.0 52.9
MoverS 68.8 70.1 52.0 71.8 69.4 50.3 68.6 65.5 46.9 70.0 70.0 52.3
MET 56.4 57.1 40.9 60.1 61.4 61.5 58.9 59.6 42.4 58.8 59.0 42.9
BLEU 44.5 44.5 31.1 53.6 48.0 48.1 53.4 49.0 34.1 46.5 41.8 29.3
CHRF 26.0 21.6 15.8 29.5 28.9 28.9 32.5 32.9 23.4 30.2 26.5 19.2

Table 1: Absolute correlations between metric prediction and text level human judgement on 4 pairs of WMT15.

cs - en de - en ru - en fi - en ro - en tr - en

r ρ τ r ρ τ r ρ τ r ρ τ r ρ τ r ρ τ

BaryS+ 76.6 76.2 57.5 68.5 67.7 50.0 69.4 68.3 51.3 70.2 69.5 50.9 74.3 73.0 54.5 73.8 70.5 52.4
BaryS 74.2 74.3 56.3 64.6 64.2 47.9 67.5 66.4 48.1 67.1 66.4 48.3 72.5 71.4 52.9 69.3 67.1 51.4
BertS-F 74.1 73.6 55.49 65.3 64.6 46.3 65.1 64.6 46.9 65.4 64.1 47.0 70.2 67.6 49.5 70.7 67.1 49.0
MoverS+ 70.7 70.4 53.4 62.4 60.7 44.8 64.0 62.2 45.2 64.5 62.6 45.8 66.4 66.0 48.6 66.3 60.7 44.9
MoverS 67.4 69.5 52.6 60.9 59.1 44.2 64.4 62.8 44.8 63.1 62.2 45.1 64.2 65.4 48.2 66.1 64.0 43.7
MET 64.5 67.2 49.2 51.6 50.0 35.3 54.8 57.5 41.2 53.9 52.4 37.3 58.6 59.4 42.1 61.8 59.1 42.4
BLEU 53.8 52.3 36.2 45.3 40.8 28.2 46.3 43.8 30.2 39.9 37.7 26.3 47.0 43.2 30.2 47.1 43.9 30.4
CHRF 24.4 26.8 19.2 34.2 33.8 24.3 28.7 29.8 21.2 14.4 15.3 11.2 16.0 12.6 9.0 26.5 16.2 12.4

Table 2: Absolute correlations between metric prediction and text level human judgement on 6 pairs of WMT16.
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Figure 4: de-en WMT16 Kendall
correlation between predictions
made by different metrics.

Abstractive Extractive

Text System Text System

r τ ρ r τ ρ r τ ρ r τ ρ

BaryS 75.6 75.9 76.6 94.9 83.4 96.3 81.1 81.1 70.7 63.2 41.8 45.4
BaryS+ 72.4 73.4 76.3 95.9 83.4 96.2 81.3 81.5 70.9 64.0 38.1 48.1
BertS-F 73.4 74.9 70.6 92.3 82.4 93.4 29.4 18.9 55.0 69.0 49.0 62.7
BertS-R 71.7 71.9 72.0 92.3 82.4 93.4 70.9 72.9 73.8 06.9 01.8 02.7
MoverS 72.4 71.9 73.0 82.8 75.8 92.5 76.1 76.1 47.4 16.1 09.0 09.0
MoverS+ 73.3 71.2 82.8 75.8 92.5 73.0 76.4 76.0 47.0 21.1 15.1 29.0
Rouge-1 73.5 73.0 74.5 90.3 80.2 92.5 72.2 74.0 69.1 73.2 52.7 69.0
Rouge-2 73.0 73.5 73.0 98.5 89.0 96.0 55.1 53.2 69.0 69.9 41.8 54.5
JS-2 68.9 .6.8 69.8 92.5 82.4 92.9 05.5 12.7 19.0 5.5 12.7 19.0

Figure 5: Absolute correlation coefficients (as measured using Pearson (r),
Spearman (ρ) and Kendall (τ ) coefficient) between different metrics on text sum-
marization.

τ . We observe that the metrics based on BERT (e.g
BertScore, MoverScore and BaryScore) obtain
medium-high correlation demonstrating that both
the aggregation mechanism (e.g., one layer selec-
tion, power mean or Wasserstein barycenter) as
well as the choice of similarity metric (e.g., cosine
similarity, Wasserstein distance) affects the ranking
of the predictions.
Takeaways: Overall BaryScore is particularly
suitable to compare two examples and thus could be
used as an alternative to the standard cross-entropy
loss to train NMT systems. On the other hand,
our implementation made based on POT (Flamary
and Courty, 2017) makes the speed comparable

with MoverScore. We are able to process over
180 sentence pairs per second with BaryScore
compared to 195 sentence pairs per second with
MoverScore on an NVIDIA-V100 GPU.

6.2 Summarization
Figure 5 reports results on the summarization task.
We are able to reproduce the performance reported
in the original paper (Bhandari et al., 2020). Con-
trarily to MT, we observe that there is no metric that
can outperform all others on all correlation mea-
surements. We can also notice that the improve-
ment induced by the BERT fine-tuned on MNLI is
not observed on this dataset for both BaryScore
and MoverScore.
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M1 M2

BaryS+ 85.6 83.9
BaryS 85.2 82.6
MoveS+ 83.1 82.6
MoveS 78.1 82.1
BertS - P 83.0 82.1
BertS - R 80.1 75.2
BertS - F 79.1 81.1
BLEU 58.3 60.8
METEOR 60.3 59.9
SPICE* 75.9 75.0
CIDER* 43.8 44.0
LEIC* 93.9 94.9

Figure 6: System level Pearson
correlation with human judge-
ment on the MSCOCO dataset.

Correctness Data Coverage Relevance
Metric r ρ τ r ρ τ r ρ τ

Correct 100.0 100.0 100.0 97.6 85.2 73.3 99.1 89.7 75.0
DataC 85.2 97.6 73.3 100.0 100.0 100.0 96.0 93.8 81.6
Relev 89.7 99.1 75.0 96.0 93.8 81.6 100.0 100.0 100.0
BaryS 91.7 90.0 78.3 87.8 78.2 61.6 89.4 82.6 70.0
BaryS+ 90.5 89.5 76.6 87.7 85.0 70.0 89.2 86.4 71.6
BertS 85.5 83.4 73.3 74.7 68.2 53.3 83.3 79.4 65.0
MoverS 84.1 84.1 73.3 78.7 66.2 53.3 82.1 77.4 65.0
BLEU 77.6 66.3 60.0 55.7 50.2 36.6 63.0 65.2 51.6
R-1 80.6 65.0 65.0 76.5 76.3 60.3 64.3 69.2 56.7
R-2 73.6 63.3 58.3 54.7 43.1 35.0 62.0 60.8 46.7
R-WE 60.9 73.4 60.0 40.2 58.2 40.1 49.9 64.1 48.3
METEOR 86.5 66.3 70.0 77.3 50.2 46.6 82.1 65.2 58.6
TER 79.6 78.3 58.0 69.7 58.2 38.0 75.0 70.2 77.6

Figure 7: Correlation at the system level with human judgement along five dif-
ferent axis: correctness, data coverage, fluency, relevance and text structure for
the WebNLG task. Overall best result is bolted.

Consistency and robustness of BaryScore. In
contrast to what is observed on abstractive sys-
tems, we observe a strong inconsistency in the
behavior of the previous metrics based on BERT
for extractive systems. Indeed, at the text level
BertS-R, MoverScore and MoverScore+ achieve
good medium/high correlation whereas at the sys-
tem level the achieved correlation collapses (cor-
relation scores below 20 points). BertS-F, on the
contrary, under-performs at the text level for ex-
tractive systems but achieves competitive perfor-
mance with Rouge (the best performing metric) at
the system level. We observe that using Wasser-
stein barycenter is a better way to aggregate the
layer and provides better robustness as it alleviates
the aforementioned problem. Indeed, the perfor-
mance achieved by BaryScore is competitive at
both the text and system levels.
Takeaways: Overall, the two versions of
BaryScore are among the best performing met-
rics, outperform current BERT based metrics on
3/4 configurations, and achieve consistent perfor-
mance on the 4th configuration. The consistent
behavior of BaryScore demonstrates the valid-
ity of our approach for summarization. Whereas,
a simpler and lighter alternative to BaryScore,
as well as other BERT-based metrics to compare
systems on summarization, remains the ROUGE
score for 3/4 configurations.

6.3 Data2Text

Figure 7 reports results on data2text task using
the WebNLG2020 data. To the best of our knowl-
edge this is one of the first study using this dataset.

Figure 7 shows a strong correlation between the
three evaluation dimensions with correlation r and
ρ higher than 90. We observe that BaryScore
consistently metrics based on BERT and achieves
best results on 6/9 configurations for BaryScore
and 2/9 for BaryScore+.

6.4 Image Captioning

We follow (Zhang et al., 2019; Zhao et al., 2019b)
and report in Figure 65 Pearson correlation coef-
ficients between prediction and system level judg-
ment. Although we were unable to reproduce ex-
actly the results by (Zhao et al., 2019b), we obtain
comparable numbers and similar orderings.
Takeaways: BaryScore outperforms current
metrics except for LEIC that rely on information
extracted from both image and text. These results
validate the use of BaryScore to compare the
performance of image captioning systems.

7 Summary and Concluding Remarks

In this paper, we present a metric named
BaryScorewhich relies on optimal transport and
solves the geometric discrepancies present in ex-
isting metrics that use contextualized embedding
with WMD. The present work is carried out in
the context of NLG but it introduces a generic
theoretically-grounded framework that could be
extended to other NLP studies. In particular, it il-
lustrates applications of Wasserstein barycenters
to combine the different views offered by differ-
ent layers of a deep neural network. Specifically,

5Results with * are reported from (Zhao et al., 2019b)
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futur work includes testing Wasserstein Barycen-
ters in a multimodal setting (Garcia et al., 2019;
Colombo et al., 2021a), for classification (e.g. emo-
tion (Witon et al., 2018), dialog act (Chapuis et al.,
2020; Colombo et al., 2020; Chapuis et al., 2021),
stance (Dinkar et al., 2020)) and controlling style
in NLG (Jalalzai et al., 2020; Colombo et al., 2019,
2021b) .
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Monz, Makoto Morishita, Masaaki Nagata, Toshi-
aki Nakazawa, Santanu Pal, Matt Post, and Marcos
Zampieri. 2020. Findings of the 2020 conference on
machine translation (WMT20). In Proceedings of
the Fifth Conference on Machine Translation, pages
1–55, Online. Association for Computational Lin-
guistics.
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stette, Lasse Espeholt, Will Kay, Mustafa Suleyman,
and Phil Blunsom. 2015. Teaching machines to read
and comprehend. arXiv preprint arXiv:1506.03340.

John Hewitt and Percy Liang. 2019. Designing and in-
terpreting probes with control tasks. arXiv preprint
arXiv:1909.03368.

Nhat Ho, XuanLong Nguyen, Mikhail Yurochkin,
Hung Hai Bui, Viet Huynh, and Dinh Phung. 2017.
Multilevel clustering via Wasserstein means. In Pro-
ceedings of the 34th International Conference on
Machine Learning, volume 70, pages 1501–1509.

Eduard H Hovy. 1999. Toward finely differentiated
evaluation metrics for machine translation. In Pro-
ceedings of the EAGLES Workshop on Standards
and Evaluation Pisa, Italy, 1999.

https://doi.org/10.18653/v1/D19-1556
https://doi.org/10.18653/v1/D19-1556
https://doi.org/10.18653/v1/D19-1556
https://doi.org/10.18653/v1/D18-1443
https://doi.org/10.18653/v1/W19-5357
https://doi.org/10.18653/v1/W19-5357
https://doi.org/10.18653/v1/W19-5357


10461

Hamid Jalalzai, Pierre Colombo, Chloé Clavel, Eric
Gaussier, Giovanna Varni, Emmanuel Vignon, and
Anne Sabourin. 2020. Heavy-tailed representa-
tions, text polarity classification & data augmenta-
tion. arXiv preprint arXiv:2003.11593.

Hicham Janati, Marco Cuturi, and Alexandre Gramfort.
2020. Debiased Sinkhorn barycenters. In Proceed-
ings of the 37th International Conference on Ma-
chine Learning, volume 119, pages 4692–4701.

Chris Kedzie, Kathleen McKeown, and Hal Daume III.
2018. Content selection in deep learning models of
summarization. arXiv preprint arXiv:1810.12343.

Maurice G Kendall. 1938. A new measure of rank cor-
relation. Biometrika, 30(1/2):81–93.

Joohyun Kim and Raymond Mooney. 2010. Gen-
erative alignment and semantic parsing for learn-
ing from ambiguous supervision. In Coling 2010:
Posters, pages 543–551.

Philipp Koehn. 2009. Statistical machine translation.
Cambridge University Press.

Matt Kusner, Yu Sun, Nicholas Kolkin, and Kilian
Weinberger. 2015. From word embeddings to doc-
ument distances. In International conference on ma-
chine learning, pages 957–966. PMLR.

Gregor Leusch, Nicola Ueffing, and Hermann Ney.
2006. CDER: Efficient MT evaluation using block
movements. In 11th Conference of the European
Chapter of the Association for Computational Lin-
guistics, Trento, Italy. Association for Computa-
tional Linguistics.

Gregor Leusch, Nicola Ueffing, Hermann Ney, et al.
2003. A novel string-to-string distance measure
with applications to machine translation evaluation.
In Proceedings of Mt Summit IX, pages 240–247.

Vladimir I Levenshtein. 1966. Binary codes capable
of correcting deletions, insertions, and reversals. In
Soviet physics doklady, volume 10, pages 707–710.
Soviet Union.

Mike Lewis, Yinhan Liu, Naman Goyal, Mar-
jan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Ves Stoyanov, and Luke Zettlemoyer. 2019.
Bart: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and
comprehension. arXiv preprint arXiv:1910.13461.

Quentin Lhoest, Patrick von Platen, Thomas Wolf, Al-
bert Villanova del Moral, Yacine Jernite, Abhishek
Thakur, Suraj Patil, Lewis Tunstall, Mariama Drame,
Julien Chaumond, Julien Plu, Joe Davison, Simon
Brandeis, Victor Sanh, Teven Le Scao, Kevin Can-
wen Xu, Nicolas Patry, Angelina McMillan-Major,
Philipp Schmid, Sylvain Gugger, Clément Delangue,
Théo Matussière, Lysandre Debut, Stas Bekman,
and François Lagunas. 2021. huggingface/datasets:
1.9.0.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74–81, Barcelona, Spain.
Association for Computational Linguistics.

Tianyi Lin, Nhat Ho, Xi Chen, Marco Cuturi, and
Michael Jordan. 2020. Fixed-support wasserstein
barycenters: Computational hardness and fast algo-
rithm. In Advances in Neural Information Process-
ing Systems, volume 33, pages 5368–5380.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James
Hays, Pietro Perona, Deva Ramanan, Piotr Dollár,
and C Lawrence Zitnick. 2014. Microsoft coco:
Common objects in context. In European confer-
ence on computer vision, pages 740–755. Springer.

Lucian Vlad Lita, Monica Rogati, and Alon Lavie.
2005. Blanc: Learning evaluation metrics for mt. In
Proceedings of Human Language Technology Con-
ference and Conference on Empirical Methods in
Natural Language Processing, pages 740–747.

Nelson F Liu, Matt Gardner, Yonatan Belinkov,
Matthew E Peters, and Noah A Smith. 2019a. Lin-
guistic knowledge and transferability of contextual
representations. arXiv preprint arXiv:1903.08855.

Yang Liu and Mirella Lapata. 2019. Text summa-
rization with pretrained encoders. arXiv preprint
arXiv:1908.08345.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019b.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Chi-kiu Lo. 2019. Yisi-a unified semantic mt quality
evaluation and estimation metric for languages with
different levels of available resources. In Proceed-
ings of the Fourth Conference on Machine Transla-
tion (Volume 2: Shared Task Papers, Day 1), pages
507–513.

Chi-kiu Lo, Michel Simard, Darlene Stewart, Samuel
Larkin, Cyril Goutte, and Patrick Littell. 2018. Ac-
curate semantic textual similarity for cleaning noisy
parallel corpora using semantic machine translation
evaluation metric: The NRC supervised submissions
to the parallel corpus filtering task. In Proceedings
of the Third Conference on Machine Translation:
Shared Task Papers, pages 908–916, Belgium, Brus-
sels. Association for Computational Linguistics.

Chi-kiu Lo and Dekai Wu. 2011. Meant: An inexpen-
sive, high-accuracy, semi-automatic metric for eval-
uating translation utility based on semantic roles. In
Proceedings of the 49th Annual Meeting of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, pages 220–229.

Ryan Lowe, Iulian V Serban, Mike Noseworthy, Lau-
rent Charlin, and Joelle Pineau. 2016. On the evalu-
ation of dialogue systems with next utterance classi-
fication. arXiv preprint arXiv:1605.05414.

https://www.aclweb.org/anthology/E06-1031
https://www.aclweb.org/anthology/E06-1031
https://doi.org/10.5281/zenodo.5071218
https://doi.org/10.5281/zenodo.5071218
https://www.aclweb.org/anthology/W04-1013
https://www.aclweb.org/anthology/W04-1013
https://doi.org/10.18653/v1/W18-6481
https://doi.org/10.18653/v1/W18-6481
https://doi.org/10.18653/v1/W18-6481
https://doi.org/10.18653/v1/W18-6481
https://doi.org/10.18653/v1/W18-6481


10462

Giulia Luise, Saverio Salzo, Massimiliano Pontil, and
Carlo Ciliberto. 2019. Sinkhorn barycenters with
free support via frank-wolfe algorithm. In Ad-
vances in Neural Information Processing Systems,
volume 32. Curran Associates, Inc.
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Maja Popović. 2015. chrf: character n-gram f-score
for automatic mt evaluation. In Proceedings of the
Tenth Workshop on Statistical Machine Translation,
pages 392–395.
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9 Appendix

We gather additional experimental results. In
particular, a statistical analysis on WMT16 and
WebNLG2020.

9.1 Statistical analysis of WMT16
We report on Figure 11 the correlation coefficients
the inter-correlation across metrics on WMT16.

9.2 Statistical analysis of data2text
We report in Figure 15 the results of the William
test on data2text generation. (Lhoest et al., 2021)
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Figure 11: Correlation coefficients measuring correlation between the prediction made by different metrics based
on BERT on WMT16 (de-en).
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Figure 15: p values of the William significance test on data2text generation.


