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Abstract

Multilingual sentence embeddings capture
rich semantic information not only for mea-
suring similarity between texts but also for
catering to a broad range of downstream cross-
lingual NLP tasks. State-of-the-art multilin-
gual sentence embedding models require large
parallel corpora to learn efficiently, which con-
fines the scope of these models. In this paper,
we propose a novel sentence embedding frame-
work based on an unsupervised loss function
for generating effective multilingual sentence
embeddings, eliminating the need for parallel
corpora. We capture semantic similarity and
relatedness between sentences using a multi-
task loss function for training a dual encoder
model mapping different languages onto the
same vector space. We demonstrate the effi-
cacy of an unsupervised as well as a weakly
supervised variant of our framework on STS,
BUCC and Tatoeba benchmark tasks. The
proposed unsupervised sentence embedding
framework outperforms even supervised state-
of-the-art methods for certain under-resourced
languages on the Tatoeba dataset and on a
monolingual benchmark. Further, we show
enhanced zero-shot learning capabilities for
more than 30 languages, with the model be-
ing trained on only 13 languages. Our model
can be extended to a wide range of languages
from any language family, as it overcomes the
requirement of parallel corpora for training.

1 Introduction

Sentence embeddings provide an efficient way to
encode semantic information of text by mapping
texts onto a shared vector space, such that sentences
with similar meaning are represented by similar
representations. With the abundance of data in
diverse languages, cross-lingual sentence embed-
ding enable the mapping of multilingual texts into
a single unified vector space for a wide range of
Natural Language Processing (NLP) tasks. Current

∗∗Work started during internship at Huawei Research.

sentence embedding methods are predominantly
monolingual systems, geared mainly towards En-
glish (Conneau et al., 2017; Yin et al., 2020). While
there exist multilingual sentence embedding frame-
works, they are mostly supervised methods requir-
ing a large parallel corpus for training. For under-
resourced languages, there is not sufficient training
data to effectively learn a model and we show that
our unsupervised approach can better exploit the
available unsupervised data, and thus produce bet-
ter results for under-resourced languages. This
is achieved by using a dual-encoder architecture
based on word-level semantic similarity score (via
Word Mover’s Distance) and learning to embed this
into a single vector for sentences.

Supervised sentence embedding approaches map
parallel sentences from source and target languages
into the same vector space by either maximising
their cosine similarity or minimising the distance
between the generated embeddings (Artetxe and
Schwenk, 2019; Reimers and Gurevych, 2020). For
example, recent supervised methods using parallel
corpus rely on a teacher-student model to mini-
mize cross-lingual embedding distance (Reimers
and Gurevych, 2020) or an additive margin soft-
max function based dual sentence encoder to max-
imally separate the sentences that are true trans-
lations from similar overlapping sentences (Yang
et al., 2019). Although such methods produced
good results, the use of these loss functions in un-
supervised settings fails to efficiently capture cross-
lingual semantic similarities across sentences. The
state-of-the-art unsupervised approach relies on au-
tomated machine translation to generate a “pseudo
parallel corpus” (Kvapilíková et al., 2020) for train-
ing. This method is affected by presence of transla-
tion errors and fails to generalize to low-resource
languages for which translations are not available.

To alleviate the above challenges, in this paper,
we propose DuEAM, a cross-lingual sentence em-
bedding framework based on a novel dual encoder



9100

architecture with an unsupervised joint loss func-
tion using an anchor-learner approach, a variant of
the teacher-student model. We also depict the per-
formance of a weakly-supervised variant of our
unsupervised DuEAM architecture (obtained by
simply changing the training dataset). The weakly-
supervised framework to learn semantic relation-
ship between cross-lingual sentences is motivated
by the existence of the multilingual natural lan-
guage inference dataset (XNLI) (Conneau et al.,
2018), and the possible creation of such a dataset
from existing comparable corpora. The unsuper-
vised DuEAM framework learns from randomly
chosen sentence pairs from the XNLI dataset (see
Sec. 5). Thus, we overcome the need for parallel
sentences for multilingual sentence embedding gen-
eration. To understand the degree of similarity be-
tween monolingual and multilingual sentence pairs
during training, the anchor module uses the Word
Mover’s Distance (WMD) (Kusner et al., 2015)
(used as a scalar value during backpropagation),
while the learner module is trained to generate sen-
tence embeddings (refer to Fig. 1). Thus, we learn a
low-dimensional embedding of the sentences from
the more complex encoding generated by WMD.
We show that our joint loss formulation effectively
captures cross-lingual semantic similarity between
sentences by preserving distances between points
across languages.

Extensive experiments (in Section 6) on multi-
lingual sentence similarity and parallel sentence
mining tasks have showcased the efficacy of our
sentence embedding framework. For example,
on the cross-lingual STS benchmark (Reimers
and Gurevych, 2020), our unsupervised ap-
proach achieves state-of-the-art average Spearman
rank correlation score of 62.1, comparable to
the supervised sentence embedding approach of
LASER (Artetxe and Schwenk, 2019) with an aver-
age of 65.8. In fact, for certain languages, our mod-
els are even seen to outperform LASER (e.g., for
EN-DE our unsupervised model achieves a Spear-
man rank correlation score of 64.6 and weakly-
supervised model achieves a Spearman rank corre-
lation score of 69.4 compared to 64.2 for LASER).
On the BUCC task (bitext mining task) (Zweigen-
baum et al., 2017) our model achieves a better F1
score compared to the existing unsupervised model
of Kvapilíková et al. (2020). Interestingly, for
certain under-resourced languages, we outperform
both LASER and multilingual S-BERT (Reimers

and Gurevych, 2020) by an average of 10% on
the Tatoeba benchmark. We also show better or
comparable performance to LASER even on mono-
lingual classification benchmark tasks. Thus, our
model is robust across diverse language families
for multilingual sentence embeddings.

In a nutshell, our contributions are: (i) DuEAM,
a novel dual encoder based on an anchor-learner ar-
chitecture for unsupervised and weakly-supervised
multilingual sentence embedding generation, (ii)
a joint loss function coupling Word Mover’s Dis-
tance and cosine similarity to capture the degree
of text similarity and relatedness between sentence
pairs, (iii) experimental evaluations, on monolin-
gual as well as several cross-lingual benchmark
tasks, depict that our model efficiently captures se-
mantic similarity across languages, and provides
state-of-the-art unsupervised performance, compa-
rable with supervised models, (iv) robustness in
zero-shot transfer learning for low-resource lan-
guages across language families, outperforming
state-of-the-art supervised approaches on sentence
matching tasks in certain scenarios.

2 Related Work

Paragraph vectors were first proposed as sen-
tence embeddings for computing document sim-
ilarity (Le and Mikolov, 2014). The majority
of the current multilingual sentence embedding
methods are supervised approaches. There ex-
ist some unsupervised sentence embedding frame-
works (Zhang et al., 2020; Pagliardini et al., 2018),
but are mostly for English sentence embeddings.
Initial methods generated sentence embeddings
based on neural machine translation system with
a shared encoder (Schwenk, 2018; España-Bonet
et al., 2017; Schwenk and Douze, 2017). The use
of cosine similarities between source and target
language parallel sentences was studied by Guo
et al. (2018) using a bidirectional dual encoder ar-
chitecture. Chidambaram et al. (2019) proposed
Multilingual Universal Sentence Encoder (mUSE),
a dual-encoder model trained on large web-mined
translation parallel corpora, along with data from
Reddit, Wikipedia, and Stanford Natural Language
Inference (SNLI) (Bowman et al., 2015) to learn
more context, supporting 16 languages. A transla-
tion ranking task was used to identify a correct
translation pair, and the architecture assumes 5
hard negative pairs for each sample while training.
Subsequently, the LASER (Artetxe and Schwenk,
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2019; Schwenk et al., 2019) framework considered
a sequence-to-sequence architecture using LSTM
networks, and was trained on parallel corpora de-
signed for neural machine translation across 93
languages. Expanding beyond translation-based ap-
proaches, the multilingual sentence encoder model
of Yang et al. (2020a) was trained for semantic
retrieval on three different tasks: multi-feature
question-answer prediction, translation ranking,
and natural language inference (NLI). Recently,
Yang et al. (2020b) proposed Conditional Masked
Language Modeling (CMLM) to generate sentence
embeddings, by co-training the system with bi-text
retrieval and Natural Language Inference (NLI)
tasks. To generate sentence embeddings beyond
the naïve CLS token and simple pooling strategies
of language models, sentence transformer archi-
tectures were proposed (Reimers and Gurevych,
2019). For multilingual S-BERT models, Reimers
and Gurevych (2020) utilized the teacher-student
model where the student model is tuned with a par-
allel corpus from 50 languages based on knowledge
transfer from a fine-tuned teacher model developed
by Reimers and Gurevych (2019). LaBSE (Feng
et al., 2020) was designed on the BERT architecture
and trained on 6 billion sentence pairs by use of ad-
ditive margin softmax loss with in-batch negative
sampling.

Another thread of research for sentence embed-
ding involves improving the alignment of contex-
tual embeddings into a shared vector space using
iterative self-supervised learning or tuning with
synthetic parallel corpora. Hirota et al. (2020) in-
troduced the Enhancing Multilingual Sentence Em-
beddings (EMU) framework which tries to semanti-
cally enhance pre-trained multilingual sentence em-
beddings. That is, instead of building sentence em-
beddings from scratch, EMU fine-tunes pre-trained
multilingual sentence embeddings with two ma-
jor components: enhancement of semantic simi-
larity and multilinguality of sentence embeddings
using multlingual adverserial training. Further, Cao
et al. (2020) used a parallel corpus as an anchor
to align representations in a multilingual language
model whereas Wang et al. (2019) used iterative
self-learning to perform the task.

Recently, Kvapilíková et al. (2020) proposed
an unsupervised method for improving pre-trained
cross-lingual context vectors using synthetic paral-
lel sentences and extracted sentence embeddings
via mean pooling. However, use of machine trans-

Figure 1: DuEAM: Proposed Dual Encoder based
Anchor-Learner model with multi-task learning. For
training, in our anchor module as well as our learner
model, we use the XLM-RoBERTa-base (XLM-R-
base) language model (Conneau et al., 2020).

lation to generate synthetic parallel data for such
methods fails to generalize to low-resourced lan-
guages for which translations might be erroneous.

3 DuEAM Model

In this section, we describe the components and
working of the proposed Dual Encoder with An-
chor Model (DuEAM) architecture for multilingual
sentence embeddings, trained using an unsuper-
vised multi-task joint loss function.

3.1 Dual Encoder with Anchor-Learner

Figure 1 depicts the dual-encoder based anchor
module, where the same sentence pair is fed as
inputs into both the anchor and the learner compo-
nents. Note, these sentence pairs are not considered
to be parallel translations and can even be from ei-
ther the same language or different languages. Such
architectures are well suited to capture semantically
and contextually similar sentences and map them
close to each other in a shared vector space.

We use word-level semantic knowledge from pre-
trained multilingual language models in the anchor
module to gauge the semantic similarity between
the source (si) and target (ti) sentences. Subse-
quently, embeddings for si and ti are generated by
the learner such that their vector space distances re-
flect their degree of semantic relatedness. Inspired
by MoverScore measure (Zhao et al., 2019), using
the pre-trained multilingual word-embeddings, the
anchor module computes the semantic similarity
between source and target sentences by use of Word
Mover’s Distance (WMD) (Kusner et al., 2015).

The learner module is then trained to generate
source and target sentence embeddings such that



9102

their Euclidean distance closely approximates the
WMD obtained from the anchor. We force the
system to consider the knowledge of our anchor
system about the semantic relationships of the sen-
tences at the word-level, which also helps to stabi-
lize the training process as the pre-trained anchor
model is fixed and the WMD score is considered
as a scalar. Thus, during training, we generate
embeddings to minimize the semantic loss, LA as:

LA =
1

N

N∑
i=1

exp|exp
−deuc(s′i,t′i) −exp−dwmd(si,ti)| (1)

where dwmd (si, ti) = WMD(si, ti) is the Word
Mover’s Distance between the input source and
target sentences si and ti, while deuc (s

′
i, t
′
i) =√∑

j

(
s′ij − t′ij

)2
is the Euclidean distance between

the generated embeddings s′i and t′i (by the learner)
corresponding to the source and target sentences
respectively. The use of our WMD based seman-
tic loss factor enables DuEAM to capture a more
compact representation between the sentence em-
beddings, better capturing cross-lingual semantic
relationships in the shared vector space.

3.2 Dual Encoder with Translation Mining
While mapping semantically similar sentences
close to each other in the shared vector space, an ef-
fective embedding framework should also address
the translation ranking problem to efficiently map
correct translations of source-target sentence pairs
within a compact zone of the vector space. Yang
et al. (2019) addressed this problem by introducing
hard negative sentence pairs along with parallel
data during the training process. Since DuEAM is
an unsupervised approach, we introduce transla-
tion mining based loss, LB, using the cosine sim-
ilarity score between source and target sentences,
to handle translation mining, as:

LB =
1

N

N∑
i=1

cossim(s′i, t
′
i) (2)

3.3 Multi-Task Dual Encoder Learning
To bring both loss functions under the same um-
brella, we construct a multi-task learning setup
where we minimize Eq. 1 while maximizing Eq. 2.
Hence, to efficiently generate sentence embed-
dings, the final multi-task loss function for training
DuEAM is given by: minimize L = LA − λLB ,
where λ is the weight parameter.

This multi-task joint learning enables DuEAM
to effectively capture both cross-lingual semantic
similarity and text translation ranking relationship.

Overall, our unsupervised loss function aims
to learn sentence embeddings such that the Eu-
clidean distance between them are proportional to
the semantic distance obtained from WMD, thereby
providing a low-dimensional embedding from the
more complex word-level similarity space (using
Eq. (1)) Additionally, Eq. (2) enables our frame-
work to align sentence embeddings in the cosine
space, for translation understanding.

4 Intuitions behind Loss Function

In DuEAM, WMD is computed between the con-
textual token embeddings (of the pair of input sen-
tences) obtained from anchor encoders, without
any stopwords removal (as standard while using
language models (Conneau et al., 2020)). While
multi-lingual language models capture different
languages in a common space, WMD captures
the contextualized semantic distance between the
multi-lingual input sentences. Our use of WMD
is motivated by MoverScore (Zhao et al., 2019).
Specifically, the use of WMD and cosine in the
loss function of DuEAM is based on the following
intuitions:

• The learner module is trained to generate sen-
tence embeddings such that the Euclidian dis-
tance between the learnt sentence embeddings
closely approximates the WMD (calculated
using token embeddings by anchor) between
sentence pairs. This tends to preserve the “rel-
ative semantic distance” between the input
sentences, enabling DuEAM to capture the
“semantic relation at word level” within the
sentence embeddings obtained.

• Existing methods using parallel sentences for
training effectively teach the architecture to
learn similar embeddings for similar context –
however, the distance in the embedding space
between dissimilar sentences are not consid-
ered. By using WMD, DuEAM generates
closer representations for similar sentences,
while at the same time forcing dissimilar sen-
tences to have embeddings that are apart in
the embedding space. This provides better
semantic understanding for improved perfor-
mance in downstream tasks, as observed in
our experiments. For the example, the WMD
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between the German sentence “Sie ist keine
Lehrerin” (‘She is not a teacher’) and the En-
glish sentence “She is a teacher” is more than
that between the German sentence “Sie ist
eine Lehrerin” and the English sentence that
is a direct translation, “She is a teacher”. Thus,
the embeddings are different, and DuEAM is
able to capture negation and other semantic
information for better performance.

• The cosine loss enables DuEAM to align
the learnt sentence embeddings in the cosine
space, based on the cosine similarity between
the source and target train sentence pairs, to
address the translation ranking problem. The
weight parameter λ in the final multi-task loss
function further controls its effect.

5 Training Dataset

Following Chidambaram et al. (2019), we train our
DuEAM architecture on the natural language infer-
ence dataset – using only the XNLI dataset (Con-
neau et al., 2018) on 13 languages, without any par-
allel corpora 1. We do not consider the entailment-
contradiction labels in XNLI during training.

Unsupervised Data. To create the training
dataset for unsupervised training of DuEAM, we
randomly pick sentences from the premises and
hypothesis of XNLI dataset and form the input sen-
tence pairs. Hence, this random shuffling along
with the absence of sentence pair labels provides
no supervision during the training procedure.

Weakly Supervised Data. This training data
contains both monolingual and cross-lingual sen-
tence pairs, where the monolingual sentence pairs
are same as those of XNLI (without annotated la-
bels). To create cross-lingual sentence pairs, we
keep the premises from the source language and
replace the hypothesis with target language hypoth-
esis sentences, and vice-versa (example shown in
Table 9). Note that this dataset does not contain
any parallel cross-lingual sentences, but contains
semantically related monolingual and cross-lingual
sentences – providing weak supervision.

Validation (using accuracy of finding paral-
lel sentences) is done on held out 1K paral-
lel sentences (across languages pairs) from the
TED2020 corpus. The DuEAM models trained
on the above unsupervised and weakly supervised
datasets are henceforth denoted as DuEAMunsupv

1Trained on EN, BG, DE, EL, ES, FR, HI, RU, TH, TR, UR, VI, ZH

Approaches / Languages EN-
EN

ES-
ES

EN-
DE

EN-
TR

EN-
ES

EN-
FR

Supervised Methods

XLM-R← SBERT-nli-stsb 82.5 83.5 78.9 74.0 79.7 78.5
XLM-R← SBERT-paraphrases 88.8 86.3 84.0 80.9 83.1 84.9
LASER 77.6 79.7 64.2 72.0 57.9 69.1
LaBSE 79.4 80.8 73.8 72.0 65.5 77.0
mUSE 86.4 86.9 82.1 75.5 79.6 82.6

Unsupervised Methods

mBERT mean 54.4 56.7 33.9 16.0 21.5 33.0
XLM-R mean 50.7 51.8 21.3 9.2 10.9 16.6

Proposed methods

DuEAMwklysupv 81.9 83.1 69.4 68.6 64.6 69.6
DuEAMunsupv 80.2 81.5 64.6 63.7 58.2 62.1

Table 1: Spearman rank correlation (ρ) results for Se-
mantic Textual Similarity (STS) datasets. The results
are reported as ρ× 100, with baseline performances as
reported in (Reimers and Gurevych, 2020).

and DuEAMwklysupv respectively. More details on
dataset and training are given in the appendix.

6 Experimental Evaluation

We evaluate the performance of our proposed
DuEAM framework on the following 3 benchmark
tasks: (a) STS: monolingual and cross-lingual se-
mantic textual similarity; (b) BUCC: bitext min-
ing to extract parallel sentences; and (c) Tatoeba:
cross-lingual parallel sentence matching.

We compare our model with the following super-
vised and unsupervised state-of-the-art approaches:
(i) mBERT / XLM-R – language model with
mean pooling, (ii) mUSE – dual-encoder trans-
former architecture (Chidambaram et al., 2019),
(iii) LASER – encoder-decoder architecture using
LSTM (Artetxe and Schwenk, 2019), (iv) LaBSE
– dual-encoder model based on BERT (Feng et al.,
2020), (v) XLM-R← SBERT-nli-stsb / XLM-R
← SBERT-paraphrases – sentence transformer
models (Reimers and Gurevych, 2020).
Further details on training setup and baseline meth-
ods can be found in Section A.

6.1 Multilingual Semantic Textual Similarity

Understanding semantic textual similarity between
monolingual and cross-lingual datasets is one of
the major tasks for a sentence embedding model.
We evaluate our model against the STS benchmark
dataset (Cer et al., 2017), containing sentence pairs
with scores indicating how semantically similar
the sentences are. The SemEval dataset consists
of annotated sentences for EN-EN, AR-AR, ES-
ES, EN-AR, EN-ES, and EN-TR language pairs.
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Further, we also use the EN-DE, EN-IT and EN-
NL test sets from multilingual SBERT (Reimers
and Gurevych, 2020). For evaluation, we compute
the cosine similarity between sentence pair embed-
dings and obtain the Spearman rank correlation, ρ
across the computed similarities and gold scores.

As shown in Table 1, the unsupervised baselines
based on the language models (mBERT and XLM-
R) perform quite poorly, suggesting that the ob-
tained cross-lingual sentence embeddings are not
well aligned in the vector space. While trained
with multi-task learning, DuEAM achieved a sig-
nificant improvement both for monolingual and
cross-lingual datasets. For cross-lingual settings,
both the DuEAM models significantly outperform
the unsupervised models, with an average improve-
ment of 41.9 and 37.2 respectively on Spearman
rank correlation (ρ) score. Similarly, on the mono-
lingual datasets (EN-EN and ES-ES), our models
achieve an improvement of 26.9 and 21.4 points
(on average), based on the rank correlation score.

It is interesting to note that DuEAM achieves
better results, compared to the supervised LASER
and LaBSE approaches, for both the monolingual
datasets (EN-EN and ES-ES). In cross-lingual set-
tings, in certain cases, both DuEAMunsupv and
DuEAMwklysupv are seen to outperform LASER
(e.g., EN-DE and EN-ES language pairs).

6.1.1 Zero Shot Testing on STS benchmark

An important property of the embedding techniques
is “zero shot learning”, i.e., to robustly generalize
to languages that the model has not been trained on,
by inherent knowledge transfer from the other lan-
guages. To study the efficiency of DuEAM in zero-
shot scenarios, in this setting, we train the weakly-
supervised model only on the EN-DE (English-
German) training dataset (as in Section 5) and test
on the other language pairs, including monolingual
sentence similarity for ES-ES and AR-AR.

From Table 2, we can see that even for zero
shot learning DuEAM outperforms the unsuper-
vised baseline models, across all the monolingual
and cross-lingual STS datasets, with improvements
in Spearman rank correlation score of around 20.
Thus, our architecture based on dual encoder with
multi-task learning provides better cross-lingual
sentence embeddings, making it robust across di-
verse languages with improved performance.

Models ES-ES AR-AR EN-ES EN-AR EN-TR EN-FR EN-NL EN-IT

mBERT mean 56.7 50.9 21.5 16.7 16.0 33.0 35.6 34.0
XLM-R mean 51.8 25.7 10.9 17.4 9.2 16.6 26.0 22.9
DuEAMwklysupv 78.64 69.67 56.54 54.29 58.35 62.03 67.61 59.8

Table 2: Zero-shot Spearman rank correlation ρ results
for Semantic Textual Similarity (STS) datasets, where
models are trained on EN-DE non-parallel data.

Approaches / Languages DE-EN FR-EN RU-EN ZH-EN

Supervised Methods

XLM-R← SBERT-nli-stsb 86.8 84.4 86.3 85.1
LASER 95.4 92.4 92.3 91.7
LaBSE 95.9 92.5 92.4 93
mUSE 88.5 86.3 89.1 86.9

Unsupervised Methods

mBERT mean 44.1 47.2 38 37.4
XLM-R mean 5.2 6.6 22.1 12.4
(Kvapilíková et al., 2020) 80.2 78.8 77.1 67.0

Proposed Methods

DuEAMwklysupv 84.9 81.3 82.0 78.6
DuEAMunsupv 80.9 79.3 78.4 70.0

Table 3: F1 score on BUCC bitext mining task. Base-
line results taken from (Reimers and Gurevych, 2020).

6.2 Bitext Mining Task
Efficient multilingual sentence embeddings should
have a good understanding of sentence parallelism
and should be able to retrieve good translation pairs
across corpora in different languages. Intuitively,
sentence translation pairs should be equivalent in
terms of semantic similarity, and hence their cross-
lingual embeddings should be very similar.

To evaluate the performance of our method, we
conduct experiments on the BUCC benchmark
mining task – parallel sentence extraction from two
different monolingual corpora. We use the data
available from the 2018 shared task, consisting
of corpora for four language pairs (FR-EN, DE-
EN, RU-EN, and ZH-EN), with a subset of parallel
sentences demarked as the gold mapping for each
language pair. The data is split into train and test
set, and the training data is used to find a threshold
for the scoring function, such that sentence pairs
above the threshold are returned as parallel sen-
tences. Performance is measured using F1 score.
Similar to Reimers and Gurevych (2020), in this
setting, we use the margin scoring function as:

score(x, y) = margin(cos(x, y), cos∗(x, y)), with

cos∗(x, y) =
∑

z∈NNk(x)

cos(x, z)

2K
+

∑
z∈NNk(y)

cos(y, z)

2K

where x, y are the sentence embeddings, NNk(x)
is the k nearest neighbours of x in other languages
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excluding duplicates, and margin(a, b) = a
b .

Table 3 shows the performance of the approaches
on the BUCC task. For the unsupervised setting,
we observe that for all language pairs DuEAM per-
forms significantly better than XLM-R mean and
mBERT mean methods, with an improvement of
nearly 35.6 F1 score over mBERT. Additionally,
we compare our model with the recent approach by
Kvapilíková et al. (2020), specifically trained for
bitext mining task with synthetic parallel data. We
see that DuEAM also outperforms these unsuper-
vised models across all language pairs.

Further, our weakly-supervised model achieves
competitive results compared to the supervised
model of XLM-R← SBERT-nli-stsb, trained with
large parallel datasets. Observe that LASER and
LaBSE achieve high accuracy, as they are specifi-
cally designed and trained to identify translations
between languages. On the other hand, although
DuEAM is not trained with any parallel data, we are
able to effectively extract parallel sentences (bitext
mining task) owing to our multi-task learning.

6.3 Cross-lingual Parallel Sentence Matching

In this section, we compare the performance of the
approaches in extracting parallel sentences using
the Tatoeba benchmark of Artetxe and Schwenk
(2019). From Table 4, on well-resourced languages,
we observe DuEAM to perform significantly bet-
ter than the unsupervised approach of Kvapilíková
et al. (2020), with results comparable to the super-
vised methods of SBERT and LASER – similar as
above – efficiently extracting parallel sentences.

6.3.1 Tatoeba Under-Resourced Languages
We now evaluate the robustness of the ap-
proaches for extracting parallel sentences for under-
resourced languages on the Tatoeba benchmark.
In this setting, we consider two scenarios – (i)
zero-shot learning and (ii) training on small scale
non-parallel datasets. We compare the results
with the supervised models of SBERT (Reimers
and Gurevych, 2020) and LASER (Artetxe and
Schwenk, 2019) respectively, with different base-
line languages for LASER for which it has been
pre-trained and results have been published.
Zero-shot Transfer. We perform zero-shot trans-
fer on different under-resourced languages: (i)
Telugu (TE, Dravidian family), (ii) Tagalog (TL,
Malayo-Polynesian family), (iii) Irish (Gaelic)
(GA, Celtic family), and (iv) Afrikaans (AF, Ger-
manic family). We observe from Table 5(a) that

Model DE HI ZH EL

XLM-R← SBERT-paraphrases 98.7 96.4 95.0 95.5
LASER 99.0 94.7 95.4 95.0
Kvapilíková et al. (2020) 83.1 53.4 - 51.3
DuEAMwklysupv 96.0 92.9 90.2 87.4
DuEAMunsupv 93.4 83.5 85.2 82.0

Table 4: Average accuracy on Tatoeba dataset in both
directions (EN to target language and vice-versa). Here
ZH refers to Mandarin Chinese. Baseline results taken
from (Reimers and Gurevych, 2020).

Model AF TE TL GA Model KA AM

XLM-R← SBERT-para 84.2 89.1 32.4 18.6 LASER 35.9 42.0
DuEAMwklysupv 84.8 90.6 60.6 42.0 DuEAMwklysupv 76.4 56.0
DuEAMunsupv 79.9 78.6 56.8 35.0 DuEAMunsupv 70.7 46.4

(a) (b)

Table 5: Average accuracy on Tatoeba data in both di-
rections (EN to target language and vice versa) for (a)
zero-shot learning, and (b) small training set. Baseline
results as in (Reimers and Gurevych, 2020).

for Tagalog and Irish (Gaelic) both DuEAM mod-
els performed significantly better than the super-
vised multilingual S-BERT with an improvement
of around 25% on average for weakly-supervised
model and 21% on average for unsupervised model,
while for Afrikaans and Telugu, we achieved 1.5%
better accuracy on average for weakly-supervised
model. These results show that, even without ex-
plicit learning for different under-resourced lan-
guages, our models can robustly handle zero-shot
learning across different language families for gen-
erating efficient sentence embeddings.
Small Scale Dataset Training. To explore the
model performance while trained on small datasets
(for scenarios where limited data is available
for under-resourced languages), we experiment
on two under-resourced languages: Georgian
(KA, Kartvelian family) and Amharic (AM, Ethio-
Semitic family). We train DuEAM with only 20K
non-parallel EN-KA and EN-AM sentence pairs,
whereas the baseline supervised model LASER
is trained with 296K and 88K parallel sentence
pairs respectively. In Table 5(b), we see that
our models outperform LASER for both Geor-
gian and Amharic, achieving higher accuracy on
under-resourced languages even when trained on a
much smaller non-parallel dataset. In fact, weakly-
supervised DuEAM performs better than SBERT
(Reimers and Gurevych, 2020), producing an ac-
curacy of 72.4% on KA. The anchor-learner archi-
tecture with the unsupervised joint loss function
provides such robustness and better cross-lingual
understanding in DuEAM. Extensive results on 58
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Model MR SUBJ TREC SST2

XLM-R← SBERT-paraphrases 81.26 93.89 91.2 87.7
LASER 75.29 92.07 91.0 79.9
DuEAMunsupv 76.28 92.86 92.2 81.1

Table 6: Evaluation accuracy on a subset of SentEval
benchmark (results based on 10-fold cross-validation).

languages of Tatoeba benchmark for trained and
zero-shot scenarios can be found in the appendix.

6.4 Monolingual Classification Performance

A multilingual sentence embedding framework is
expected to produce efficient results in monolingual
settings. To evaluate the performance on monolin-
gual classification tasks, we now study the per-
formance of the unsupervised variant of DuEAM
on the SentEval benchmark (Conneau and Kiela,
2018). We compare DuEAM to other sentence em-
bedding frameworks on four tasks : (i) MR: Movie
reviews positive/negative sentiment analysis (Pang
and Lee, 2005), (ii) SUBJ: Subjectivity/objectivity
prediction of reviews (Pang and Lee, 2004), (iii)
TREC: Question type classification on six classes
(Li and Roth, 2002), and (iv) SST2: Stanford bi-
nary sentiment classification (Socher et al., 2013;
Reimers and Gurevych, 2019).

In Table 6, we can see quite satisfactory result
produced by DuEAM framework. On every task,
the DuEAMunsupv model surpasses the performance
of the supervised LASER model whereas in case
of the TREC task the results are better than even
the supervised multilingual S-BERT model.

Overall, the monolingual and multi-lingual ex-
perimental results depict DuEAM to effectively cap-
ture cross-lingual semantic understanding (without
parallel training data) to generate efficient sentence
embeddings by alignment of multiple languages
in the same vector space. Observe that DuEAM is
trained on only 1GB of data, while other supervised
techniques are trained on around 10x or more data.

7 Ablation Study

We now study the effects of different components
of DuEAM on the quality of generated embeddings.
Necessity of Multi-task Learning. One of the
important features of DuEAM is multi-task joint
learning via the dual-encoder based anchor-learner
architecture. To explore the necessity of the dif-
ferent factors for our learning loss function, we
use the Tatoeba dataset for DE-EN, FR-EN, and
HI-EN language pairs. We train weakly-supervised

 Multi-Task Learning Factors

A
cc

ur
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y

0

25
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100

Semantic_Simi_Learning Translation_Pair_Learning Multi-Task Learning

DE-EN FR-EN HI-EN

Figure 2: Average accuracy on Tatoeba across language
pairs with individual objectives of mutli-task learning.

Zero-Shot 1K 5K 10K 15K 20K 25K 30K

71.8 72.9 73.5 74.8 75.9 76.41 76.40 76.42

Table 7: Average accuracy of DuEAMwklysupv on
Tatoeba (in both directions) for Georgian language
(KA) with varying training data sizes.

DuEAMwklysupv in three variants: (i) with only the
anchor module loss term LA (Eq. 1), which con-
siders semantic similarity between sentences, (ii)
using only the translation mining loss term LB (Eq.
2), which identifies the best translation pairs, and
(iii) the full multi-task learning objective L.

From Figure 2, we observe that the learning ob-
jective factors LA and LB individually perform
quite poorly. However, the proposed multi-task
training performs efficiently providing a high accu-
racy in the range of 92% to 96%. Similar results
are observed across the language pairs considered.
Training Dataset Size. Table 5(b) depicts that
DuEAM outperforms LASER on under-resourced
languages with minimal training. To understand
the impact of the size of the training dataset, we
evaluated the performance of DuEAM on Tatoeba
data for Georgian (KA), with varying training sizes.

In Table 7 we see a healthy performance im-
provement when our weakly-supervised model is
trained with the language-specific dataset, with
around 4.5% improvement over zero-shot learning
given training data of size 20K sentences. There-
after, the improvement is seen to be incremental.
Thus, although DuEAM demonstrates zero-shot
learning capabilities, a small amount of language-
specific data further boosts the performance.
Training Dataset Type. We explore the perfor-
mance of the unsupervised loss function in DuEAM
on various training data scenarios. We consider EN,
DE, FR, and ES languages under 3 training settings:
(i) 25K sentences from XNLI (weakly supervised),
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Dataset DE FR ES

25K XNLI dataset 88.7 82.6 86.5
25K TED2020 parallel dataset 89.2 83.8 86.9
12.5K XNLI + 12.5K parallel dataset 90.2 85.1 89.5

Table 8: Average accuracy of DuEAMwklysupv on
Tatoeba (considering both directions).

Figure 3: Average Spearman rank correlation (ρ) re-
sults for Semantic Textual Similarity (STS) datasets for
six language pairs.

(ii) 25K parallel sentences from TED2020 (su-
pervised), and (iii) 12.5K sentences from each of
the datasets. Table 8 depicts similar performances
when trained on XNLI or on a parallel corpus alone,
while a combination outperforms the others – show-
casing the stability of our proposed unsupervised
loss joint loss function (on training data), removing
the dependency on parallel training datasets.
Weight Parameter Value Selection. Weight pa-
rameter selection while training the multi-task
model is very important. We experimented with
the weight parameter over a range of values and
set to the value for which the model has performed
best while training. We have given a snapshot of
the model performances over the different weight
parameters in Figure 3. We have calculated the av-
erage Spearman rank correlation (ρ) results for STS
datasets for six language pairs. From the figure we
can see that the best model performance achieved
with weight parameter 0.003. Higher weight pa-
rameter value decreased the performance. This
helps us to understand the importance of the weight
parameter while training the model in multi-task
settings.

8 Discussion: Semantic Similarity

In general, applications use cosine similarity be-
tween sentence embeddings to gauge the seman-
tic textual similarity. We provide a performance
analysis of DuEAM based on the raw cosine sim-

ilarity score on Tatoeba DE-EN data. For exam-
ple, the German sentence “das ist der Geburtstag
von Muiriel!” (“That is the birthday of Muiriel”)
has the highest cosine similarity with its English
translation “it is Muiriel’s birthday!”, although the
sentence “Happy birthday, Muiriel!” is very simi-
lar (refer Table 10 in appendix). This depicts that
DuEAM can capture fine-grained semantic differ-
ence among similar sentences.

On the other hand, for the German sentence “Das
Wesen der Freiheit liegt in der Mathematik.” we ob-
tain a higher cosine similarity score for the English
sentence “The essence of mathematics is liberty.”.
In fact, the true translation “The essence of free-
dom lies in mathematics” (achieving the highest
cosine-similarity but absent in the Tatoeba dataset)
is closer to “The essence of liberty is mathematics.”.
Although the similarity score is almost equal, our
model is unable to identify the correct word order-
ing in highly overlapping sentences as the WMD
measure is inherently word-order agnostic. Multi-
lingual SBERT too fails in this scenario, but with
a higher difference in cosine-similarity between
sentences, 0.01 compared to 0.001 in DuEAM (us-
ing the translation mining LB loss factor). Use of
Wikipedia dumps for training such sentence em-
bedding models forms an interesting future study.

9 Conclusion

This paper proposed an unsupervised loss func-
tion based DuEAM framework for multilingual
sentence embeddings based on dual encoder with
anchor-learner model via multi-task learning. Ex-
periments on monolingual and cross-lingual bench-
marks showcase the efficacy of our sentence em-
beddings in capturing semantic similarities across
languages. We demonstrate that DuEAM signifi-
cantly outperforms existing unsupervised models
for textual similarity understanding. We also de-
picts robustness in zero-shot learning and limited
training, for catering to under-resourced languages,
and achieve results better or comparable to existing
supervised methods in certain cases.
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Appendix

A Training setup

For training, in our anchor module as well as our en-
coder model, we use the XLM-RoBERTa (XLM-R)
language model, with its publicly available 250K
shared vocabulary. DuEAM is trained for 5 epochs
with a batch size of 64, 10K warm-up steps, and a
learning rate of 2e− 5. We set λ (parameter in our
joint loss function) to 0.003, and the training was
performed on a 24GB Titan RTX GPU for about
12 days. Finally, we apply MEAN pooling on the
final layer of the encoder to get the sentence em-
beddings. To test the model on SentEval toolkit,
we have set k-fold to 10 keeping epoch size to 10,
batch size to 64 and 0.2 dropout rate.

B Baseline Models

We have compared the performance of DuEAM on
benchmark datasets with multiple supervised and
unsupervised baseline models which are as follows:

• mBERT / XLM-R mean: We use publicly
available mBERT and XLM-RoBERTa (XLM-
R) language models trained on large datasets
(no parallel sentences considered during pre-
training phase). We consider mean pooling of
the output layer as the sentence embedding.

• mUSE: Multilingual Universal Sentence En-
coder uses a dual-encoder transformer ar-
chitecture to generate sentence embeddings
trained using parallel corpora for 16 lan-
guages.

• LASER: Language Agnostic Sentence Rep-
resentation is designed based on an encoder-
decoder architecture using LSTM networks.
The model is trained with big parallel datasets
and performs max-pooling to get the sentence
embedding from the stacked network. It sup-
ports 93 languages.

• LaBSE: Language-agnostic BERT Sentence
Embedding (LaBSE) is a dual-encoder model
based on BERT. The model was trained on
6 billion parallel sentence pairs over 109 lan-
guages.

• XLM-R ← SBERT-nli-stsb / XLM-R ←
SBERT-paraphrases: The sentence trans-
former models generate sentence embeddings
using the teacher-student architecture, where

Premise Hypothesis Type
How do you know? All this This information belongs Monolingual (EN-EN)is their information again. to them.
- woher weißt du das ? All Diese Information gehört Monolingual (DE-DE)das sind ihre Informationen. Ihnen.
How do you know? All this Diese Information gehört Cross-lingual (EN-DE)is their information again. Ihnen.
- woher weißt du das ? All This information belongs Cross-lingual (DE-EN)das sind ihre Informationen. to them.

Table 9: Weakly-supervised training dataset example
from XLNI for English-German.

Cos. Simi. Sentence pairs Results

0.9961 DE: das ist der Geburtstag von Muiriel!
EN: it is Muiriel’s birthday! True

0.9465 DE: das ist der Geburtstag von Muiriel! Positives
EN: Happy birthday, Muiriel!

0.9870 DE: Das Wesen der Freiheit leigt in der Mathematik.
EN: The essence of Mathematics is liberty. False

0.9860 DE: Das Wesen der Freiheit leigt in der Mathematik. Positives
EN: The essence of liberty is mathematics.

(0.9971) (Correct EN Translation: The essence of freedom lies in Mathematics.

Table 10: Raw cosine similarity value on the Tatoeba
DE-EN dataset.

the XLM-R student model is trained with
parallel sentences for across languages with
knowledge transfer from the fine-tuned En-
glish SBERT-nli-stsb or SBERT-paraphrases
as the teacher model.

Description and details of the above models can
be publicly obtained from the links as presented in
Table 11.

C Training Data

To create the weakly-supervised training dataset,
we keep monolingual sentence pairs same as those
of XNLI dataset. To create cross-lingual sentence
pairs, we keep premises from the source language
and replace the hypothesis with target language hy-
pothesis sentences, and vice-versa. In the example
in Table 9, for language pair EN-DE, the premise
is taken from English while the hypothesis is from
German and vice-versa. We do not consider any
labels to train our model.

D Language Codes

We have empirically evaluated existing sentence
embedding techniques with the proposed DuEAM
architecture on several languages across diverse lan-
guage families, including low-resourced languages.
We reported results for 8 language pairs on the STS
benchmark and for 4 language pairs on the BUCC
benchmark. On the Tatoeba dataset, we conducted
experiments for the full set of 58 languages under
different use-case scenarios. Tables 12 and 13 list
the languages along with their codes as provided
in the benchmark datasets and as presented in the
main body of our paper.



9111

Datasets Link
mBERT https://huggingface.co/bert-base-multilingual-cased
XML-R https://huggingface.co/transformers/model_doc/xlmroberta.html
LASER https://tfhub.dev/google/LaBSE/1
XLM-R← SBERT-nli-stsb https://www.sbert.net/docs/pretrained_models.html
XLM-R← SBERT-paraphrases https://www.sbert.net/docs/pretrained_models.html
mUSE https://tfhub.dev/universal-sentence-encoder-xling/many

Table 11: Source of the competing approaches and
models used as baselines.

E Tatoeba Results

We have performed all our experiments on the 58
languages of the Tatoeba test datasets. Evalua-
tion for the parallel sentence matching task is done
by finding the most similar sentence between two
languages based on their cosine similarity. We
have calculated accuracy in both directions (En-
glish to target language and vice versa), and have
reported the average accuracy of the two. We have
reported performance results of the different ap-
proaches based on three settings:
(i) model performance on languages that it has been
trained on,
(ii) zero-shot model performance on untrained lan-
guages, while compared with supervised trained
models, and
(iii) model performance on under-resourced lan-
guages for which it is untrained.

In the main body of the paper, we reported snap-
shots of the results obtained across a few of the
languages (taken across varied language families).
Here we report the full evaluation results across all
the 58 languages. Baseline supervised models are
taken from (Reimers and Gurevych, 2020).

Performance on Trained Languages: Table
14 reports the performance of the models across 12
languages. We have compared our model with su-
pervised baseline and unsupervised baseline mod-
els. We can see that across all 12 languages our
model achieved high accuracy compared to unsu-
pervised model. Our model also achieved com-
parative results with supervised model XLM-R←
SBERT-nli-stsb and LASER for some languages.

Zero-shot Transfer: We have compared our
model accuracy on 30 untrained languages and
compared with baseline models. Table 15 shows
that for all 30 languages our model has achieved
state-of-the-art unsupervised results. While the su-
pervised models are trained on the parallel datasets
for these languages, for some languages our model
achieved comparative results even in zero-shot set-
tings.

Zero-shot Transfer on Under-Resourced
Languages: While our model has achieved high

accuracy on wide range of languages, we have
compared our model with supervised baseline on
16 under-resourced languages from different lan-
guage families for zero-shot transfer. From Ta-
ble 16 we can observe that across all languages
weakly-supervised DuEAM achieved higher accu-
racy than the supervised baseline of XLM-R ←
SBERT-paraphrases. In fact, our unsupervised
DuEAM performed better than XLM-R← SBERT-
paraphrases for most of the languages.

Overall, our unsupervised and weakly-
supervised DuEAM perform significantly better
than the existing unsupervised approach, and is
comparable with the supervised models across
diverse languages. Our model also efficiently
supports zero-shot transfer learning and is robust
for under-resourced languages.
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Language Code Language Language Code Language Language Code Language Language Code Language

EN English DE German FR French HI Hindi

AR Arabic ES Spanish TR Turkish NL Dutch

IT Italian RU Russian ZH Chinese

Table 12: List of languages and their codes as provided in the STS and BUCC dataset.

Language Code Language Language Code Language Language Code Language Language Code Language

bul Bulgarian dan Danish mkd Macedonian epo Esperanto

cmn Mandarin Chinese est Estonian mon Mongolian eus Basque

deu German fin Finnish nob Norwegian Bokmål gla Scottish Gaelic

ell Greek glg Galician pes Persian isl Icelandic

fra French heb Hebrew por Portuguese jav Javanese

hin Hindi hrv Croatian ron Romanian khm Khmer

rus Russian hun Hungarian slk Slovak lat Latin

spa Spanish hye Armenian slv Slovenian swg Swabian

tur Turkish ita Italian sqi Albanian swh Swahili

tha Thai jpn Japanese srp Serbian uzb Uzbek

urd Urdu kat Georgian pol Polish war Waray

vie Vietnamese kor Korean ind Indonesian xho Xhosa

ara Arabic lit Lithuanian bre Breton yid Yiddish

cat Catalan lvs Latvian ceb Cebuano

ces Czech mar Marathi cym Welsh

Table 13: List of languages and their codes as provided in the Tatoeba dataset.

Model / Languages bul cmn deu ell fra hin rus spa tur tha urd vie

Supervised Approaches

XLM-R← SBERT-paraphrases 94.0 95.0 98.7 95.5 94.7 96.4 93.5 98.0 97.2 96.3 92.2 97.2
LASER 95.0 95.4 99.0 95.0 95.6 94.7 94.6 98.0 97.5 95.4 81.9 96.8

Unsupervised Approaches

Kvapilíková et al. (2020) 56.0 – 83.1 51.3 – 53.4 – – – – 43.7 –

Proposed Approaches

DuEAMwklysupv 86.0 90.2 96.0 87.4 91.5 92.9 90.0 93.0 89.6 90.1 77.8 92.0
DuEAMunsupv 82.5 85.2 93.4 82.0 87.7 83.5 85.5 89.5 84.1 82.4 67.9 89.6

Table 14: Average accuracy on the Tatoeba test set in both directions (EN to target language and vice versa) on
trained languages.



9113

Model / Languages ara cat ces dan est fin glg heb hrv hun hye

Supervised Approaches

XLM-R← SBERT-paraphrases 87.7 96.4 96.3 96.2 95.8 96.4 96.0 88.4 97.0 94.7 91.3
LASER 92.0 95.9 96.5 96.0 96.7 96.3 95.5 92.2 97.2 96.0 36.1

Unsupervised Approaches

Kvapilíková et al. (2020) 41.1 66.9 53.5 – 39.0 47.5 66.9 – 68.2 – –

Proposed Approaches

DuEAMwklysupv 70.7 83.3 85.3 92.3 73.0 88.70 85.0 73.1 88.7 86.1 79.0
DuEAMunsupv 61.6 80.0 79.80 90.0 70.0 83.7 80.7 69.0 84.3 81.5 74.1

Model / Languages ita jpn kat kor lit lvs mar mkd mon nob pes

Supervised Approaches

XLM-R← SBERT-paraphrases 94.9 90.7 91.4 90.1 95.8 96.4 91.0 92.2 91.7 98.0 94.8
LASER 95.3 94.2 35.9 88.9 96.2 95.4 91.5 94.7 8.2 98.8 93.4

Unsupervised Approaches

Kvapilíková et al. (2020) – 54.4 41.4 – 43.9 37.3 – 29.0 – –

Proposed Approaches

DuEAMwklysupv 85.7 84.2 71.7 81.3 83.2 81.2 78.9 75.2 74.7 94.8 88.9
DuEAMunsupv 83.1 77.4 68.2 75.8 78.9 76.6 73.4 71.2 71.5 93.2 83.4

Model / Languages por ron slk slv sqi srp pol ind

Supervised Approaches

XLM-R← SBERT-paraphrases 94.8 96.4 96.2 95.5 97.5 93.8 97.0 94.1
LASER 95.2 97.4 96.6 95.9 98.0 95.3 97.8 94.5

Unsupervised Approaches

Kvapilíková et al. (2020) – – – – – – – 64.9

Proposed Approaches

DuEAMwklysupv 91.2 88.5 86.2 80.5 79.9 83.7 90.4 89.5
DuEAMunsupv 89.5 87.0 80.2 77.2 76.6 80.3 88.4 87.7

Table 15: Average accuracy on the Tatoeba test set in both directions (EN to target language and vice versa) on
untrained languages. All the baseline models are trained on parallel training datasets.

Model / Languages bre ceb cym epo eus gla isl jav khm lat swg

XLM-R← SBERT-paraphrases 10.1 11.7 34.9 68.8 48.6 7.5 75.8 37.0 64.8 28.0 33.9
DuEAMwklysupv 11.5 14.8 52.7 79.2 66.0 21.9 81.9 40.2 65.7 44.0 33.9
DuEAMunsupv 9.8 12.3 46.0 74.0 58.2 16.0 78.5 36.1 52.7 38.9 31.2

Model / Languages swh uzb war xho yid

XLM-R← SBERT-paraphrases 27.6 32.6 11.4 11.6 52.7
DuEAMwklysupv 40.2 40.1 13.0 15.5 53.7
DuEAMunsupv 33.3 35.5 10.8 14.9 46.7

Table 16: Average accuracy on the Tatoeba test set in both directions (EN to target language and vice versa) on
untrained under-resourced languages.


