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Abstract

Numerical reasoning based machine reading
comprehension is a task that involves reading
comprehension along with using arithmetic op-
erations such as addition, subtraction, sorting,
and counting. The DROP benchmark (Dua
etal., 2019) is a recent dataset that has inspired
the design of NLP models aimed at solving
this task. The current standings of these mod-
els in the DROP leaderboard, over standard
metrics, suggest that the models have achieved
near-human performance. However, does this
mean that these models have learned to rea-
son? In this paper, we present a controlled
study on some of the top-performing model
architectures for the task of numerical reason-
ing. Our observations suggest that the standard
metrics are incapable of measuring progress to-
wards such tasks.

1 Introduction

Machine reading comprehension (MRC) primarily
involves building automated models that are capa-
ble of answering arbitrary natural language ques-
tions on a given textual context such as a paragraph.
Solving this problem should in principle require
a fine-grained understanding of the question and
comprehension of the textual context to arrive at
the correct answer. Designing an MRC benchmark
is challenging, as it is easy to inadvertently craft
questions that allow models to exploit cues that al-
low them to bypass the intended reasoning required
(Gardner et al., 2019).

Recent advances in NLP, currently dominated
by transformer-based pre-trained models, have re-
sulted in models that indicate, when measured with
standard metrics, human-like performance on a va-
riety of benchmarks over leaderboards for MRC!.
In this paper, we focus on numerical reasoning
based MRC and investigate DROP (Dua et al.,
2019), a recent benchmark designed to measure

'for eg., https://leaderboard.allenai.org/

complex multi-hop and discrete reasoning, includ-
ing numerical reasoning®. In contrast to single-
span extraction tasks, DROP allows sets of spans,
numbers, and dates as possible answers. We are
particularly interested in numerical questions, for
eg., ‘How many years did it take for the population
to decrease to about 1100 from 100007 which
requires extracting the corresponding years for the
associated populations from the given passage, fol-
lowed by computing the time difference in years.
The benchmark has inspired the design of spe-
cialized BERT and embedding-based NLP mod-
els aimed at solving this task, seemingly achiev-
ing near-human performance (evaluated using F1
scores) as reported in the DROP leaderboard.

In this work, we investigate some of DROP’s
top-performing models on the leaderboard in or-
der to understand the extent to which these models
are capable of performing numerical reasoning, in
contrast to relying on spurious cues. We probe the
models with a variety of perturbation techniques
to assess how well models understand the ques-
tion, and to what extent such models are basing
the answers on the textual evidence. We show that
the top-performing models can accurately answer a
significant portion (with performance exceeding
35%—61% F1) of the samples even with com-
pletely garbled questions. We further observe that,
for a large portion of comparison style questions,
these models are able to accurately answer without
even having access to the relevant textual context.
These observations call into question the evaluation
paradigm that only uses standard quantitative mea-
sures such as F1 scores and accuracy. The ranking
on the leaderboards can lead to a false belief that
NLP models have achieved human parity in such
complex tasks. We advocate the community to
move towards more comprehensive analyses espe-
cially for leaderboards and for measuring progress.

2We refer the reader to Thawani et al. (2021), for a recent
survey on numeracy in NLP.
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Dev (9,536) Num (6,848) Test (9,622)

Model EM F1 EM F1 EM F1
BOW-Linear 8.61 9.35 10.53 10.77

NAQANEet 41.72 4570 4450 45.65 4424 4724
MTMSN 70.54 7495 77.37 78.01 75.88 79.99
NeRd 73.86 77.24 7849 79.02 7833 81.71
GenBERT 63.18 67.60 72.55 7325 68.60 72.35
TASE 73.82 7796 78.62 79.22 80.42 83.62
NumNet+ 73.56 7770 79.15 79.80 81.52 84.84
Human 94.09 96.42

Table 1: Performance on a) devset (Dev); b) numset
(Num); ¢) hidden testset (Test) (from leaderboard).

2 Dataset and Models

In this section, we briefly highlight the dataset and
models under consideration.

Dataset DROP (Dua et al., 2019) includes ques-
tions with various types of reasoning, of which we
are interested here in numerical reasoning. We fil-
ter the provided dev set to only include questions
that require numerical reasoning; this was done
by first including all answers with type number,
and then augmenting with comparison questions,
filtered heuristically based on whether it contains
a comparative adjective or a comparative adverb.
5850 questions were number and 998 were com-
parison. We call this numset and use it in this
paper as a basis for all experiments?.

Models We include all publicly available mod-
els that appear in the DROP leaderboard®, this
includes NAQANet (Dua et al., 2019), MTMSN
(Hu et al., 2019), NeRd (Chen et al., 2020), Gen-
BERT (Geva et al., 2020), TASE (Segal et al., 2020)
and NumNet+(Ran et al., 2019), in addition to a
simple logistic regression bag-of-words model to
ground our results. With the exception of Num-
Net+, which has been trained on our local machines
from a published codebase, we use the provided
model checkpoint by the corresponding authors.
All of the included models are based on the trans-
former architecture (Vaswani et al., 2017). They
vary, however, on how they tackle the task: NeRd
solves the problem by generating a program from a
domain-specific language; GenBERT augments the
language model pre-training procedure by adding
two more stages, pre-training with numerical data
and pre-training with numeric textual data; the rest

3all variations will be publicly released for reproducibility
“https://leaderboard.allenai.org/drop/submissions/public

rely on specialized modules to solve each of the dif-
ferent question types. The counting module frames
the task as a multi-class classification problem of
numbers 0-9, whilst the arithmetic module assigns
a zero or a sign to each number in the passage
and sums it up. Finally, they also differ in the
encoder, where NAQANet is based on GloVe (Pen-
nington et al., 2014) embeddings; MTMSN, NeRd
and GenBERT use BERT-uncased (Devlin et al.,
2019) (Large variation for the first two, whereas
the last is only available as Base); and TASE and
NumNet+ use RoBERTa ,rge(Liu et al., 2019).
We note that, while some of the models obtain hu-
man parity F1-scores, these models are not public.
However, with their corresponding descriptions,
these models are markedly similar to the models
evaluated in this paper and we believe that our ob-
servations hold on these models too.

Table 1 shows the performance of the models
on the dev set, numset, and the test set scores
as reported in the leaderboard. Note that scores
for the first two columns and the ones reported in
the rest of the paper are based on considering only
the main annotator’s answer as gold, whereas the
official evaluation script considers all annotations.
This is done to clearly track changes in output after
input perturbations.

3 Evaluating question understanding

Evaluating if a model understands questions is a
non-trivial task. In this paper, we probe the perfor-
mance of the models in the following two ways:
evaluation of the models with question permutation
and investigating the affinity to question class.

4 BoW-Linear M Naganet

MTMSN @ NeRd @ GenBERT

TASE @ NumNet+
80

70

60

50

F1 Score

40

30

20

10
Numset Shuffled 3-gram

Shuffled 2-gram Shuffled 1-gram
Figure 1: F1 scores on numset and {3,2,1}-gram shuf-
fles. We note that the results are stable over 5 different

random permutations (with o <1%).

Question permutation experiment Inspired by
recent observations in Pham (2020), we perturb
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the numset by shuffling the words of the corre-
sponding question in each sample. We create three
randomly permuted sets, that differ in the n-gram
permutation. 1-gram shuffle refers to all words
being shuffled, 2-gram and 3-gram refer to corre-
sponding shuffles of ordered 2 and 3 grams in the
question. For the question mentioned in the intro-
duction, an example of the possible shuffles for
each of the {3,2,1}-grams are:

3-gram /0000 about 1100 from did it take to de-
crease to How many years for the population?
2-gram population to it take How many about
1100 from 10000 for the years did decrease to?
1-gram 0000 for from years to decrease it popu-
lation about 1100 did many to take How the?

As the random permutations may distort the se-
mantic meaning (and destroy the syntax) of the
question, we expect the predictions of the models
to be severely impacted (with results approaching
that of random chance). However, our experiments
reveal (in Figure 1) that this is not the case. Gener-
ally the trend suggests that 3-gram permutations do
not generally degrade the performance severely.
While we notice a that 1-gram permutation de-
grades the performance, we still observe that the
models tend to predict a significant portion of ques-
tions correctly (>35% F1 score). Some models
are barely affected, such as NAQANet. We remark
that most models that are based on BERT or bag-
of-embeddings seem to be generally more robust
to permutation than RoOBERTa based models.

We present an analysis on the effect of the num-
ber of numerical attributes in the passage and the
ability of the models to make correct predictions
in Table 2. We bin questions into quartiles, such
that each bin contains the same number of ques-
tions. The first bin contains passages with at most
12 numerical attributes, the second bin has between
13 and 18 numerical attributes, the third ranges be-
tween 19 and 23, and finally, the last bin contains
passages with more than 23 numerical attributes.
We observe that there is no clear association be-
tween the performance of the models and the num-
ber of numerical attributes in a passage. This ex-
periment indicates that the models are not sensitive
to word-order and this can potentially impact their
utility.

Affinity to the class of questions We further
probe models on their affinity to answer questions
by only relying on the class of questions. As the
questions in DROP follow a certain pattern the

Original Shuffled Shuffled Shuffled
3-gram 2-gram 1-gram
[n| <12 79.27 75.4 67.54 50.05
12 <|n| <18 76.93 71.39 65.39 47.14
MTMSN 18 < |n| <23 81.23 76.06 70.96 54.88
|n| > 23 74.47 68.523  63.76 48.29
|n] <12 78.42 74.42 70.21 60.05
NeRd 12 < |n| <18 78.85 74.16 70.44 61.37
18 < |n| <23 81.65 76.92 74.14 64.76
[n| > 23 77.11 71.77 67.21 58
|n] <12 81.16 74.42 62.82 3491
TASE 12 < |n| <18 77.86 70.25 62.04 34.17
18 < |n| <23 82.28 75.33 67.55 38.98
[n| > 23 75.39 66.89 59.09 29.26

Table 2: Breakdown of models’ performance (F1 score)
on question-perturbation experiment based on the num-
ber of numerical attributes in the passage (|n|), com-
pared to performance on original numset.

type can potentially be inferred by exploiting the
first few words. In this experiment, we only make
available the first few words of the question to the
models. This typically contains insufficient details
and should make it difficult for the models to arrive
at the correct answer (average length of questions
in numset is 12 words). We evaluate over three
settings: passing the first two words, passing the
first three words, and passing the first five words as
the corresponding question. Below is an example
of each on the question mentioned earlier:

2 Words How many?
3 Words How many years?
5 Words How many years did it?

Fig 2 shows the performance of the models on
partial questions. With only five words, most mod-
els can still maintain a third of their correct predic-
tions, and with only the first trigram of the question,
they obtain an F1 >11.4%, where NeRd obtains
15.42%. Further showing an affinity of the models
to be able to answer questions by exploiting the
mere presence of a few words in the question.

Unlike the permutation experiment, here break-
ing down performance based on existence of nu-
merical attributes in the passage shows a steady
decline in performance with more numbers in a
passage (see Table 3), suggesting that it is more
likely to get an answer correct if the space of possi-
ble arithmetic expressions is smaller.

4 Evaluating passage comprehension

We now examine whether the models are compre-
hending the passage and if they are basing their
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Figure 2: F1 scores for each of the models on the three
partial question settings and original.

Original 2Words 3Words S5Words
[n] <12 79.27 5.5 16.58 30.28
12 <|n| <18 76.93 7.5 12.73 24.759
MTMSN 18 < |n| <23 8123 6.18 9.687 18.27
[n| > 23 74.47 4.26 8.257 16.724
[n| <12 78.42 10.33 22.59 32.79
NeRd 12 < |n| <18 78.85 9.62 14.77 28.11
18 < |n| <23 81.65 8.4 12.65 21.57
[n| > 23 77.11 5.93 10.99 19.01
[n] <12 81.16 11.29 17.27 29.11
TASE 12 < |n| <18 77.86 8.08 11.79 25915
18 < |n| <23 82.28 8.94 10.94 21.948
[n| > 23 75.39 597 8.25 17.354

Table 3: Breakdown of models’ performance (F1 score)
on affinity to class of questions experiment based on
the number of numerical attributes in the passage (|n|),
compared to performance on original numset.

predictions on the evidence provided in the pas-
sage. We probe with the following three settings:

Random Passage We pair each question with a
randomly assigned passage from numset.
Dummy Passage We create an uninformative pas-
sage that contains no numbers, this is a proxy for a
blank passage as models are unable to process that.
It is the sequence: ‘This is a sentence.’

Fixed Passage We pair all questions with an un-
seen passage from the hidden test set. This passage
has similar properties as passages in the train and
dev, but is irrelevant to the corresponding question.

Figure 3 shows the results of these three set-
tings’; we observe a general trend where the mod-

>Missing bars mean that the model failed to run.

F1 Score
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Figure 3: F1 scores for each of the models on the three
irrelevant passage settings and original.

els are able to correctly answer a significant portion
of the questions without even having access to the
relevant context (with F1 between 10%—17%). On
further examination we observed that span-type
questions cover the majority of the correctly pre-
dicted answers in this setting, indicating that com-
parison type questions might carry inherent biases
that models might exploit, such as questions of the
form: *which group is larger: households or peo-
ple?’, or even models picking up on the structure of
the questions and learning to predict one of the two
entities. Table 4 shows the number of correctly pre-
dicted comparison questions in numset and the
percentage of these that can still be predicted cor-
rectly if we take its context away. Most worryingly,
we observe that NAQANet and NeRd maintain al-
most all of their predictions across the different
settings and do not seem to take the textual context
into account. NumNet+ is the only model whose
performance degrades drastically. We hypothesize
that this could be due to the GNN reasoning mod-
ule (with each number in the passage appearing as
a node) that informs its decision. GenBERT ex-
hibits a curious behavior of a significant drop in
performance for Dummy and Fixed Passage set-
tings, while maintaining >56% of its predictions in
Random Passage. We postulate that this could be
due to similarities in some passages in the devset.

5 Related work

Recent work has shown the effects of word-
permutation on the performance of BERT-based
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Model Original Random Dummy Fixed
Dataset Passage  Passage  Passage
NAQANet 635 97.80% 95.43% 94.96%
MTMSN 728 56.18% - 58.24%
NeRd 758 72.03% 72.43% 71.64%
GenBERT 704 56.71% 24.93% 36.85%
TASE 829 63.09% 59.83% 55.61%
NumNet+ 807 22.18% 16.48% 27.51%

Table 4: Percentage of questions correctly predicted
after replacing the passage with an unrelated one on
comparison-type questions.

models in NLU tasks (Pham et al., 2020; Sinha
et al., 2021b,a; Gupta et al., 2021). Chiefly, Pham
et al. (2020) analyzed the effect of word-order on 6
binary-classification GLUE tasks and demonstrated
the limitations of BERT-based models. In our work,
we investigate it in the context of numerical rea-
soning and observe similar behavior, but more gen-
erally in transformer-based models. Investigating
NLP models in the context of NLU has been the
focus of several recent works. We briefly highlight
the prominent related works that include Jia and
Liang (2017) who show that span-extraction RC
models can be fooled by adding an adversarial sen-
tence to the end of the passage, McCoy et al. (2019)
identify superficial heuristics that NLI models ex-
ploit instead of deeply understanding the language,
and Ravichander et al. (2019) evaluate their quanti-
tative reasoning NLI benchmark on SoTA models
and find that they are similar to a majority-class
baseline. Rozen et al. (2019) finds that a BERT-
based NLI model fails to generalize to unseen num-
ber ranges in an adversarial dataset measuring nu-
merical reasoning, suggesting an inherent model
weakness.

Contrast Sets (Gardner et al., 2020) and Seman-
tics Altering Modifications (SAMSs) (Schlegel et al.,
2020) are two works that introduce changes to
MRC benchmarks to better understand the deci-
sion boundaries of the models. They include a
subset of the DROP dataset, wherein the former the
benchmark’s authors manually modify questions
to include more compositional reasoning steps or
change their semantics to create a Contrast Set. In
the latter, the authors introduce an automatic way
of generating SAMs, which alter the semantics
of a sentence while preserving most of its lexical
surface form. In our work, we take an inverse ap-
proach, where we alter the surface form of a ques-
tion such that it no longer carries the meaning of
the original question.

6 Discussion and conclusion

In this work, we closely examined some of the
top-performing models for numerical reasoning on
DROP. Our study suggests that models are not nec-
essarily arriving at the correct answer by reasoning
about the question and content of the passage. Both
question understanding and passage comprehen-
sion experiments reveal serious holes in the way
the models are able to arrive at the correct answers.
We hypothesize that the models have managed to
pick up on the spurious patterns of the benchmark,
rather than solving the task. Possible reasons for
biases include: patterns in the format of passages
and questions, where passages either describe the
outcome of an American football match, the cen-
sus of a certain location, or some historical event
(Gardner et al., 2020), resulting in redundancies
in the structure of a passage and patterns in their
content; and answer frequency distribution, with
top 5 answers being shared between train and dev
splits, covering almost 20% of the data. In fact, we
found that in the affinity to the class of questions
experiments, there exists a vast disparity in per-
formance between questions with most-frequently
occurring answers vs. others. In NeRd, for exam-
ple, the EM for questions with 2 words is 17.75%
in top-10 answers, whereas it is 4.2% in the rest.
The disparity narrows with more words, as it is
21.5% vs. 11.90% for questions with 3 words, and
30.81% vs. 22.23% for questions with 5 words.

Benchmark leaderboards as they stand now can
be misleading, incentivizing models to improve
upon the reported scores without solving the under-
lying task. We strongly advocate for better methods
to assess the capability of models for numerical rea-
soning. One such direction could be akin to Linzen
(2020) who proposes a parallel evaluation paradigm
that rewards models for possessing human-like gen-
eralization capabilities and Liu et al. (2021) that
augments current leaderboards with three extra di-
mensions of interpretability, interactivity, and relia-
bility. We highly recommend for careful design of
the benchmarks and better leaderboards to correctly
measure progress in such complex tasks.
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A Random Baselines

To ground the models’ results, we evaluate two ran-
dom baselines on the numset. The first randomly
samples a pair of numbers from the passage, and
finds their absolute difference (since subtraction

is most prevalent) — EM 1.8%. The second ran-
dom baseline samples a final answer proportional
to the frequency of answers in the training set — EM
2.46%.

B Raw Results

Shuffled Shuffled Shuffled

3-gram 2-gram 1-gram
Model EM F1 EM F1 EM Fl1
BOW-Linear 9.86 10.10 9.86 10.11 9.94 10.21
NAQANet 3945 41.86 36.30 39.14 34.18 37.17
MTMSN 7195 7290 6585 6691 4850 50.00
NeRd 7324 7436 6931 70.55 59.85 61.09
GenBERT 67.94 69.04 6477 66.00 54.17 55.80
TASE 7023  71.79 60.67 6290 31.12 34.42
NumNet+ 72.81 7377 6433 65.53 4326 45.57

Table 5: Models’ performance when on each of the n-
gram shuffles.

2 Words 3 Words 5 Words

Model EM Fl EM F1 EM F1
BOW-Linear 6.06 6.25 676 693 790 7.98
NAQANet 331 3.84 109 1142 18.97 19.51
MTMSN 542 6.11 11.55 1199 22.15 22.83
NeRd 8.00 8.68 1494 1542 25.08 2572
GenBERT 543 6.03 10.88 11.48 18.54 19.23
TASE 796 8.64 1159 122 23.16 23.87
NumNet+ 3.68 432 11.00 11.7 21.68 22.45

Table 6: Models’ performance when given only a few
words from the beginning of the sentence.

Random Dummy Fixed

Passage Passage Passage
Model EM Fl1 EM Fl1 EM F1
BOW-Linear 6.22 632 645 7.19 4.69 5.05
NAQANet 1592 1692 13.04 1428 1479 1591
MTMSN 9.64 1095 - - 8.10 9.56
NeRd 13.67 1439 1285 1344 12.09 12.83
GenBERT 11.19 11.64 7.68 777 8.64 892
TASE 1523 1636 1459 1549 1441 156
NumNet+ 846 944 857 936 9.18 10.51

Table 7: Models’ performance when given an unrelated
passage, in three variations.
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