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Abstract

Graph-based Aspect-based Sentiment Classifi-
cation (ABSC) approaches have yielded state-
of-the-art results, expecially when equipped
with contextual word embedding from pre-
training language models (PLMs). However,
they ignore sequential features of the context
and have not yet made the best of PLMs.
In this paper, we propose a novel model,
BERT4GCN, which integrates the grammati-
cal sequential features from the PLM of BERT,
and the syntactic knowledge from dependency
graphs. BERT4GCN utilizes outputs from in-
termediate layers of BERT and positional in-
formation between words to augment GCN
(Graph Convolutional Network) to better en-
code the dependency graphs for the down-
stream classification. Experimental results
demonstrate that the proposed BERT4GCN
outperforms all state-of-the-art baselines, justi-
fying that augmenting GCN with the grammat-
ical features from intermediate layers of BERT
can significantly empower ABSC models.

1 Introduction

Aspect-based sentiment classification (ABSC), a
fine-grained sentiment classification task in the
field of sentiment analysis, aims at identifying the
sentiment polarities of aspects explicitly given in
sentences. For example, given the sentence “The
price is reasonable although the service is poor.”,
ABSC needs to correctly assign a positive polarity
to price and a negative one to service.

Intuitively, matching aspects with their corre-
sponding opinion expressions is the core of ABSC
task. Some of previous deep learning approaches
(Tang et al., 2016; Ma et al., 2017; Huang et al.,
2018; Song et al., 2019) use various types of atten-
tion mechanisms to model the relationship between
aspects and opinion expressions in an implicit way.
However, these attention-based models do not take
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good advantage of the syntactic information of sen-
tences, such as the dependency graph, to better
associate the aspects with their sentimental polari-
ties, thus leading to poor performance.

In order to better pair aspects and their corre-
sponding opinion expressions, the syntactic fea-
tures must be taken into account. Recent work
such as (Huang and Carley, 2019; Sun et al.,
2019; Zhang et al., 2019; Wang et al., 2020; Tang
et al., 2020) employs either Graph Convolutional
Networks (GCNs) (Kipf and Welling, 2017) or
Graph Attention Networks (GATs) (Velickovic
et al., 2018) on the dependency graph, in which
words in the sentence are nodes in the graph and
grammatical relations are edge labels. The depen-
dency graph they use can be obtained from either
ordinary dependency tree parser or reshaping it
using heuristic rules. These models can achieve
promisingly better performance with this additional
grammatical features, especially when they incor-
porate the contextual word embedding, such as
BERT (Devlin et al., 2019).

Meanwhile, BERTology researchers have inves-
tigated what linguistic knowledge can be learned
from unlabeled data by language models (Clark
et al., 2019; Hewitt and Liang, 2019; Hewitt and
Manning, 2019; Jawahar et al., 2019). And it has
been shown that BERT captures a rich hierarchy
of linguistic information, with surface features in
lower layers, syntactic features in middle layers
and semantic features in higher layers (Jawahar
et al., 2019).

Inspired by Jawahar et al. (2019), we propose
a novel framework of BERT4GCN to make the
best of the rich hierarchy of linguistic information
from BERT in this paper. Specifically, we firstly
encode the context with a BiLSTM (Bidirectional
Long Short-Term Memory) to capture the contex-
tual information regarding word orders. Then, we
use the hidden states of BiLSTM to initiate node
representations and employ multi-layer GCN on
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the dependency graph. Next, we combine the node
representations of each layer of GCN with the hid-
den states of some intermediate layer of BERT,
i.e., for the neighborhood aggregation of GCN. In
this way, BERT4GCN can fuse grammatical se-
quential features with graph-based representations.
Besides, we further prune and add the edge of the
dependency graph based on self-attention weights
in the Transformer encoder (Vaswani et al., 2017)
of BERT to deal with parsing errors and make de-
pendency graph better suit ABSC task. In addition,
we develop a method which incorporates relative
positional embedding in node representations to
make GCN position-aware.

Our contributions in this paper are summarized
as follows:
• We propose a BERT4GCN model, which nat-

urally incorporates grammatical sequential fea-
tures and syntactic knowledge from intermediate
layers in BERT to augment GCN and thus can
produce better encodings for the downstream
ABSC task. BERT4GCN can make the best of
the hidden linguistic knowledge in BERT with-
out learning from scratch on other sources.
• The experiments have been conducted on Se-

mEval 2014 Task 4 (Pontiki et al., 2014) and
Twitter (Dong et al., 2014) datasets, with promis-
ing results showing that BERT4GCN achieves
new state-of-the-art performance across these
prestigious benchmarks.

2 Related Work

Modeling the connection between aspect terms and
opinion expressions is the core of the ABSC task.
State-of-the-art models combine GNNs (Graph
Neural Networks) with dependency graphs whose
syntactic information is very helpful. Some have
stacked several GNN layers to propagate sentiment
from opinion expressions to aspect terms (Huang
and Carley, 2019; Sun et al., 2019; Zhang et al.,
2019). Some have tried to convert the original
dependency graph to the aspect-oriented one and
encode dependency relations (Wang et al., 2020).
More recently, a dual structure model has been pro-
posed in (Tang et al., 2020), jointly taking the se-
quential features and dependency graph knowledge
together. Our BERT4GCN model has a similar
structure to that in (Tang et al., 2020), but ours uti-
lizes the grammatical sequential features directly
from intermediate layers in BERT, instead of learn-
ing from scratch on other sources.

3 BERT4GCN

3.1 Word Embedding and BiLSTM
Given s = [w1, w2, ..., wi, ..., wi+m−1, ..., wn] as
a sentence of n words and a substring a =
[wi, ..., wi+m−1] representing aspect terms, we first
map each word to a low-dimensional word vec-
tor. For each word wi, we get a vector xi ∈ Rde

where de is the dimensionality of the word em-
bedding. After that, we employ a BiLSTM to
word embeddings to produce hidden state vectors
H = [h1, h2, ..., hn], where each ht ∈ R2dh rep-
resents the hidden state at time step t from bidi-
rectional LSTM, and dh is the dimensionality of a
hidden state output by an unidirectional LSTM. H
will fuse with BERT hidden states to produce the
input of the first GCN layer.

3.2 The Usage of BERT
We consider BERT as a grammatical knowledge
encoder that encodes input text features in hid-
den states and self-attention weights. The input of
BERT model is formulated as [CLS]s[SEP]a[SEP],
where s is the sentence and a is the aspect term.

3.2.1 Hidden States as Augmented Features
BERT captures a rich hierarchy of linguistic infor-
mation, spreading over the Transformer encoder
blocks (Clark et al., 2019; Jawahar et al., 2019).
Jawahar et al. (2019) also show that neighbouring
layers of BERT learn similar linguistic knowledge.
Therefore we select layers uniformly from BERT
as the source of augmented features. BERT4GCN
utilizes the hidden states of the 1st, 5th, 9th and
12th layers of BERT-Base model as augmented fea-
tures1. We define the hidden states of all BERT
layers as B = [HB

1 ,H
B
2 , ...,H

B
12], where each

HB
i ∈ Rn×dBERT , and dBERT is the dimensional-

ity of the hidden state. When a word is split into
multiple sub-words, we just use the hidden state
corresponding to its first sub-word. Then we can
get the augmented features G for GCN as:

G =
[
HB

1 ,H
B
5 ,H

B
9 ,H

B
12

]
(1)

3.2.2 Supplementing Dependency Graph
Self-attention mechanism captures long-distance
dependencies between words. Therefore, we ap-
ply self-attention weights of BERT to supplement

1We also try other layers to build BERT4GCN2,7,12 and
BERT4GCN1,4,7,10,12 (the numbers in subscript mean lay-
ers used), but the model in the paper is the best in experimental
results on average.
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dependency graphs to deal with parsing errors and
make dependency graphs better suit the ABSC task.
After getting dependency graphs from an ordinary
parser, we substitute the unidirectional edges to
bidirectional ones.

Next, we obtain attention weight tensors Aatt =[
Watt

1 ,Watt
5 ,Watt

9 ,Watt
12

]
, where each Watt

i ∈
Rh×n×n is the self-attention weight tensor of i-th
layer Transformer encoder of BERT, and h is the
number of attention heads. Then, we average them
over the head dimension Āatt

l = 1
h

∑h
i=1A

att
l,i ,

where Aatt
l is the l-th element in Aatt, and l ∈

{1, 2, 3, 4}. Finally, we prune or add directed edges
between words if the attention weight is larger or
smaller than some thresholds. So the supplemented
dependency graph for the l-th layer of GCN is for-
mulated as follows:

Asup
l,i,j =


1 α ≤ Āatt

l,i,j

Ai,j β < Āatt
l,i,j < α

0 Āatt
l,i,j ≤ β

(2)

where A is the adjacency matrix of the original
dependency graph, Asup

l is the adjacency matrix
of the supplemented dependency graph and Asup

l,i,j

is the element on the i-th row and j-th column of
Asup

l , α and β are hyperparameters.

3.3 GCN over Supplemented Dependency
Graph

We then apply GCN over the supplemented depen-
dency graph in every layer, whose input is a fusion
of BERT hidden states and output of the previous
layer as follows:

R1 = ReLU (G1W1) + H (3)

Rk = ReLU (GkWk) + Ok−1 (4)

Ol,i = ReLU

 1

di

n∑
j=1

Asup
l,i,jW

lRl,j + bl

 (5)

where k ∈ {2, 3, 4} , l ∈ {1, 2, 3, 4}, G1 and
Gk ∈ Rn×dBERT is the first and k-th element in
G, respectively. R1 and Rk are the node represen-
tations which fuse the hidden states of BERT with
the hidden states of BiLSTM or the output of the
preceding GCN layer, before feeding to the first
and k-th GCN layer. Ol,i is output of l-th layer in
GCN. di is the outdegree of node i. The weight
W1,Wk,W

l and bias bl are trainable parameters.

3.4 Taking Relative Positions
The GCN aggregates neighbouring nodes represen-
tations in an averaging way and ignores the relative

linear positions in the original context. To address
this issue, we learn a set of relative position em-
beddings P ∈ R(2w+1)×dp to encode positional
information, where w is the positional window hy-
perparameter. Before aggregating neighbouring
node representation, we add the relative position
embedding to the node representation, formalizing
the relative linear position to the current word as
follows:

Ol,i = ReLU

 1

di

n∑
j=1

Asup
l,i,jW

lRp
l,j + bl

 (6)

Rp
l,j = Rl,j + Pclip(j−i,w) (7)

clip (x,w) = max (−w,min(w, x)) (8)

where Rp
l,j is the positional node representation,

and clip function returns the embedding index.

3.5 The Training
Having obtained the representation of words after
the last GCN layer, we average the representation
of the current aspect terms as the final feature for
classification:

ha =
1

m

i+m−1∑
p=i

O4,p (9)

It is then fed into a fully-connected layer, followed
by a softmax layer to yield a probability distribu-
tion p over polarity space:

p = softmax (haWc + bc) (10)

where Wc and bc are trainable weights and biases,
respectively.

The proposed BERT4GCN is optimized by the
gradient descent algorithm with the cross entropy
loss and L2-regularization:

Loss = −
∑

(x,y)∈D

lnpy + λ‖Θ‖2 (11)

where D denotes the training dataset, y is the
ground-truth label, py is the y-th element of p,
Θ represents all trainable parameters, and λ is the
coefficient of the regularization term.

4 Experiments

4.1 Datasets and Experimental Setup
We have evaluated our model on three widely used
datasets, including Laptop and Restaurant datasets
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Category Model Twitter Laptop Restaurant

Acc. Macro-F1 Acc. Macro-F1 Acc. Macro-F1

Others
LSTM 67.69 65.61 67.04 58.26 75.63 61.33
BERT-SPC 72.88 71.78 76.19 70.84 83.74 74.77
RoBERTa-MLP 72.76 71.73 81.11 77.11 86.79 79.76

Attention

MemNet 68.41 65.63 68.35 61.61 77.68 64.99
IAN 70.33 68.12 68.24 59.49 75.78 61.12
AOA 69.61 67.07 69.61 62.84 77.12 63.73
AEN-BERT 71.13 70.00 75.64 69.04 80.77 68.87

Graph

CDT 71.93 69.96 72.38 67.16 79.90 68.83
BERT+GCN 72.46 71.68 73.89 67.62 82.44 72.33
ASGCN 69.28 66.63 70.55 64.26 78.65 67.03
ASGCN-BERT 72.20 70.82 76.71 71.61 81.74 71.00
RGAT 68.24 66.29 71.47 65.29 79.77 69.43
RGAT-BERT 72.62 71.34 75.67 70.53 83.23 74.26
DGEDT-BERT 72.79 71.35 76.03 70.70 83.85 75.18

Ours

BERT4GCN 74.73 73.76 77.49 73.01 84.75 77.11
w/o pos. 74.48 73.22 77.24 72.82 84.41 76.29
w/o att. 74.15 72.90 77.12 72.46 83.91 75.28
w/o pos. & w/o att. 74.36 73.31 77.23 72.58 84.09 75.93
RoBERTa4GCN 74.75 74.00 81.80 78.16 86.23 78.61

Table 1: Comparisons of BERT4GCN with various baselines. The w/o pos. indicates the one without using relative
position module and w/o att. is without using supplemented dependency graph. Accuracy (Acc.) and Marco-F1
are used for metrics. And we report the average of 10-fold experimental results (%).

from SemEval 2014 Task 4 (Pontiki et al., 2014)
and Twitter datasets from Dong et al. (2014). And
we compare the proposed BERT4GCN with a se-
ries of baselines and state-of-the-art models, in-
cluding LSTM, BERT-SPC (Song et al., 2019),
RoBERTa-MLP (Dai et al., 2021), MemNet (Tang
et al., 2016), IAN (Ma et al., 2017), AOA (Huang
et al., 2018), AEN-BERT (Song et al., 2019),
CDT (Sun et al., 2019), BERT+GCN, ASGCN and
ASGCN-BERT (Zhang et al., 2019), RGAT and
RGAT-BERT (Wang et al., 2020), and DGEDT-
BERT (Tang et al., 2020). We divide them into
three categories. The category Others includes
models that are general and task agnostic ones.
The LSTM acts as a baseline for models without
using PLM, while BERT-SPC and RoBERTa-MLP
are baselines for models with the corresponding
PLMs. The categories Attention and Graph are
models mainly based on attention mechanism and
graph neural networks, respectively. The details
of datasets and experimental setup can be found in
Appendix A.1.

4.2 Experimental Results

4.2.1 Overall Results

We now present the comparisons of performance of
BERT4GCN with other models in terms of classi-
fication accuracy and Macro-F1 on Table 1. From

the table, we can observe that our BERT4GCN
outperforms all other BERT-based models across
all three datasets, justifying that augmenting GCN
with the grammatical features from intermediate
layers of BERT can empower ABSC models.

4.2.2 Results Analysis
BERT-SPC vs. RoBERTa-MLP. RoBERTa-
MLP significantly outperforms BERT-SPC on Lap-
top and Restaurant datasets, while has similar
results to BERT-SPC on Twitter dataset. The
same pattern is also observed in the comparison
of BERT4GCN and RoBERTa4GCN. One possi-
ble reason for this phenomenon is that the corpora
which the two PLMs were pre-trained on are far dif-
ferent from Twitter dataset. Therefore, RoBERTa’s
superiority is not shown on the Twitter dataset,
which we call the out-domain dataset.
BERT-SPC vs. BERT-based models. From the
table, we also see that BERT-SPC can parallel
BERT-based models, indicating that model archi-
tecture engineering only has a marginal effect when
using BERT.
BERT-SPC vs. BERT4GCN. Observed from the
experimental results, the improved performance of
BERT4GCN over BERT-SPC on Twitter dataset is
higher than the other datasets. A similar pattern
also appears in the comparison of RoBERTa4GCN
and RoBERTa-MLP, where RoBERTa4GCN is
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Figure 1: Effect of the size of relative position window
w on Twitter (bottom), Laptop (mid) and Restaurant
(top) datasets.

just comparable to RoBERTa-MLP on Laptop and
Restaurant datasets. For this phenomenon, we have
two conjectures: (1) BERT4GCN framework is
more flexible to handle the out-domain dataset;
(2) When PLM is strong enough, with the current
model framework, heavy model architecture engi-
neering is unnecessary on the in-domain dataset.
These two conjectures need to be further explored
in future work.

4.2.3 Ablation Study
To examine the effectiveness of different modules
in BERT4GCN, we have carried out ablation stud-
ies as shown in Table 1. As presented in Table 1,
the full model of BERT4GCN has the best perfor-
mance. And we observe that only fusing grammati-
cal sequential features with GCN (i.e., w/o pos. &
w/o att.) can still achieve state-of-the-art results.
With the supplemented the dependency graphs (i.e.,
w/o pos.), the performance increases just slightly.

It is notable that adding the relative position mod-
ule alone (w/o att) produces a negative effect, and
the power of the relative position module can only
be revealed when combined together with the sup-
plemented dependency graphs. We conjecture that
the supplemented dependency graphs prune some
edges which connect nearby aspect terms to words
that are irrelevant to sentiment classification, thus
reducing the noise.

4.2.4 Effect of Relative Position Window
We have also investigated the effect of the relative
position window w on BERT4GCN across three
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Figure 2: Distributions of the distances between aspect
and opinion terms on Laptop and Restaurant datasets.

datasets. As shown in Figure 1, Twitter and Laptop
datasets prefer a smaller window, while Restaurant
dataset prefers a bigger one.

We calculate the relative distances between as-
pect and opinion terms of Laptop and Restaurant
datasets with annotated aspect-opinion pairs by Fan
et al. (2019), and visualize the distributions with
kernel density estimation in Figure 2. Although the
two distributions are very similar, the optimal win-
dow size for the two datasets is not the same. There-
fore we hypothesize that the preference of window
size is also influenced by the dataset domain. The
long-tailed distributions imply that we need to care-
fully set the window size for the trade-off between
the benefits and losses of position biases.

5 Conclusion

In this paper, we propose a BERT4GCN model
which integrates the grammatical sequential fea-
tures from BERT along with the syntactic knowl-
edge from dependency graphs. The proposed
model utilizes intermediate layers of BERT, which
contain rich and helpful linguistic knowledge, to
augment GCN, and furthermore, incorporates rela-
tive positional information of words to be position-
aware. Finally, experimental results show that our
model achieves new state-of-the-art performance
on prestigious benchmarks.
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A Appendix

A.1 Datasets and Experimental Setup

We have evaluated our BERT4GCN model on three
widely used datasets, including Laptop and Restau-
rant datasets from SemEval 2014 Task 4 and Twit-
ter datasets. The statistics of these three datasets
are listed in Table 2. Just like other research work,
we remove samples with conflicting polarities.

Dataset
Positive Neutral Negative

Train Test Train Test Train Test
Twitter 1561 173 3127 346 1560 173
Laptop 994 341 464 169 870 128

Restaurant 2164 728 637 196 807 196

Table 2: Statistics of datasets

We use 10-fold cross validation to evaluate the
model performance. Specifically, we evaluate mod-
els at the end of epochs and save the checkpoint
that achieves highest accuracy in the validation set.
Finally, we test the models on the test set and report
the average of 10-fold experimental results.

A.2 Implementation Details

We choose 300-dimensional Glove vectors for the
word embeddings. During training, the learning
rate of BERT and other modules linearly warms
up from 0 to 0.00002 and 0.001, respectively, then
linearly decreases to 0.

In this paper, we name our model as BERT4GCN
and use the bert-base-uncased model as the source
of grammatical sequential features, but it is easy
to extend it to other transformer-based pre-training
language models2.

The training of BERT4GCN model has been run
on a Nvidia RTX 3090 that requires about 14GB
of GPU memory. The PyTorch implementation
of BERT3 is used in the experiments. The dimen-
sionality of unidirectional LSTM hidden state and
positional embedding is set to 300. We set α to 0.01
and β to 0.25, respectively. The position window
w is set to 2, 3, 5 on Twitter, Laptop and Restaurant
datasets, respectively. And the batch size is set to
32, with Adam as the optimizer. As for the regu-
larization, dropout is applied to BERT and GCN
output with the rate of 0.8. And we use Spacy4

toolkit to generate dependency trees.

2For RoBERTa4GCN, we use roberta-base model.
3https://github.com/huggingface/transformers
4https://spacy.io/

For comparisons of baseline models, we use
their official implementations or the implementa-
tion in ABSA-PyTorch 5, configured with recom-
mended hyperparameters. For BERT+GCN model,
we build the graph in the same way as Huang et al.
(2020).

5https://github.com/songyouwei/ABSA-PyTorch


