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Abstract

Large scale multilingual pre-trained language
models have shown promising results in zero-
and few-shot cross-lingual tasks. However, re-
cent studies have shown their lack of general-
izability when the languages are structurally
dissimilar. In this work, we propose a novel
fine-tuning method based on co-training that
aims to learn more generalized semantic equiv-
alences as complementary to multilingual lan-
guage modeling using the unlabeled data in
the target language. We also propose an adap-
tion method based on contrastive learning to
better capture the semantic relationship in the
parallel data, when a few translation pairs are
available. To show our method’s effective-
ness, we conduct extensive experiments on
cross-lingual inference and review classifica-
tion tasks across various languages. We re-
port significant gains compared to directly fine-
tuning multilingual pre-trained models and
other semi-supervised alternatives.1

1 Introduction

Self-supervised pre-trained models (Peters et al.,
2018; Devlin et al., 2019; Liu et al., 2019; Lan
et al., 2019) have revolutionized natural language
processing (NLP). Such pre-training with language
modeling objectives provides a useful initial point
for model parameters that adapt well to new tasks
with supervised fine-tuning. Building on the suc-
cess of monolingual pre-trained language mod-
els (LM) such as BERT (Devlin et al., 2019) and
RoBERTa (Liu et al., 2019), multilingual models
like mBERT (Devlin et al., 2019), XLM (Conneau
and Lample, 2019), XLM-R (Conneau et al., 2020)
have pushed the state-of-the-art on cross-lingual
tasks by pre-training large Transformer (Vaswani
et al., 2017) models jointly on many languages.

The multilingual pre-trained LMs support zero-
shot transfer from a source language to target lan-

1Code and models are available at https://github.com/
tao-shiwu/co-training-xlu

guages, meaning that fine-tuning the pre-trained
LM on the source-language labeled data such as
English, could transfer well to other languages. Re-
cent research (Wu and Dredze, 2019; K et al., 2020;
Pires et al., 2019) has shown that the transfer ca-
pability of these multilingual LMs mainly relies
on the structural similarity between the source and
target languages. When the target language is struc-
turally dissimilar to the source, the transfer ability
is shown to be low in the zero-shot setting.

Since the multilingual LMs are generally trained
with a self-supervised masked language modeling
(MLM) objective without considering parallel in-
formation or semantic equivalences, they cannot
capture well semantic similarity across languages
as reflected by their low Tatoeba score (Phang
et al., 2020). This could also potentially harm
their zero-shot transfer performance on the tasks
as Dufter and Schütze (2020) show that inject-
ing cross-lingual signals by replacing masked to-
kens with semantically similar words from other
languages improves mBERT’s multilinguality and
zero-shot cross-lingual inference (XNLI) results.

Concurrently, the multilingual embedding mod-
els such as LASER (Artetxe and Schwenk, 2019)
and LaBSE (Feng et al., 2020) use parallel data
to learn language invariant sentence representation
by encoding texts from different languages into a
shared embedding space. These models can cap-
ture semantic similarity well as often shown by
their high Tatoeba scores and their success in tasks
that involve cross-lingual similarity such as cross-
lingual retrieval and bitext mining. However, it has
been shown that these models generally lag behind
the multilingual LMs on zero-shot cross-lingual
classification tasks like XNLI (Wang, 2019). We
hypothesize source information might be necessary
to achieve better zero-shot transfer as shown em-
pirically by Phang et al. (2020) with intermediate
task fine-tuning in the source language (English).

In this work, we argue that the multilingual em-

https://github.com/tao-shiwu/co-training-xlu
https://github.com/tao-shiwu/co-training-xlu
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bedding models and multilingual LMs are com-
plementary to each other – the task adaptability
of the multilingual LMs can be complemented by
the semantic awareness of the sentence embedding
models and vice versa. For this, we first propose a
co-training (Blum and Mitchell, 1998) framework
that facilitates the multilingual LMs and sentence
embedding models to learn from each other by us-
ing unlabeled data from target languages.

Secondly, we aim to improve the multilingual
LM fine-tuning when there are small amounts of
parallel pairs within the training datasets for tasks.
Compared to the existing translate-train methods
(Singh et al., 2020; Conneau et al., 2018) that sim-
ply use translation as a data-augmentation method
to generate labeled data in the target language,
we propose a novel language adaptation approach
based on contrastive learning that aligns the paral-
lel data to model the semantic relationship between
the translation pairs for effective fine-tuning.

We performed extensive experiments on XNLI
(Conneau et al., 2018) and Multilingual Amazon
Review Corpus (MARC) (Keung et al., 2020)
datasets. The experimental results demonstrate
that our approach outperforms previous methods
for various classification tasks across different lan-
guages by a good margin. In particular, on XNLI,
our proposed co-training method improves over the
original mBERT and XLM-R by 2.3% and 1.7%
on average for zero-shot cross-lingual transfer. On
MARC, our approach gets on average 8% and 1.1%
gains for mBERT and XLM-R, respectively.

2 Related Works

Since the introduction of the transformer network
Vaswani et al. (2017), it has become a common
model of choice for language representation learn-
ing. Pre-trained transformer-based models such as
mBERT (Devlin et al., 2019) have proven effec-
tive in learning cross-lingual information. mBERT
was pre-trained on raw Wikipedia texts in 104 lan-
guages using masked language modeling (MLM)
and next sentence prediction (NSP) tasks with no
explicit cross-lingual objective. XLM-R (Conneau
et al., 2020) improves over mBERT by training
longer with more data from CommonCrawl, and
without the NSP objective.

Meanwhile, several studies examine what makes
these pre-trained language models multilingual,
and why it works well for cross-lingual transfer.
Pires et al. (2019) hypothesize that the cross-lingual

capability of mBERT benefits from having a shared
(sub-word) vocabulary for all languages, which
helps to bind the languages by mapping the token
representations into a shared space. K et al. (2020)
point out that the contribution from shared sub-
words is minimal. On the other hand, the structural
similarity (e.g., word order, word frequency, etc.) is
more important for effective cross-lingual transfer.

Another line of work on multilingual pre-
training focuses on generating multilingual sen-
tence embeddings such that semantically similar
sentences across different languages will be closer
in a shared vector space. LASER (Artetxe and
Schwenk, 2019) uses an encoder-decoder archi-
tecture (Sutskever et al., 2014). It trains on large
parallel data to learn multilingual fixed-length sen-
tence embedding for 93 languages on a transla-
tion task. Multilingual Universal Encoder (mUSE)
(Chidambaram et al., 2019) uses a dual-encoder
architecture that is trained on one billion crawled
question-answering pair with a translation ranking
task: given a sentence from the source language
and a group of candidate text from target languages,
the model needs to recognize the corresponding
translation of the source-language text from the
candidates. LaBSE (Feng et al., 2020) is based on
the BERT architecture using the same translation
ranking task with mUSE but is trained on a much
larger dataset of six billion translation pairs.

Some researchers also tried to introduce cross-
lingual alignment from parallel data as an auxiliary
objective of the original MLM in the pre-training.
Cao et al. (2020) align mBERT embeddings in a
post-hoc manner. They first apply a statistical word
aligner to align tokens in the parallel sentences.
Then, mBERT is tuned via minimizing the mean-
squared error between the embedding of the En-
glish words and the corresponding words in other
languages. Chi et al. (2020) tried to minimize the
vector-space distance between a source language
sentence and its translation during the pre-training.
The problem with these kinds of methods is that
they either need to pre-train a new model from
scratch (Chi et al., 2020; Lample and Conneau,
2019), or need to do a second round of pre-training
on top of the original multilingual LM (Cao et al.,
2020). From both the computation and data per-
spective, the cost is very high.

In another line of work, researchers use data aug-
mentation to solve language adaptation problem in
cross-lingual tasks. For example, Bari et al. (2021)
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use XLM-R’s mask language model to augment
the data with vicinal samples. Liu et al. (2021)
proposed a labeled sequence translation method
to translate source-language NER training data to
target languages and train a generation-based multi-
lingual data augmentation method. These methods
are orthogonal to our methods.

Summary Current work on multilingual pre-
training either does not consider sentence-level
cross-lingual alignment in the pre-training (making
them sacrifice transfer capability to structurally dis-
similar language), or they only consider alignment
signals, which makes them expensive to train. In
contrast, in our work we focus on utilizing the par-
allel information in the fine-tuning phase with min-
imum costs to avoid building a pre-trained model
from scratch or using large amounts of parallel data.
Our approach can also naturally co-operate with
different multilingual models based on different
pre-training objectives.

3 Methods

In this section, we describe our co-training frame-
work for cross-lingual transfer (§3.1) followed by
the contrastive language adaptation (§3.2).

3.1 Co-training based Model Transfer

The goal of our approach is to make use of the
cross-lingual semantic information from the multi-
lingual embedding model to improve the zero-shot
classification performance on downstream cross-
lingual tasks when fine-tuning the multilingual LM
with source language data.

Background Co-training (Blum and Mitchell,
1998) is one of the widely used semi-supervised
methods, where two complementary classifiers uti-
lize unlabeled data to bootstrap the performance of
each other iteratively. Within the co-training frame-
work, each classifier is trained on a unique view
of the data. In each iteration, the algorithm selects
high confidence data using each of the classifiers to
form a pseudo-labeled dataset. The intuition is that
if one classifier can confidently predict the class
of an example that is very similar to some of the
labeled ones, it can provide one more training data
for the other classifier. If this data appears easy to
be classified by the first classifier, it does not mean
that it will be easy for the second classifier. So, the
second classifier will get useful information to im-
prove itself and vice versa. Co-training also avoids

Algorithm 1: Co-training for cross-lingual
task adaptation

Initialize threshold t;
Set U emb = U ,U lm = U ;
Set Demb = D,Dlm = D ;
for s iterations do

fine-tune f lm
θ on Dlm ;

fine-tune f emb
θ on Demb;

for xu ∈ U do
(ylm
u , c

lm
u ) = f lm

θ (xu) ;
(yemb
u , cemb

u ) = f emb(xu) ;
end
Cemb = {xu, yemb

u |cemb
u > t}|U|

u=1 ;
Clm = {xu, ylm

u |clm
u > t}|U|

u=1 ;
Random choose a subset Semb from Cemb ;
Random choose a subset S lm from C lm ;
U emb = U emb \ Semb ;
U lm = U lm \ S lm ;
Demb = Demb ∪ S lm ;
Dlm = Dlm ∪ Semb ;

end

the confirmation bias issue (Tarvainen and Valpola,
2017) with single model self-training, where the
model accumulates its own errors.

Proposed Co-Training Framework In our pro-
posed co-training framework (Fig. 1), we have two
cross-lingual classifiers, which use two separate
pre-trained multilingual models to get the cross lin-
gual representation of a text. The first classifier is
based on a multilingual LM like XLM-R (Conneau
et al., 2020) that captures the structural similarity
across languages by pre-training on MLM. We de-
note it as f lm

θ . The second one is based on the mul-
tilingual sentence embedding model LaBSE (Feng
et al., 2020) that is pre-trained on parallel texts to
capture the semantic similarity across languages.
We denote this model as f emb

θ .
Every input text will get a cross-lingual repre-

sentation h ∈ Rd after being encoded by the pre-
trained multilingual models f lm

θ or f emb
θ , where

d is the dimension of the sentence representation.
Subsequently, each model has a task-specific classi-
fication module for task fine-tuning, which consists
of a dense layer followed by a Softmax that maps
h ∈ Rd to Y , where Y is the set of target classes.

We first fine-tune the two classifiers based on
two different pre-trained models for K epochs us-
ing the labeled data D = {(xi, yi)}ni=1, where n is
the amount of labeled data, xi is the text from the
source language and yi is the corresponding ground
truth label. The next step is to make predictions
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Figure 1: Block diagram of the proposed co-training framework for cross-lingual adaptation.

on the unlabeled data from the target languages:
U = {xj}mj=1 with m being the number of unla-
beled samples. Consequently, given an arbitrary
unlabeled data xu, the two classifiers f lm

θ and f emb
θ

will yield pseudo labels ylm
u and yemb

u as well as
confidence scores clm

u and cemb
u , respectively.

We then set a threshold t and randomly select a
subset of the pseudo-labeled data with a confidence
score larger than t. The items selected by f lm

θ is
merged into the original labeled data D for f emb

θ

to re-train the model with. Similarly, the training
dataset for f lm

θ also gets updated with the pseudo
labeled data selected by f emb

θ . We perform this
process iteratively. See Alg. 1 for a pseudocode.

3.2 Contrastive Language Adaptation
Our co-training method in §3.1 exploits unlabeled
target data. In practical scenarios, it is easy to
acquire some translations of the source texts either
via machine translation (MT) or human translators
even for low-resource languages. Let T represent a
system (or human) that can translate a source text
xi into arbitrary target languages. With this, we
can create a new dataset Dbi = {(x(t)i , yi)}, where
x
(t)
i = T(xi) is the translation of xi into language
t using T . In our case, we translate only a small
portion ofD to buildDbi to make the setup realistic,
as getting good translations could be expensive.

One straightforward way to fine-tune f lm
θ us-

ing D and Dbi is to optimize the following cross-
entropy loss, where plm

yi (xi) is the predicted proba-
bility from f lm

θ for the ground truth label yi.

LCE(θ) = −
|D∪Dbi|∑
i=1

yi log(p
lm
yi (xi)) (1)

However, such method does not fully benefit from
the parallel information in Dbi. So, we further de-
velop a language adaptation approach to effectively

use the commonality between the source and the
target language data in terms of their label space
and semantic relationship to deal with the limited
size of the parallel training data when fine-tuning
the multilingual LM (f lm

θ ), as we present below.
Label Alignment (LA) We encourage data with
the same class label to be nearby in the embed-
ding space. We utilize the supervised contrastive
method (Gunel et al., 2020) to capture the simi-
larities between examples of the same class and
contrast them with the examples from the other
classes. Specifically, given a batch of training data
B from D ∪ Dbi containing examples of various
classes, we optimize f lm

θ using the following loss.

LLA(θ) =

|B|∑
i=1

1

Nyi − 1

|B|∑
j=1

1i6=j1yi=yjLi

where Li = − log
exp(hi · hj/τ)∑B

k=1 1i 6=k exp(hi · hk/τ)

(2)

where hk and hj respectively indicate the L2 nor-
malized [CLS] representations (encoded by f lm

θ )
of xk and xj drawn from the same batch B as xi,
Nyi denotes the amount of data in B that have the
same class of yi, and τ is a temperature parameter.

Combined with the cross-entropy loss (Eq. 1),
the final loss function for fine-tuning f lm

θ is:

L(θ) = LCE(θ) + λLALLA(θ) (3)

Where λLA is the hyper-parameter for tuning the
importance of the label alignment loss. Note that
the label alignment loss can be applied to only D
or Dbi or both. In our model, we apply it to both
(i.e., D ∪Dbi) to effectively use the commonality
between the source and target languages data in
their label space.

Semantic Alignment (SA) When fine-tuning
with the parallel data, we encourage the source
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Figure 2: Illustration of the proposed language adapta-
tion method. Different shape indicates different class
and different color with same shape indicates different
translations of the same source. Label alignment (LA)
encourages data with the same label to be nearby in
the embedding space, while Semantic Alignment (SA)
encourages translation pairs to be nearby in the embed-
ding space.

text and their corresponding translations in differ-
ent languages to be nearby in the embedding space
(they have the same label). Concurrently, for the
texts with different labels from different languages,
we encourage their embeddings to be far apart.

For each source language labeled instance
(xi, yi) inDbi, we construct a batchB of size |B| =
2b. The first half of the batch contains parallel texts
of xi from different languages: {(xi, x(t)i )}bt=1;
they have the same label yi and are considered
as positive pairs. The second half of the batch
{(xi, xj)}2bj=b+1 are constructed by the source lan-
guage texts with a different label (i.e., yj 6= yi),
and considered as negative pairs. The contrastive
loss for one data point (xi, yi) in Dbi is:

LiSA = −
b∑
t=1

log
exp(hi · h(t)

i /τ)∑B
k=1 1i 6=k exp(hi · hk/τ)

(4)

Note that the negative pairs {(xi, xj)}2bj=b+1 can
be sampled from only D or only Dbi or both. In
our model we only sample negative pairs from Dbi.

Combined with the cross-entropy loss, the final
loss function for fine-tuning f lm

θ on Dbi is:

L(θ) = LCE + λSALSA (5)

where λSA is the hyper-parameter for tuning the
importance of the semantic alignment loss.

Overall, when fine-tuning f lm
θ on D and Dbi, we

first train it with Eq. 3 onD∪Dbi. Then, we train it
onDbi using Eq. 5 with a smaller learning rate. See
Fig. 2 for an intuitive illustration of the proposed
language adaptation method.

4 Experiments

To show the effectiveness of our model, we eval-
uate our proposed methods on two cross-lingual
classification tasks as we describe below.

4.1 Evaluation Tasks & Datasets

Multilingual Amazon Review Corpus (MARC)
MARC (Keung et al., 2020)2 is a large-scale collec-
tion of Amazon reviews for multilingual text clas-
sification. The corpus contains reviews in English,
Japanese, German, French, Spanish, and Chinese.
The corpus is balanced across the five possible star
ratings, so each rating constitutes 20% of the re-
views in each language. We test our model on
the binarized classification task from Keung et al.
(2020), where we predict whether the reviewer gave
a negative review (1-2 stars) or a positive review
(4-5 stars). We drop the 3-star reviews in the train-
ing and evaluation data. We use only the review
body for training and testing. The training data for
target languages are used as unlabeled data.

XNLI XNLI (Conneau et al., 2018) is an evalua-
tion benchmark for cross-lingual NLI that covers
15 languages. The dataset is created by translating
(by human) the development and test sets of the
English MultiNLI dataset (Williams et al., 2018).
Given a sentence pair of premise and hypothesis,
the task is to classify their relationship as entail-
ment, contradiction, and neutral. On XNLI, we
directly use the translation that comes with the
dataset3 as unlabeled dataset for co-training.

4.2 Experimental Setup

On both XNLI and MARC datasets, we experiment
with three different setups: (i) We train the model
using 1.2% percent sampled data from the original
XNLI and MARC English training set which we de-
note as 1.2% zero-shot. This is to investigate our
co-training method’s performance when there are
only a few labeled data in the source language for
zero-shot transfer. (ii) we add translations from En-
glish to target languages for some (200 samples) of
the data in the 1.2% zero-shot setting to show the
effectiveness of our proposed language adaption
method; we denote it as 1.2% few-shot. (iii) we
also report our co-training method’s performance
using full English training dataset from XNLI and

2https://registry.opendata.aws/
amazon-reviews-ml/

3https://cims.nyu.edu/~sbowman/xnli/

https://registry.opendata.aws/amazon-reviews-ml/
https://registry.opendata.aws/amazon-reviews-ml/
https://cims.nyu.edu/~sbowman/xnli/
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Setting D Size U Size Dbi Size

MARC 1.2% zero-shot 2000 120,000 0
MARC 1.2% few-shot 2000 120,000 200
MARC 100% zero-shot 160,000 640,000 0

XNLI 1.2% zero-shot 5000 420,000 0
XNLI 1.2% few-shot 5000 420,000 200
XNLI 100% zero-shot 392,702 1,400,000 0

Table 1: Detail numbers of labeled data size and unla-
beled data size for different experiment settings.

MARC, which we denote as 100% zero-shot. The
details of the settings are shown in Table 1

Multilingual Pre-trained Model In the experi-
ments, we consider two multilingual language mod-
els as f lm

θ : mBERT4 (Devlin et al., 2019) and XLM-
R5 (Conneau et al., 2020). We use base versions for
both mBERT and XLM-R. We use LaBSE6 (Feng
et al., 2020) as the multilingual embedding model
f emb
θ in the co-training framework.

Baselines. We compare our co-training method
with self-training (Dong and de Melo, 2019). In-
stead of using multilingual embedding model to
generate pseudo label for f lm

θ , self-training uses
f lm
θ ’s own prediction on the unlabeled data to ob-

tain training data with pseudo labels. We also com-
pare our language adaption method with translate-
train on mBERT and XLM-R.

Training Details We use the AdamW
(Loshchilov and Hutter, 2019) optimizer with
0.00005 initial learning rate, 0.01 weight decay
rate, and a linear learning rate scheduler for all
our experiments. We use a batch size of 16 and a
max sequence length of 128 when fine-tuning on
both MARC and XNLI datasets. We fine-tune five
epochs on XNLI, and we fine-tune for two epochs
on MARC.

Co-training We have a pre-defined threshold t.
During each iteration of the co-training, we ran-
domly choose 1

3n pseudo labels from qualified can-
didates (pseudo labels with confidence score larger
than t), where n is the raw size of labeled data.
If the amount qualified candidates amounts is less
than 1

3n, we then choose all the qualified candi-
dates.

4https://github.com/google-research/
bert/blob/master/multilingual.md

5https://github.com/pytorch/fairseq/
tree/master/examples/xlmr

6https://tfhub.dev/google/LaBSE/1

Figure 3: Accuracy after each iteration during self-
training and co-training for LaBSE and mBERT.

4.3 Results and Analysis

For evaluation, we report the results on the entire
test sets of MARC and XNLI.

4.3.1 MARC
Table 2 shows the results on MARC measured
by accuracy. We can see that both self-training
and co-training methods can use unlabeled data
to improve the model’s performance. Compared
to self-training, co-training can further enhance
the model’s performance. We observe that under
1.2% zero-shot setup, the improvement from self-
training is minor. However, our co-training can still
learn better knowledge from LaBSE. On average,
co-training outperforms self-training by 12% and
2.4% for mBERT and XLM-R, respectively.

To show that the multilingual embedding model
and multilingual LM are complementary to each
other, we report the accuracy after each iteration
during co-training and self-training for mBERT and
LaBSE under the 1.2% zero-shot setup in Fig. 3.
Although LaBSE outperforms mBERT by a large
margin (18%), it can still learn more useful informa-
tion from mBERT than from itself in self-training,
as it gets about 1% gains in co-training compared
to self-training. On the full (100%) setup, our
co-training method on average gives 8% gain for
mBERT and 1.1% for XLM-R compared to their
respective fine-tuning versions.

Finally, under the 1.2% few-shot setup (i.e.,
with translation data), our language adaptation
method improves mBERT by 0.9% on average and
is also 0.4% better than XLM-R. We also demon-
strate that our language adaptation method and co-
training framework can be combined to further im-
prove mBERT’s performance by 5.1% and improve
XLM-R by 1.7% on average, respectively.

https://github.com/google-research/bert/blob/master/multilingual.md
https://github.com/google-research/bert/blob/master/multilingual.md
https://github.com/pytorch/fairseq/tree/master/examples/xlmr
https://github.com/pytorch/fairseq/tree/master/examples/xlmr
https://tfhub.dev/google/LaBSE/1
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Model de en fr ja zh avg

Zero-shot Cross-lingual Transfer (1.2%)

mBERT 0.712 0.816 0.540 0.738 0.578 0.670
+ self-training 0.756 0.846 0.566 0.749 0.506 0.685
+ co-training 0.827 0.849 0.750 0.847 0.752 0.805

XLM-R 0.886 0.897 0.809 0.874 0.880 0.869
+ self-training 0.866 0.899 0.809 0.871 0.867 0.863
+ co-training 0.901 0.899 0.839 0.906 0.888 0.887

Zero-shot Cross-lingual Transfer (100%)

mBERT 0.861 0.922 0.741 0.876 0.697 0.819
+ self-training 0.832 0.927 0.762 0.858 0.773 0.830
+ co-training 0.922 0.929 0.854 0.921 0.870 0.899

XLM-R 0.933 0.938 0.861 0.929 0.912 0.915
+ self-training 0.941 0.945 0.846 0.936 0.918 0.917
+ co-training 0.941 0.943 0.882 0.941 0.925 0.926

Few-shot Cross-lingual Transfer (1.2%)

mBERT 0.784 0.832 0.677 0.798 0.695 0.757
+ lang. adaptation 0.783 0.840 0.683 0.809 0.714 0.766
+ lang. adaptation & co-training 0.828 0.850 0.739 0.851 0.742 0.802

XLM-R 0.899 0.898 0.831 0.895 0.887 0.882
+ lang. adaptation 0.905 0.909 0.832 0.902 0.881 0.886
+ lang. adaptation & co-training 0.918 0.915 0.849 0.913 0.897 0.899

Table 2: MARC accuracy score for English (en), French (fr), German (de), Chinese (zh), Japaneses (ja). We report
the mean accuracy running on three different random seeds

Model en ur vi es hi fr sw bg de ar el ru th zh tr avg

Zero-shot Cross-lingual Transfer (1.2%)

mBERT 0.653 0.455 0.501 0.545 0.463 0.541 0.424 0.507 0.525 0.482 0.495 0.509 0.342 0. 481 0.467 0.493
+ self-training 0.687 0.475 0.519 0.574 0.492 0.600 0.469 0.548 0.572 0.511 0.517 0.553 0.343 0.504 0.481 0.523
+ co-training 0.694 0.514 0.562 0.624 0.521 0.625 0.468 0.576 0.602 0.555 0.576 0.591 0.346 0.562 0.542 0.557

XLM-R 0.658 0.502 0.575 0.613 0.531 0.610 0.522 0.580 0.589 0.529 0.571 0.557 0.527 0.523 0.542 0.568
+ self-training 0.704 0.554 0.641 0.665 0.572 0.660 0.565 0.636 0.649 0.578 0.629 0.625 0.569 0.592 0.609 0.617
+ co-training 0.713 0.568 0.652 0.672 0.582 0.677 0.581 0.656 0.653 0.614 0.640 0.646 0.615 0.615 0.630 0.634

Zero-shot Cross-lingual Transfer (100%)

mBERT 0.807 0.587 0.718 0.675 0.667 0.611 0.563 0.627 0.640 0.526 0.691 0.659 0.355 0.619 0.734 0.632
+ self-training 0.814 0.602 0.732 0.691 0.697 0.630 0.585 0.643 0.667 0.531 0.705 0.678 0.349 0.639 0.744 0.647
+ co-training 0.814 0.604 0.731 0.698 0.708 0.659 0.578 0.650 0.699 0.544 0.700 0.677 0.352 0.640 0.763 0.655

XLM-R 0.836 0.651 0.745 0.778 0.689 0.772 0.653 0.767 0.775 0.741 0.770 0.752 0.707 0.727 0.716 0.734
+ self-training 0.838 0.646 0.753 0.780 0.685 0.771 0.666 0.769 0.759 0.702 0.751 0.745 0.713 0.729 0.725 0.736
+ co-training 0.843 0.640 0.751 0.798 0.701 0.786 0.683 0.787 0.775 0.741 0.770 0.768 0.724 0.753 0.730 0.751

Few-shot Cross-lingual Transfer (1.2%)

mBERT 0.623 0.504 0.551 0.535 0.540 0.568 0.495 0.511 0.525 0.427 0.552 0.532 0.338 0.491 0.570 0.518
+ lang. adaptation 0.646 0.511 0.564 0.544 0.552 0.569 0.509 0.517 0.533 0.451 0.561 0.543 0.342 0.514 0.577 0.527
+ lang. adaptation & co-training 0.668 0.525 0.598 0.625 0.546 0.619 0.527 0.600 0.604 0.556 0.586 0.587 0.547 0.570 0.578 0.582

XLM-R 0.643 0.527 0.589 0.606 0.554 0.607 0.523 0.601 0.602 0.578 0.580 0.595 0.523 0.562 0.577 0.578
+ lang. adaptation 0.521 0.580 0.619 0.559 0.614 0.537 0.597 0.597 0.597 0.574 0.589 0.593 0.559 0.586 0.574 0.582
+ lang. adaptation & co-training 0.726 0.630 0.646 0.649 0.645 0.650 0.604 0.655 0.654 0.634 0.649 0.626 0.537 0.642 0.664 0.641

Table 3: XNLI accuracy for English (en), French (fr), Spanish (es), German (de), Greek (el), Bulgarian (bg),
Russian (ru), Turkish (tr), Arabic (ar), Vietnamese (vi), Thai (th), Chinese (zh), Hindi (hi), Swahili (sw) and Urdu
(ur). We report the mean accuracy running on three different random seed.

4.3.2 XNLI

Table 3 shows the results in accuracy of the ex-
periments on XNLI. Overall we observe that our
model outperforms the baselines on almost all 15
test languages in the three experimental setups.

Under the 1.2% zero-shot setup, our co-training
method gives a sizeable improvement of 6.4% and
6.6% for mBERT and XLM-R, respectively, com-
pared to their fine-tuning versions. Our co-training
method also gives an average increase of 3.4% and
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Model de en fr ja zh avg

Few-shot Cross-lingual Transfer (1.2%)

mBERT + lang. adaptation 0.795 0.838 0.687 0.806 0.712 0.767
- SA 0.790 0.838 0.676 0.811 0.697 0.762
- LA (Dbi) 0.783 0.818 0.686 0.789 0.691 0.753
- LA (D) 0.784 0.827 0.677 0.797 0.719 0.759
- LA (D ∪Dbi) 0.787 0.818 0.678 0.789 0.672 0.752

XLM-R + lang. adaptation 0.905 0.909 0.842 0.899 0.882 0.887
- SA 0.906 0.904 0.841 0.899 0.880 0.886
- LA (Dbi) 0.901 0.905 0.826 0.899 0.884 0.883
- LA (D) 0.898 0.903 0.828 0.898 0.878 0.881
- LA (D ∪Dbi) 0.898 0.900 0.826 0.8925 0.880 0.879

Table 4: Ablation study on the MARC dataset. - SA refers to the the model variant without the semantic alignment objective
based on the translation dataDbi. - LA(Dbi) refers to the variant that uses SA and LA(D) (recall the full model usesLA(D∪Dbi)).
- LA(D) refers to the variant that uses SA and LA(Dbi). - LA(D ∪Dbi) refers to the variant that uses only SA.

1.7% on self-training. Specifically, we observe
over 2% gain for ur, bg, ar, th, zh and tr when we
compare our co-training with self-training.

At the full (100%) setup, our co-training method
yields an average gain of 2.3% for mBERT and
1.7% for XLM-R compared to their respective fine-
tuning versions. This shows that even with a large
amount of labeled data from the source language,
the model can still benefit from multilingual em-
bedding model through our co-training method.

We also show the importance of target language
data in our experiment by adding a small num-
ber (200 in our case) of translation pairs in the
Few-shot Cross-lingual Transfer (1.2%) setting.
The traditional translate-train method can give
mBERT and XLM-R 2.5% and 1% average gains
over all languages, respectively. We further im-
prove this gap to 3.4% and 1.4% by adopting lan-
guage adaptation. Similar to the experimental re-
sults on MARC, combining language adaption and
co-training method, we achieve the best perfor-
mance in this setup.

4.4 Ablation

To better understand the contribution from differ-
ent optimization objectives, we perform an ablation
study on the MARC dataset by ablating one com-
ponent at a time from the complete model.

From the results in Table 4, we observe that
generally removing one of the objectives would
reduce the performance on average, indicating that
all objectives contribute to the overall performance.

When we remove the semantic alignment loss
(- SA), we observe an accuracy drop of 0.5% in
mBERT compared to the full system. The accuracy

drop for XLM-R is 0.1%.
Removing label alignment loss on the source

language data (-LA(D)) leads to ∼0.7% accuracy
drop across the board. Removing label alignment
on translation data (-LA(Dbi) leads to 1.4% accu-
racy drop on mBERT and 0.4% accuracy drop on
XLM-R. This observation shows positive effects of
the label alignment loss on both source language
data D and target language translation data Dbi.

5 Conclusion & Future Work

In this paper, we have proposed an effective fine-
tuning method to improve cross-lingual transfer
capability of multilingual pre-trained LMs. In con-
trast to previous work, our proposed co-training
framework can make multilingual pre-trained LMs
learn cross-lingual semantic relationships from the
multilingual embedding model. Moreover, we pro-
pose a novel language adaptation approach based
on contrastive learning. When there exist transla-
tion pairs within the training dataset, our language
adaption approach can better model the semantic re-
lationship across languages on translation pairs for
effective fine-tuning. Extensive experiments have
been conducted on the XNLI and Amazon multilin-
gual review dataset, which show that our method
outperforms previous methods on both zero-shot
transfer and few-shot transfer.

For future studies, we will investigate the data
selection policies for the co-training methods. In
some cases, the distribution of the labeled data
could be different from that of the unlabeled data. It
may yield a sampling bias in the training iterations
of co-training that shifts towards the unlabeled set,
thus hurting the model performance. A more robust
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data selection policy could solve this problem.
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