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Abstract

The absence of labeled data for training neu-
ral models is often addressed by leveraging
knowledge about the specific task, resulting
in heuristic but noisy labels. The knowledge
is captured in labeling functions, which detect
certain regularities or patterns in the training
samples and annotate corresponding labels for
training. This process of weakly supervised
training may result in an over-reliance on the
signals captured by the labeling functions and
hinder models to exploit other signals or to
generalize well. We propose KnowMAN, an
adversarial scheme that enables to control in-
fluence of signals associated with specific la-
beling functions. KnowMAN forces the net-
work to learn representations that are invari-
ant to those signals and to pick up other sig-
nals that are more generally associated with an
output label. KnowMAN strongly improves
results compared to direct weakly supervised
learning with a pre-trained transformer lan-
guage model and a feature-based baseline.

1 Introduction

Neural approaches rely on labeled data sets for
training. For many tasks and languages, such data
is either scarce or not available at all. Knowledge-
based weak supervision tackles this problem by
employing labeling functions (LF's). LFs are manu-
ally specified properties, e.g. keywords, that trigger
the automatic annotation of a specific label. How-
ever, these annotations contain noise and biases
that need to be handled.

A recent approach for denoising weakly super-
vised data is Snorkel (Ratner et al., 2020). Snorkel
focuses on estimating the reliability of LFs and of
the resulting heuristic labels. However, Snorkel
does not address biases on the input side of weakly
supervised data, which might lead to learned repre-
sentations that overfit the characteristics of specific
LFs, hindering generalization. We address the prob-
lem of overfitting to the LFs in this paper.

Other approaches tackle such overfitting by
deleting the LF signal completely from the input
side of an annotated sample: For example, Go et al.
(2009) strip out emoticons that were used for label-
ing the sentiment in tweets, and Alt et al. (2019)
mask the entities used for distant supervision of re-
lation extraction training data (Mintz et al., 2009).
However, as LFs are often constructed from the
most prototypical and reliable signals (e.g., key-
words), deleting them entirely from the feature
space might — while preventing over-reliance on
them — hurt prediction quality considerably. How-
ever, we find a way to blur the signals of the LFs
instead of removing them.

In this work we propose KnowMAN
(Knowledge-based Weakly Supervised Multi-
nomial Adversarial Networks), a method for
controllable soft deletion of LF signals, allowing
a trade-off between reliance and generalization.
Inspired by adversarial learning for domain
adaptation (Chen and Cardie, 2018a; Ganin and
Lempitsky, 2015), we consider LFs as domains
and aim to learn a LF-invariant feature extractor
in our model. KnowMAN is composed of three
modules: a feature extractor, a classifier, and a
discriminator. Specifically, KnowMAN employs
a classifier that learns the actual task and an
adversarial opponent, the LF- discriminator, that
learns to distinguish between the different LFs.
Upstream of both is the shared feature extractor to
which the gradient of the classifier and the reversed
gradient of the discriminator are propagated. In our
experiments, the feature extractor for encoding the
input is a multi-layer perceptron on top of either a
bag-of-words vector or a transformer architecture,
but KnowMAN is in principle usable with any
differentiable feature extractor.

KnowMAN consistently outperforms our base-
lines by 2 to 30% depending on the dataset. By set-
ting a hyperparameter A that controls the influence
of the adversarial part we can control the degree of
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Figure 1: KnowMAN architecture. The figure depicts
one iteration over a batch of inputs. The parameters
of C and F are updated together, following the green
arrows. The LF discriminator D is updated following
the red arrows. Solid lines indicate forward, dashed
lines the backward pass.

discarding the information of LF-specific signals.
The optimal A value depends on the dataset and its
properties.

The contributions of this work are i) proposing
an adversarial architecture for controlling the in-
fluence of signals associated with specific LFs, ii)
consistent improvements over weakly supervised
baselines, iii) release of our code !. To our knowl-
edge, we are the first that apply adversarial learning
to overcome the noisiness of labels in weak super-
vision.

2 Method

Our approach is composed of three interacting mod-
ules i) the shared feature extractor Fg, ii) the clas-
sifier C and iii) the LF discriminator D. The loss
function of C rewards the classifier C for predicting
the correct label for the instance, and the gradient is
used for optimizing the shared feature extractor and
classifier modules towards that goal. At the same
time, the loss function for the LF-discriminator
D rewards predicting which LF was responsible
for labeling an instance. However, in adversarial
optimization, KnowMAN backpropagates the re-
versed gradient for the LF-discriminator, hence the
information indicative for distinguishing between
specific LFs is weakened throughout the network.
The hyperparameter A is used to control the level

'nttps://github.com/LuisaMaerz/KnowMAN

of weakening the signals - the higher we choose the
value the more influence is assigned to the discrimi-
nator information that goes into D. The result of the
interplay between classifier and LF-discriminator
is a shared feature representation that is good at
predicting the labels while reducing the influence
of LF-specific signals, encouraging the shared fea-
ture extractor to take other information (correlated
with all LFs for a class) into account.

In Figure 1, the arrows illustrate the training flow
of the three modules. Due to the adversarial nature
of the LF discriminator D, it has to be trained with
a separate optimizer (red arrows), while the rest
of the network is updated with the main optimizer
(green arrows). When D is trained the parameters
of C and F; are frozen and vice versa.

To calculate the losses we utilize canonical neg-
ative log-likelihood loss (NLL) and use it for both,
the classifier and the LF discriminator. The classifi-
cation NLL can be formalized as:

Lc(Yi,yi) = —log P(¥s = ;) (D

where y; is the (weakly supervised) annotated label
and g; is the prediction of the classifier module C,
for a training sample ¢. Analogously, we can define
the NLL for the LF discriminator:

Lo(lfi,lf;) = —log P(If; =1f;) (2

where [ f; is the actual LF used for annotating sam-
ple ¢ and l}”i is the predicted LF by the discrimi-
nator D. Accordingly, we minimize two different
objectives within KnowMAN:

N

Je = Le(C(Fu(wi);vi) 3)

i=1

N
Jp =Y Lo(D(F(w)ilf;)) 4
=1

Here the shared feature extractor has two different
objectives: 1) help C to achieve better classification
performance and ii) make the feature distribution
invariant to the signals from the LFs. This is cap-
tured by the shared objective:

Jr, =Jo+ A (=Jp) Q)

where A is the parameter that controls the adversar-
ial influence i.e. the degree of LF signal blur. —Jp
is the reversed loss of the LF discriminator D that
represents Cs adversarial opponent. In general, the
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exact implementation or architecture of the individ-
ual modules is interchangeable and can be set up
as required. This makes KnowMAN a universally
applicable and easily customizable architecture.

3 Experiments

3.1 Data

For our experiments we use three standard datasets
for weak supervision.

Spam. Based on the YouTube comments dataset
(Alberto et al., 2015) there is a smaller Spam
dataset from Snorkel (Ratner et al., 2020) where
the task is to classify if a text is relevant to a certain
YouTube video or contains spam. This dataset is
very small and does consist of a train and a test
set only. For the 10 LFs keywords and regular
expressions are used.

Spouse. This dataset for extracting the spouse
relation has also been created by Snorkel, it is based
on the Signal Media One-Million News Articles
Dataset (Corney et al., 2016). The 9 LFs use in-
formation from a knowledge base, keywords and
patterns. One peculiarity of this dataset is that over
90% of the instances do not hold a spouse relation.

IMDb. The IMDb dataset contains movie re-
views that should be classified in terms of their sen-
timent (binary, positive or negative sentiment). The
LFs used for this dataset are occurrences of positive
and negative keywords from (Hu and Liu, 2004). A
particular characteristic of this data set is the large
amount of 6800 LFs, which constitutes a particu-
lar challenge to the Snorkel denoising framework.
As a result Snorkel fails to calculate its generative
model, since its memory consumption exceeds the
available limit of 32GB RAM.

3.2 Experimental setup

For the experiments we use two different methods
for encoding the input: i) TF-IDF encoding and
ii) a DistilBERT transformer. For TF-IDF encod-
ing, we vectorize? the input sentences and feed
them to a simple MLP. In the transformer setting,
the sequences of words are encoded using a pre-
trained DistilBERT. Similar to BERT (Devlin et al.,
2019), DistilBERT is a masked transformer lan-
guage model, which is a smaller, lighter, and faster
version leveraging knowledge distillation while re-
taining 97% of BERT’s language understanding

https://scikit-learn.org/stable/
modules/generated/sklearn. feature_
extraction.text.TfidfVectorizer.html

capabilities (Sanh et al., 2019).

Our encoder takes the representation of the CLS
token from a frozen DistilBERT and learns a non-
linear transformation with a drop-out layer to avoid
overfitting (Srivastava et al., 2014):

h; = DistilBERT (Sentence;)|cLs)

Fs; = Dropout(ReLU(f(h;)))

where Distil BERT(.)|cs) generates the hidden
state of the BERT’s classifier token (CLS) and the
function f represents a linear transformation for
the i*" sentence.

The classifier and discriminator networks follow-
ing the feature extractor are in line with the imple-
mentation of Chen and Cardie (2018a) for domain-
adversarial learning. Both are simple sequential
models with dropout, batch normalization, Re LU
activation and softmax as the last layer. Please see
our code for implementation details. In the TF-IDF
setup we use Adam (Kingma and Ba, 2014) for
both optimizers. When using transformer encoding
the D optimizer again is Adam and the C optimizer
is AdamW (Loshchilov and Hutter, 2018), as this
yielded more stable results.

Baselines For each input encoding we imple-
mented several baselines. Weakly supervised TF-
IDF (WS TF-IDF) and Weakly supervised Distil-
BERT (WS DistilBERT). Both calculate the labels
for each instance in the train set based on their
matching LFs. WS TF-IDF directly applies a lo-
gistic regression classifier to the input and the cal-
culated labels. WS DistilBERT directly uses the
DistilBERT uncased model for English (Sanh et al.,
2019) as a prediction model. The second baseline
(Feature TF-IDF, Feature DistilBERT) uses feature
extractor and classifier layers of KnowMAN with-
out taking the information of D into account (this
is equal to setting A to zero). We also fine-tuned
the pure language model (Fine-tuned DistilBERT)
without further transformations and without inte-
grating the KnowMAN architecture.

We also compare with training TF-IDF and Dis-
tilBERT models on labels denoised by Snorke
(Snorkel TF-IDF, Snorkel DistilBERT). However,
Snorkel denoising failed for the IMDb data set due
to the large amount of LFs.

KnowMAN We refer to the KnowMAN archi-
tecture as TF-IDF KnowMAN and DistilBERT
KnowMAN. Depending on the dataset we choose
different A values. We also implemented two ways
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Spam Spouse IMDb
Acc P R F1 Acc
WS TF-IDF 0.87 | 0.12 0.83 0.20* | 0.65*
Feature TF-IDF 091 | 0.12 0.76  0.21* | 0.75%
Snorkel TF-IDF 0.81 | 0.18 0.63  0.28* | 0.50%*
KnowMAN TF-IDF 094 | 0.16 0.72 035 | 0.77
Fine-tuned DistilBERT | 0.92 | 0.14  0.78 024 | 0.70
WS DistilBERT 0.87 1009 090 0.17% | 0.67*
Feature DistilBERT 0.86 | 0.18 0.80 0.29* | 0.74
Snorkel DistilBERT 0.88 | 0.13 0.70  0.23* | 0.49*
KnowMAN DistilBERT | 0.90 | 0.27  0.67 0.39 | 0.76

Table 1: Results on the test sets. The * indicates that KnowMAN performs significantly better than the marked
model. For the Spouse data set we do report significance for the F1 scores only.

of evaluation and best model saving during train-
ing: i) evaluate after each batch and save the best
model, ii) evaluate after a certain number of steps
in between the batches and save the best model.

Hyperparameters We perform hyperparameter
tuning using Bayesian optimization (Snoek et al.,
2012) for the IMDb and Spouse datasets. For Spam,
hyperparameters are not optimized, as no valida-
tion set is available. Sampling history and resulting
hyperparameters are reported in the Appendix, Fig-
ures 2, 3 as well as hyperparameters chosen for the
Spam data set.

Evaluation For the evaluation of the IMDb and
the Spam datasets we use accuracy, for the Spouse
dataset we use the macro F1 score of the positive
class. To check statistical significance we use ran-
domized testing (Yeh, 2000). Results are consid-
ered significant if p < 0.05.

3.3 Results

The results of the experiments are shown in Table 1.
For the TF-IDF setup KnowMAN TF-IDF outper-
forms the baselines across all datasets. We find the
optimal X values as follows: Spam/Spouse/IMDb
= 2/5/4.9. Using the additional feature extractor
layer (Feature TF-IDF) is beneficial compared to
direct logistic regression for all datasets. Snorkel
TF-IDF can outperform the other two baselines for
the Spouse dataset only.

Fine tuning of DistilBERT can not outperform
our best KnowMAN. However, for the Spam
dataset Fine-tuned DistilBERT gives better results
than KnowMAN DistilBERT but still is worse than
KnowMAN TF-IDF. Using WS DistilBERT gives
the same results for the Spam dataset and slightly
better results for IMDb, when compared to WS

TF-IDF, for Spouse the performance decreases.
Snorkel DistilBERT can outperform the other two
baselines for the Spam dataset only. The low perfor-
mance of Snorkel on IMDb (for both DistilBERT
and TF-IDF) might be explained by the very large
amount of LF for this dataset. The KnowMAN
DistilBERT results across datasets are in line with
the TF-IDF setup - KnowMAN can outperform all
baselines for the Spouse and IMDb dataset. We ob-
serve that A = 5 for Spouse and A = 1 for IMDb
is most beneficial when using DistilBERT. For the
Spam dataset we observe that KnowMAN (with
A = 2) outperforms all the baselines, except for the
fine-tuned DistilBERT model.

Discussion The performance drop we observe
with DistilBERT for KnowMAN compared to the
tf-idf setup of the IMDb dataset could be explained
by implementation details. Due to memory issues
we have to truncate the input when using Distil-
BERT. Since the movie reviews from IMDb are
rather long this could harm performance. Since
the Spam dataset is very small a single wrongly
classified instance can have great impact on the
results. This could explain why KnowMAN TF-
IDF outperforms KnowMAN DistilBERT here as
well. In general we could not perform hyperparam-
eter optimization for the DistilBERT experiments
due to memory issues. Therefore the results for
that experiments might not have reached their opti-
mum. However, the results show the value of using
KnowMAN though. Overall our results confirm
the assumption that KnowMAN enables a focus
shift of the shared feature extractor from the sig-
nals of the LFs towards signals of other valuable
information. KnowMAN consistently improves
over the other experiments significantly - except
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for the Spam dataset. We assume that the dataset
size is too small to see significant changes in the
results. Compared to the implementation of Chen
and Cardie (2018a) we could not use the special-
ized domain feature extractor for our datasets in
the experiments. This is due to the fact that our test
sets do not contain information about LF matches.
However, we will address this issue by integrating
a mixture of experts module for the specialized
feature extractor as recommended by Chen et al.
(2019).

4 Related Work

Adversarial neural networks have been used to re-
duce the divergence between distributions, such as
Goodfellow et al. (2014), Chen et al. (2018) and
Ganin and Lempitsky (2015). The latter proposed
an architecture for gradient reversal and a shared
feature extractor. Unlike us, they focused on a bi-
nary domain discriminator. Similarly, (Chen and
Cardie, 2018a) use an adversarial approach in a
multinomial scenario for domain adaptation.

Some works on adversarial learning in the con-
text of weak supervision focus on different aspects
and only share similarity in name with our ap-
proach: Wu et al. (2017) use virtual adversarial
training (Miyato et al., 2017) for perturbing input
representations, which can be viewed as a general
regularization technique not specific to weakly su-
pervised learning. Qin et al. (2018); Zeng et al.
(2018) use generative adversarial mechanisms for
selecting negative training instances that are dif-
ficult to discriminate from heuristically annotated
ones for a classifier.

Several approaches have focused on denoising
the labels for weakly supervised learning (Taka-
matsu et al., 2012; Manning et al., 2014; Lin et al.,
2016). Snorkel (Ratner et al., 2020) is one of the
most general approaches in this line of work. How-
ever, Snorkel only models biases and correlations
of LFs, and does not consider problems of weak su-
pervision that may stem from biases in the features
and learned representations.

A recent approach that focuses on denoising
weakly supervised data is (Sedova et al., 2021).
Knodle is a framework for comparison of different
methods that improve weakly supervised learning.
We use some of their datasets for our approach but
denoise the signals of the LFs during training.

5 Conclusion

We propose KnowMAN - an adversarial neural net-
work for training models with noisy weakly super-
vised data. By integrating a shared feature extrac-
tor that learns labeling function invariant features,
KnowMAN can improve results on weakly super-
vised data drastically across all experiments and
datasets in our setup. The experiments also show
that the adverse effect of labeling function-specific
signals is highly dependent on the datasets and their
properties. Therefore, it is crucial to fine-tune the A
parameter on a validation set to find the optimal de-
gree of blurring the labeling function signals. Since
the modules in the KnowMAN architecture are eas-
ily exchangeable, KnowMAN can be applied to
any architecture and dataset labeled with heuristic
labeling functions.
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A Appendix

A.1 Dataset statistics

The datasets used for the KnowMAN experiments
have different properties. Especially the numer of
labeling functions and the dataset sizes varies a lot.

dataset | classes | train/test samples | Ifs
Spam 2 1586/250 10
Spouse 2 22254/2701 9
IMDb 2 40000/5000 6786

Table 2: Dataset statistics for KnowMAN experiments.
Lfs are labeling functions.

A.2 Hyperparameter optimization

We perform hyperparameter tuning using Bayesian
optimization (Snoek et al., 2012). Bayesian Opti-
mization is an approach that uses the Bayes Theo-
rem to direct the search in order to find the mini-
mum or maximum of a black-box objective func-
tion. In comparison with random search and grid
search, it tends to obtain better hyperparameters in
fewer steps by making a proper balance between
exploration and exploitation steps. Our hyperpa-
rameter space includes batch size, dropout, number
of iterations over D, the shared hidden size of the
models, learning rate for D and F, C and the num-
ber of layers of C,D and F,. We implemented
two ways of evaluation and best model saving dur-
ing training: i) evaluate after each batch and save
the best model, ii) evaluate after a certain number
of steps in between the batches and save the best
model. We also optimized the number of steps if
logging in between a batch.

We evaluated the models for IMDb and Spouse
on the respective validation set. For the Spam
dataset, there is no development set available
and we used the following hyperparameters for
KnowMAN TF-IDF following the parameters used
in Chen and Cardie (2018b): Batch size: 32,
dropout: 0.4, n critic: 5, lambda: 2.0, shared
hidden size: 700, learning rate C & F: 0.0001,
learning rate D: 0.0001 , number of F layers: 1,
number of C layers: 1, number of D layers: 1.

A.3 Experimental details

We ran our experiments on a DGX-1 server with
one V100 GPU per experiment. The runtime of
one model depends on the dataset: 0.25 hours for
the Spam dataset, 0.25 hours for the Spouse dataset,
and 8 hours for the IMDb dataset.

Please find our implementation at https://
github.com/LuisaMaerz/KnowMAN.
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Figure 2: Sampled hyperparameters for KnowMAN TF-IDF on IMDb. Optimal hyperparameters are indicated in
red.

Batch size: 895, dropout: 0.275, n critic: 50, lambda: 4.9, shared hidden size: 585, learning rate C & F:
0.0001, learning rate D: 0.0001, number of F layers: 1 , number of C layers: 1, number of D layers: 10.
Histograms on the diagonal show how, for each hyperparameter, how many samples have been drawn during
optimization.
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Figure 3: Sampled hyperparameters for KnowMAN DistilBERT on Spouse. Optimal hyperparameters are indi-
cated in red.

Batch size: 16, dropout: 0.379, n critic: 1, lambda: 5.0, shared hidden size: 988, learning rate C & F: 0.0005,
learning rate D: 0.001 , number of F layers: 5, number of C layers: 10, number of D layers: 1.

Histograms on the diagonal show how, for each hyperparameter, how many samples have been drawn during
optimization.
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