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Abstract

Neural Word Sense Disambiguation (WSD)
has recently been shown to benefit from the
incorporation of pre-existing knowledge, such
as that coming from the WordNet graph. How-
ever, state-of-the-art approaches have been
successful in exploiting only the local struc-
ture of the graph, with only close neighbors of
a given synset influencing the prediction. In
this work, we improve a classification model
by recomputing logits as a function of both
the vanilla independently produced logits and
the global WordNet graph. We achieve this by
incorporating an online neural approximated
PageRank, which enables us to refine edge
weights as well. This method exploits the
global graph structure while keeping space
requirements linear in the number of edges.
We obtain strong improvements, matching the
current state of the art. Code is available at
https://github.com/SapienzaNLP/
neural—-pagerank-wsd.

1 Introduction

Word Sense Disambiguation (WSD) is a task with
a long history in Natural Language Processing
(Bevilacqua et al., 2021). It addresses the perva-
sive phenomenon of (lexical) ambiguity, whereby
the same polysemous word or expression conveys
different meanings in different contexts. Natural
Language Processing (NLP) tends to maintain the
working assumption that word meaning can be dis-
cretized in a finite number of classes, thus casting
polysemy resolution as a multi-class classification
problem, where the classes, i.e., the senses, are spe-
cific to a word. Senses are registered in a dictionary-
like resource called the sense inventory. In English
WSD the sense inventory is virtually always Word-
Net (Miller et al., 1990), which, for example, lists
separately the fish and musical instrument senses
of the word “bass”.

The WSD task is currently dominated by su-
pervised methods (Yap et al., 2020; Blevins and

Zettlemoyer, 2020). These methods, thanks, in-
ter alia, to the game-changing effect of pretrained
language models, have widened the margin over
so-called knowledge-based approaches (Agirre and
Soroa, 2009; Moro et al., 2014; Scozzafava et al.,
2020), which usually disambiguate using only
global graph information — a source of informa-
tion that, however, is not easy to integrate explictly
into supervised WSD. Although there have been a
few successful approaches integrating graphs into
a standard neural classification architecture (Conia
and Navigli, 2021; Bevilacqua and Navigli, 2020),
such methods only exploit the local relational struc-
ture, leaving the global structure unused. Thus,
while the model is able to directly utilize the ex-
plicit knowledge that a cairn is a terrier, it is not
able to also utilize the fact that, following the hy-
ponymy relation, a cairn is also a dog.

In this paper we propose a method for integrat-
ing global graph information into neural supervised
WSD through a Personalized PageRank (Page et al.,
1999, PPR) approximation, blurring the distinction
between knowledge-based and supervised methods.
We achieve this by generalizing the logit aggrega-
tion scheme used on top of a feedforward classi-
fier by Bevilacqua and Navigli (2020). Our pro-
posed method is simple and extensible, and could
be adapted to work with other classifiers as well.
We match the performance of the current state of
the art in WSD (Blevins and Zettlemoyer, 2020)
while using only 35% (60M) of the trainable pa-
rameter count. When training on additional data,
our technique outperforms the previous state of the
art in that setting (Conia and Navigli, 2021).

2 Method

In this section we explain how our method, building
on top of previous approaches to WSD.
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2.1 Neural WSD

The most popular formulation for WSD employs
token-level classifiers, which encode each token ?;
into a vector e; using a sequence classifier, e.g. an
LSTM (Raganato et al., 2017b) or, more recently,
pre-trained Transformer-based contextualized em-
beddings (Hadiwinoto et al., 2019). The vector is
then fed to one or more feedforward (FFN) lay-
ers, producing a softmax-normalized probability
distribution over all the output classes, i.e., all the
synsets (groups of senses sharing the same mean-
ing) in WordNet:

exp(FFN(e;))s
> ver() eXP(FEN(ei))s) (1)
= softmax (FFN(e;))s

P(S‘Q') =

where 7 is an inventory function that returns the set
of possible synsets for a token, and Z(-) denotes
the set of all WordNet synsets. At test time, the
predicted synset 3; is the one with the highest prob-
ability, searching only among the set of synsets that
are consistent with the current token (Z(t;)):

§; = argmax P(s'|t;) (2)
S'ET(t;)
This formulation is very straightforward, but also
wasteful, as scores are computed for “impossible”
synsets, i.e. those & Z(t;).

2.2 EWISER

Recently, there has been a trend towards the inclu-
sion of knowledge from the WordNet sense inven-
tory in WSD. While many successful approaches
have exploited glosses (Huang et al., 2019; Blevins
and Zettlemoyer, 2020), the use of relational in-
formation, i.e. the graph structure of WordNet,
has mostly been exploited by so-called knowledge-
based algorithms, i.e., those that make use of no
corpus supervision at all. However, one recent ap-
proach (Bevilacqua and Navigli, 2020, EWISER)
has made the use of graph relations part of its core
method: it employs trainable edge weights to aggre-
gate scores of related synsets together, thus taking
advantage of the scores over the whole vocabulary:

2% = FFN(e;)
1 0
Zt(ll - Zt(ll + Z w(s', s) 3)
s'€E;n(s)

P(s|t;) = softmax(Zt(il))S

where E;,(s) is the set of all the synsets s’ € V
(i.e., the set of nodes), such that there is an edge
from s’ to s, and w(s’, s) is the weight of the edge.
Bevilacqua and Navigli (2020) batch the computa-
tion by encoding all edges in a (sparse) adjacency
matrix A € REFOXIZOI where Ay, = 0 unless

s € Ein(s), in which case Ay ; = \E'l(s)\:

ZW) = 70) 4 AT 7(0) 4)

In training, only non-zero A weights are updated.
EWISER provides an elegant way to incorporate
graph knowledge within a token tagger architec-
ture. However, it also has some evident limitations.
First, the model is only able to incorporate local
neighbourhood, as only paths of length 1 are con-
sidered. While one could incorporate paths of arbi-
trary length by augmenting F;,, (s) with all nodes
connected to s by at most k steps, this solution is
in practice not very scalable, as it would rapidly
densify A, increasing the number of parameters
way beyond what is reasonable: if we were to have
a fully connected graph for WordNet synsets, it
would have more than 6.9 billion parameters.

2.3 Integrating PageRank

We propose improving the logit aggregation mecha-
nism of EWISER (Eq. 4) by applying the A matrix
K times. Each new iteration makes it such that
progressively more distant neighbours affect the
classification score. However, given a sufficiently
large value of K, this would have the effect that
the contribution of the original scores becomes in-
creasingly smoothed out.

To solve this issue we exploit the connection
between the logit aggregation step and the PPR al-
gorithm (Page et al., 1999), which uses both edge
information and a personalization vector (z, a prior
on node importance before taking into account
edges) to produce a distribution over nodes. One of
the ways to “solve” the PageRank uses the so-called
power iteration method, whereby z is repeatedly
multiplied by A:

PRO) = ;

)

PR™ = az+ (1 —a)ATPRMY
where « is the so-called teleport probability, used
to interpolate between 2 and the current iteration
scores — saving some probability mass from the
former. In our case for each instance to classify
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the personalization vector is set to be equal to logit
scores, i.e. the raw scores before applying softmax:

7\ = FFN(e;)
Z® =0z 4+ (1 —a)ATZ*=D  (6)
P(s|t;) = softmax(Zt(iK))s

Differently from vanilla PPR, we do not check for
convergence, but treat K as a hyperparameter; also,
we do not normalize the personalization vector into
a probability distribution, as preliminary experi-
ments showed that normalization does not affect
the final classification scores significantly. Our ap-
proach is related to that of Klicpera et al. (2019),
who use a neural approximation based on topic-
sensitive PageRank (Haveliwala, 2002) instead of
PPR, and apply it to the task of node classification
in citation graphs. Differently from them, however,
we exploit the graph structure of the output, not
that of the input.

3 Experiments

Setting We evaluate our proposed addition to
the WSD task by employing it on top of the sim-
ple feedforward classifier baseline (taking as input
frozen BERT large embeddings) used by Conia and
Navigli (2021). We train the model with vanilla
categorical cross-entropy. Following Bevilacqua
and Navigli (2020) we use SensEmBERT (Scarlini
et al., 2020) and LMMS (Loureiro and Jorge, 2019)
embeddings to initialize the output embeddings
(i.e., the last transformation matrix of the FFN) for,
respectively, nominal and all other synsets. The
evaluation measure is the F score. We compare
against EWISER, but also report results for other
recent high-performing methods from the litera-
ture, both sequence-tagging (Huang et al., 2019;
Yap et al., 2020) and token-tagging (Blevins and
Zettlemoyer, 2020; Conia and Navigli, 2021).1

Data As usual in the WSD literature, we train
our model on SemCor (Miller et al., 1994), i.e. the
largest available manually semantically annotated
corpus; following Bevilacqua and Navigli (2020)
we also add synthetic instances built by prepend-
ing lemmas to the corresponding WordNet synset
definition — thus injecting gloss information that
is used by other state-of-the-art models (Huang

"We have not included in the comparison work appearing

at the time of or later than our submission (Barba et al., 2021a;
Wang and Wang, 2021; Barba et al., 2021b)

K Connected paths
(%)
4 11.083
5 33.538
6 60.543
7 81.529
8 92.815
9 97.579
10 99.313
11 99.849
12 99.967
13 99.997

Table 1: Percentage of paths between any two con-
nected synsets in WordNet whose length is less than
or equal to K, for different values of K.

et al., 2019; Yap et al., 2020; Blevins and Zettle-
moyer, 2020). In order to test the performance
upper bounds we also experiment separately with
adding to the training set the so-called WordNet
Tagged Glosses corpus’ (WNTG), which contains
a large number of additional gold and silver anno-
tations.

We evaluate on the framework for English all-
words WSD made available by Raganato et al.
(2017a),> which includes Senseval-2 (Edmonds
and Cotton, 2001), Senseval-3 (Snyder and Palmer,
2004), SemEval-2007 (Pradhan et al., 2007),
SemEval-2013 (Navigli et al., 2013), and SemEval-
2015 (Moro and Navigli, 2015). We use SemEval-
2007 as our development set, and report results on
the concatenation of all other datasets in the frame-
work (ALL™); following common practice, we also
report results on SemEval-2007 + ALL™ (ALL),
even though the former is the development set.

Graph We train models with various values of
the power iteration parameter K: (i) K = 0,
which corresponds to the baseline with no logit
aggregation scheme; (ii)) K = 1, which is simi-
lar to EWISER, but using a-weighted interpola-
tion between original logits and aggregated ones;
(iii) K = 10, which corresponds to a range greater
than or equal to the length of around 99% of paths
between any two connected nodes in the graph. We
report the path length statistics in Table 1.

We build A by including different sets of edges

https://wordnetcode.princeton.edu/
glosstag.shtml
*http://lcl.uniromal.it/wsdeval/
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Model ALL™ ALL | 82 83 87 S13 S15/ N V A R
Huang et al. (2019) 770 76.8%| 777 752 725 761 804 | 798 671 79.6 87.4
Conia and Navigli (2021) 77.8% 776 | 784 778 722 767 782 | 80.1 67.0 80.5 8622
2 Bevilacqua and Navigli (2020)  78.8% 783 | 789 784 710 789 793 | 817 663 812 858
S Yapetal. (2020) 79.0% 787 | 799 774 730 782 818 | 812 688 8L5 882
S Blevins and Zettlemoyer (2020)  79.3% 790 | 794 774 745 797 817 | 814 685 830 879
2 Ours (K =0) 771 765 | 776 754 688 769 793 | 795 660 78.1 850
& Ours (K = 1) 78.5« 78.1 | 785 78.1 714 777 808 | 80.6 686 80.5 867
Ours (K = 10) 794 789 | 787 789 716 80.0 812|823 678 807 86.1
Ours (K = 10) + SyntagNet 792 787 | 789 778 721 790 824 | 81.6 685 807 864
Ours (PPR top-10, K = 1) 782 776 | 780 776 701 779 799 | 807 670 79.5 855
Bevilacqua and Navigli (2020) ~ 80.4%  80.1 | 80.8 79.0 752 80.7 818 | 829 694 837 855
¢ Conia and Navigli (2021) 80.5¢ 802 | 804 77.8 762 818 833|829 703 834 855
S Ours (K =0) 786 781 | 784 783 709 781 80.1 | 809 67.8 805 867
S Ours(K =1) 80.2x 79.8 | 795 777 742 813 845 | 826 70.1 822 855
+ Ours (K = 10) 807 803 | 803 79.1 743 813 834|832 69.1 847 853
Ours (K = 10) + SyntagNet 810 80.6 | 805 785 743 819 853|837 699 83.1 86.4

Table 2: We report results (F1) of the WSD experiments. Results on concatenated datasets (ALL~/ALL); Senseval-
2/3 (S2/S3); SemEval-2007/2013/2015; part-of-speech breakdown on ALL: nouns (N), verbs (V), adjectives (A),
adverbs (R). Models grouped in the same row block are mutually comparable: 1) models trained on just SemCor,
2) models trained on SemCor and WNTG. *: computed from the reported results. % : highest F; that is statistically
different from the best one (McNemar’s test with p = 0.05).

from WordNet, i.e., hyponymy, hypernyms, simi-
larity, derivationally related, and verb group. The
weight Ay ¢ from synset s’ to s is initialized as
1/|Ein(s)| where E;;,(s) is the set of all s’ s.t. the
edge (', s) is in the graph. Additionally, we exper-
iment with including edges from SyntagNet (Maru
et al., 2019), a resource that includes edges repre-
senting semantic collocations.* Collocational infor-
mation is orthogonal to that contained in WordNet,
providing paths between regions of the WordNet
graph that would otherwise be distant or discon-
nected.

Finally, to check whether it is feasible to in-
clude global information by precomputing the PPR
instead of approximating it in the network for-
ward pass, we experiment with a baseline approach
where we directly initialize A7 with a PPR distribu-
tion, built using WordNet as the starting graph and
a one-hot vector z (with z; = 1) as personalization.
To keep A manageable, we cut the distribution in
AT the top 10 ranks and renormalize to sum to 1.
We then train a K = 1 model on this graph.

Hyperparameters Models are trained for 30
epochs, using early stopping with patience set to
5, feeding data in batches of 128 sentences. The
optimizer used is Adam (Kingma and Ba, 2015)
with a learning rate of 10~% which decays linearly
to 10~7. We set the teleport probability « to 0.15,
a common default value. We do not tune K, nor

*nttp://syntagnet.org/

other hyperparameters, which we take from the con-
figuration of Bevilacqua and Navigli (2020). The
development set is only used for early stopping and
to select the best epoch of the run.

4 Results

We report results of our experiments in Table 2.
When training on SemCor, the performances of our
model increase steadily from K = 0to K = 1
(4+1.4 on ALL7), and from K = 1to K = 10
(4+0.9 on ALL™), while SyntagNet edges do not
seem to boost the results over the use of the simple
WordNet graph. The precomputed PPR graph base-
line obtains much lower results than K = 10. The
reason is probably that the baseline needs to keep
a fixed number of incoming edges, missing poten-
tially useful information on a structurally longer
range, while our K = 10 model has no such re-
quirement. On the overall evaluation (ALL ™) the
results of the X' = 10 model also match (and even
slightly outperform) those of the current state of
the art, i.e., BEM (Blevins and Zettlemoyer, 2020),
all while using around 35% of the trainable param-
eters. In fact, apart from the parameters in A, our
model is a simple feedforward network on top of
BERT, while BEM uses two jointly fine-tuned en-
coders, one to encode the context and the other to
encode the definitions.

When adding WNTG to the training corpus, the
same trend of increasing performance along with
increasing K appears. Moreover, our best model
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Figure 1: Performances on ALL™/ALL with K €
{0,1,5,10,15,20} of our SemCor model (w/o Syntag-
Net).

Model Seen Unseen
Ours (K =1) 93.9 65.1
Ours (K =10) 94.1 67.0

Table 3: Results of model trained on SemCor (for
K = 1and K = 10), on the subset of ALL™ such
that the MFS is among gold synsets (MFS) and on its
complement in ALL™ (Unseen). F; is reported.

outperforms the previous state of the art (Conia
and Navigli, 2021) by 0.5 points on ALL™. In this
new setting using SyntagNet edges is beneficial,
probably because now that many more senses have
meaningful occurrences in the larger training set,
there is less noise in the tail of the Z(® (unnor-
malized) distribution, and more synsets can affect
classification positively.

Effect of X' To understand the influence of the
number of iterations on performance, we plot in
Figure 1 the performance on ALL™ and ALL when
increasing the K hyperparameter from 0O to 20. As
can be seen, the trend is quite clear: the model
improves going from K = 1 to K = 10, but then
increasing K further results in (slightly) dimin-
ished performances. The reason for this could be
that K = 10 strikes the best tradeoff between in-
fluence range increase and oversmoothing. In fact,
the average shortest path between any two nodes in
the WordNet graph is around 6.3.

MFS/Unseen So, where does the improvement
when using our technique come from? To answer
this question we have isolate two subsets of ALL™:
a most frequent synset (MFS) set, including only in-
stances in which one of the gold synsets associated
with the instance is the MFS, and a much harder
unseen one, in which the gold synsets never occur
in the training set. We report the results in Table 3.

As can be seen the benefits of using K = 10 in our
model are much stronger for the long tail of never
occurring senses than for high-frequency senses.
In fact, our K = 10 model trained on SemCor im-
proves the performance of the K = 1 baseline on
unseen synsets by 1.9 points (67.0 against 65.1),
while the improvement on the MFS is much more
modest (94.1 vs 93.9 F1).

5 Conclusion

In this paper we have shown that a deeper inte-
gration between supervised and knowledge-based
methods in WSD can be attained. Indeed, by us-
ing the standard logits as personalization vector for
an approximated neural PageRank, a supervised
method can exploit not just local graph informa-
tion, but global information as well. Thanks to our
technique, we are able to match the best competitor
system when training only on SemCor (Blevins and
Zettlemoyer, 2020), while using a simpler model.
When we concatenate the WNTG training corpus
our results outperform the best competitor (Conia
and Navigli, 2021) by 0.5 on the overall evaluation.
We leave it as future work to ascertain whether
i) edge label information can be incorporated too,
and ii) stronger baseline models using glosses (Yap
et al., 2020; Blevins and Zettlemoyer, 2020) can
benefit from the use of our method.
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