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Abstract

We present a systematic study on multilingual
and cross-lingual intent detection (ID) from
spoken data. The study leverages a new re-
source put forth in this work, termed MINDS-
14, a first training and evaluation resource for
the ID task with spoken data. It covers 14 in-
tents extracted from a commercial system in
the e-banking domain, associated with spoken
examples in 14 diverse language varieties. Our
key results indicate that combining machine
translation models with state-of-the-art multi-
lingual sentence encoders (e.g., LaBSE) yield
strong intent detectors in the majority of tar-
get languages covered in MINDS-14, and of-
fer comparative analyses across different axes:
e.g., translation direction, impact of speech
recognition, data augmentation from a related
domain. We see this work as an important step
towards more inclusive development and eval-
uation of multilingual ID from spoken data,
hopefully in a much wider spectrum of lan-
guages compared to prior work.

1 Introduction and Motivation

A crucial functionality of Natural Language Un-
derstanding (NLU) components in task-oriented
dialogue systems is intent detection (ID) (Young
et al., 2002; Tiir et al., 2010; Coucke et al., 2018).
In order to understand the user’s current goal, the
system must classify their utterance into several
predefined classes termed intents."

Scaling dialogue systems in general and intent
detectors in particular to support a multitude of new
dialogue tasks and domains is a challenging, time-
consuming, and resource-intensive process (Wen
et al., 2017; Rastogi et al., 2019). This problem
is further exacerbated in multilingual setups: it is

*Both authors equally contributed to this work.

'For instance, in the banking domain utterances referring
to cash withdrawal or currency exchange rates should be
classified to the respective intent classes (Casanueva et al.,

2020). An error in intent detection is typically the first point
of failure for any task-oriented dialogue system.

extremely expensive to annotate sufficient task data
in each of more than 7,000 languages (Bellomaria
et al., 2019; Xu et al., 2020). As a consequence,
the current ID work has been largely constrained
only to English, and standard ID benchmarks also
exist only in English (Hemphill et al., 1990; Lar-
son et al., 2019; Liu et al., 2019b; Casanueva et al.,
2020; Larson et al., 2020, inter alia). The need to
widen the reach of dialogue technology to other
languages has been recognised only recently, and
thus even text-based multilingual ID datasets are
still few and far between: Schuster et al. (2019)
provide NLU data in three languages (English,
Spanish, Thai), while a more recent MultiATIS++
dataset (Xu et al., 2020) manually translates the
ATIS dataset (Hemphill et al., 1990) from English
to 8 target languages, extending the work of Upad-
hyay et al. (2018) which translated portions of the
English ATIS data to Hindi and Turkish.?

Despite these efforts, there are still prominent
gaps remaining: 1) a large number of (even major)
languages is still uncovered, 2) there are no mul-
tilingual data for specialized and well-defined do-
mains such as e-banking, and 3) most importantly,
all intent detection datasets to date are text-based.
In other words, current work completely ignores
the fact that many conversational systems are in-
herently voice-based, and that telephony quality
and errors in automatic speech recognition (ASR)
even prior to intent detection may have fundamen-
tal impact on the final intent detection performance.
Consequently, the impact of ASR on multilingual
intent detection has not been studied before.

Contributions. Inspired by the current gaps, 1)
we present the MINDS-14 dataset (Multilingual
Intent Detection from Speech), a first multilingual

Further, reaching beyond the English language, other
languages often exhibit different typological (e.g., morphosyn-
tactic) and lexical properties, potentially requiring addi-
tional language-specific adaptations of English-trained models
(Ponti et al., 2019; Hedderich et al., 2021).
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evaluation resource for ID from spoken data. It
originates from the use of a commercial voice as-
sistant and real-life industry needs: it covers 14
intents in the banking domain in 14 different lan-
guage varieties, making it the most comprehensive
multilingual ID dataset to date. 2) We present a
systematic evaluation and comparison of current
state-of-the-art multilingual and cross-lingual ID
models, which rely on machine translation and cur-
rent cutting-edge multilingual sentence encoders,
multilingual USE (Chidambaram et al., 2019) and
LaBSE (Feng et al., 2020). 3) We provide addi-
tional analyses to further profile the potential and
current ID gaps in multilingual voice-based con-
texts, including augmentation with data from a sim-
ilar domain, target-only versus multilingual train-
ing, and aggregations of n-best ASR hypotheses.
Our results demonstrate that strong ID results
can be achieved for all languages represented in
MINDS-14, but we also indicate the crucial im-
portance of in-domain model fine-tuning and few-
shot learning, reporting strong gains over zero-shot
transfer models. In hope to motivate and inspire
further work on multilingual and voice-based ID
and future extensions to lower-resource languages,
we release MINDS-14. The release includes the
original speech data as well as the ASR data, and
is available online at: s3://poly-public-data/
MInDS-14/MInDS-14.zip.

2 MINDS-14: Dataset Collection

Final Dataset and Languages Covered. The final
MINDS-14 dataset covers 14 intents in the banking
domain with accompanying spoken and “ASR-ed”
text utterances. The intents were sampled from
a set of 90+ fine-grained intents used by a com-
mercial banking voice assistant, so that all intents
have a clear and non-overlapping semantics, and
are easy to understand by non-experts, i.e., crowd-
sourcers. Around 50 examples for all 14 intents are
collected in 14 different language varieties, with
the exact numbers available in the appendix. The
language set includes a) three varieties of English:
British (EN-GB), US (EN-US), and Australian (EN-
AU); b) Germanic and Romance Western European
languages: French (FR), Italian (IT), Spanish (ES),
Portuguese (PT), German (DE), and Dutch (NL);
¢) Slavic: Russian (RU), Polish (PL), and Czech
(cs); and d) Asian languages: Korean (KO) and
Chinese (zH). The choice of languages was driven
by (a) the number of native speakers and (b) the

number of participants on the used crowdsourc-
ing websites, (¢) combined with some typological
diversity (Ponti et al., 2019).

Disclaimer: We acknowledge that our language
sample is typologically less diverse than in some re-
cent evaluation sets for text-based multilingual lan-
guage understanding (Ponti et al., 2020; Hu et al.,
2020): we consider the proposed dataset as only a
first step towards more equitable research in this
area, and our goal in this work was establishing
and validating the data collection and benchmark-
ing methodology with higher-resource languages
before extending the focus to lower-resource ones.

Spoken Data Collection. The spoken data has
been collected via crowdsourcing, relying on the
Prolific platform (www.prolific.co/). We
have experimented with two different data collec-
tion protocols, which eventually yield very similar
data quality. With both protocols, human subjects
are first provided with the particular intent class,
a description of the intent, and three examples for
the intent class. The task is then to provide new
spoken utterances associated with the intent class.

As the first collection protocol, we implement a
full-fledged phone-based voice assistant that par-
ticipants could call and talk to. This approach
makes the data collection setup as realistic as pos-
sible: it is affected by the (phone) audio quality
and directly captures the way people would speak
on the phone. IT data and parts of DE, PT, PL,
and EN-AU data have been collected via this ap-
proach. The second, simpler study design instead
relies on an online recording software. We use
Phonic (www . phonic.ai/)to collect the record-
ings, where data collection for each intent class is
set up as a dedicated task on Prolific. We collect
all the other data items via this approach.’ #

3In order to ensure native pronunciation data quality with
both data collection protocols, the pool of participants has
been restricted to native speakers from the relevant regions. A
detailed task description with a consent form was provided to
all human participants: it informed the participants that the
results of the data collection will be used for experimental
research purposes, and that their participation is voluntary and
will remain fully anonymous (PolyAl is ISO27k-certified and
fully GDPR-compliant). The participants were offered a fair
compensation, pro rata around the average hourly wage in the
UK. After the initial collection step, the data were additionally
inspected and cleaned manually to remove empty, nonsensical,
and extremely long utterances. We also manually removed all
personal names and other content that might contain private
or sensitive information.

*The dataset is open-sourced to the research community
to facilitate the progress of multilingual NLU research, there
are no IP-related issues.
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3 Multilingual ID: Methodology

A standard transfer learning paradigm (Ruder et al.,
2019) fine-tunes a pretrained language model such
as BERT (Devlin et al., 2019) or RoBERTa (Liu
et al., 2019a) on the annotated task data. For the
intent classification task in particular, Casanueva
et al. (2020) have recently shown that full fine-
tuning of the large pretrained model is not needed
at all. In contrast, they propose a more efficient
feature-based approach to intent detection. Here,
fixed universal sentence encoders such as USE (Cer
etal., 2018; Chidambaram et al., 2019) or ConveRT
(Henderson et al., 2020) are used “off-the-shelf”
to encode utterances, and a standard multi-layer
perceptron (MLP) classifier is then learnt on top of
the sentence encodings.

Casanueva et al. (2020) demonstrate that the
feature-based approach to intent classification
yields performance on-par with the full-model fine-
tuning, while offering improved training efficiency.
Therefore, due to the large number of executed
experiments and comparisons in this work, and pre-
liminary results which corroborated the findings
from prior work (Casanueva et al., 2020), we opt
for this efficient approach to ID.

We evaluate two widely used state-of-the-art
multilingual sentence encoders, but remind the
reader that decoupling MLP from the encoder
allows for a wider exploration of other avail-
able multilingual sentence encoders (Reimers and
Gurevych, 2020; Litschko et al., 2021, inter alia).
In what follows, we provide only brief descriptions
of each encoder in our evaluation; for more details
we refer the reader to the original work.

mUSE (Yang et al., 2020) is a multilingual version
of the Universal Sentence Encoder (USE) model
for English (Cer et al., 2018). It relies on a stan-
dard dual-encoder neural framework (Henderson
et al., 2019; Reimers and Gurevych, 2019; Humeau
et al., 2020), features 16 languages, and learns a
shared cross-lingual semantic space via translation-
bridging tasks (Chidambaram et al., 2019).

LaBSE. Language-agnostic BERT Sentence Em-
bedding (LaBSE) (Feng et al., 2020) adapts pre-
trained multilingual BERT (mBERT) (Devlin et al.,
2019) using a dual-encoder framework (Yang et al.,
2019) with larger embedding capacity (i.e., it pro-
vides a shared multilingual vocabulary of 500k sub-
words).> LaBSE is the current state-of-the-art mul-

3In addition to the multi-task training objective of mUSE,

tilingual encoder, and supports 109 languages.

We keep pretrained sentence encoders fixed dur-
ing MLP-based ID training. Formally, we pass
a user utterance, that is, a sequence of input to-
kens © = (=g, x1,...,o7) through an encoder
model 0,,,., producing the sequence encoding s, =
Ocnc() = Oene((x0, 21, ..., x7)).

ID Model. For ID, we pass the sentence encoding
5z through a 2-layer MLP. We first apply dropout
(Srivastava et al., 2014) on the encoding, followed
by one layer with ReLU as nonlinear activation
(Nair and Hinton, 2010), yielding the hidden repre-
sentation h = ReLU (W14, + b1), where Wy is a
trainable weight matrix, sg, is the encoding after
applying dropout, and b; denotes bias parameters.

We then detect the intent using a sigmoid (o) acti-
vation and softmax: pjntent = softmaz(o(Wah +
ba)), where W3 is another trainable weight matrix,
and bo are bias parameters.

4 Experimental Setup

Speech Transcription. For all language variants,
we run the respective Google ASR model® to obtain
n-best written transcriptions (i.e., ASR hypotheses).
Unless noted otherwise, we work with the top (i.e.,
1-best) transcription.

Auxiliary English Data. We also conduct experi-
ments where we leverage additional English data
from the related banking domain (termed AUX-EN
henceforth). It comprises a total of 660 English ut-
terances, extracted from a commercial voice assis-
tant, and annotated with the same 14 intent classes.
It allows us to run cross-lingual transfer and train-
ing data augmentation experiments and analyses
later in §5. It also helps us establish the extent to
which related-domain data can be reused to boot-
strap a conversational system prior to any in-task
data collection efforts.

Monolingual versus Multilingual Training. We
then train and run the ID models from §3 in the
following setups. First, in translate-to-EN, for all
“non-English” languages, we translate the transcrip-
tions into English via Google Translate (GT). This
effectively enables us to train and evaluate monolin-
gual models directly in English (Hu et al., 2020).”

LaBSE uses standard self-supervised objectives used in pre-
training of mBERT and XLM: masked and translation lan-
guage modeling (Conneau and Lample, 2019).
bcloud. google.com/speech-to-text
"MT-based approaches often provide very competitive
transfer performance, as validated in dialogue tasks (Xu et al.,
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translate-to-EN target-only multilingual
aux-o no-aux standard  standard — aux-o aux-o standard  standard  standard
Language LaBSE LaBSE mUSE LaBSE mUSE LaBSE mUSE LaBSE LaBSE
Cs 68.0 95.9 90.1 95.7 (34.4) 63.6 (69.6) 94.9 91.7
DE 69.6 95.6 91.0 95.0 51.1 53.6 89.2 93.2 94.2
EN-AU 77.1 95.9 93.4 94.4 61.2 74.8 96.1 93.7 94.5
EN-GB 73.6 96.4 91.6 94.7 55.8 75.3 94.1 96.5 94.4
EN-US 76.7 95.1 97.1 95.7 57.8 80.1 94.6 95.1 95.3
ES 68.7 95.8 95.8 92.2 49.6 62.7 87.5 91.9 91.5
FR 75.3 97.1 93.1 94.3 62.4 62.5 92.6 93.1 92.6
IT 71.4 97.4 934 95.8 56.3 65.6 85.8 96.2 92.3
KO 73.5 94.0 86.3 91.1 53.0 65.6 84.6 91.4 90.5
NL 67.7 95.8 94.0 92.4 53.8 58.1 85.6 91.0 96.5
PL 76.6 93.7 81.9 94.9 51.3 45.7 80.3 89.2 93.8
PT 69.7 97.5 90.5 94.4 55.3 53.1 96.8 95.3 92.7
RU 68.0 95.7 93.7 95.1 43.1 68.9 88.4 93.6 95.2
ZH 72.5 96.1 86.6 95.6 532 62.7 81.6 93.0 90.8
Average 72.0 95.9 91.3 94.4 52.7 63.7 87.6 934 93.3

Table 1: Main results (Accuracy x 100) on the MINDS- 14 benchmark, with different training and evaluation setups
(see §4). aux-o refers to the aux-only training setup. mUSE was not trained with any Czech data.

The second approach works directly in the native
language of the transcriptions, and we discern be-
tween two variants: a) target-only uses only the
data available in the current language to train the
ID model; b) multilingual setup leverages the mul-
tilinguality of mUSE and LaBSE and trains on the
transcribed data of all languages, while we evaluate
on the test data of each individual language.

Training and Evaluation Data and Setups. We
can also translate the auxiliary AUX-EN dataset (see
§2) to other languages via Google Translate, yield-
ing AUX-TARGET data. We then discern between
the following training data setups. In a) aux-only
we use only the AUX-TARGET (or AUX-EN) data
to train the ID models; this setup allows us to es-
timate the ID performance before any additional
in-language data collection. In b) the standard
setup, we do 3-fold cross-validation, where we ran-
domly split the transcribed data (translate-to-EN,
target-only, or multilingual) into 60% training data
and 40% test data, and always add the auxiliary
data as the training subset.> We also evaluate the
¢) no-aux setup, where we train only on the 60%
of the in-domain data, without any auxiliary data.
A simple illustration of these different setups is
provided in Figure 3 in the Appendix.

Note that we always use cross-validation for
all setups, and always test on randomly generated

2020), as well as in other language understanding tasks (Hu
et al., 2020; Ponti et al., 2021).

81n the aux-only variant we still sample 40% of the entire
dataset for testing. For multilingual training, in order to main-
tain the same multilingual training set for all test languages,
we also sample 60% of all transcribed data in all languages,
and use that plus all AUX-TARGET data for training, and the
remaining 40% in each language for testing.

splits of the collected data of the same size in order
to ensure a fair comparison across the setups.

ID: Hyperparameters. We train with Adam
(Kingma and Ba, 2015) relying on the learning rate
of 0.001, in batches of size 32, for 10,000 steps.
The dropout rate is set to 0.3. We report accuracy
as the main evaluation measure for all experimental
runs, always averaged over 3 independent runs.

5 Results and Discussion

The main results are summarised in Table 1, while
additional per-intent are available in the Appendix.
First, the results confirm LaBSE as a stronger mul-
tilingual encoder across the board, extending its
superiority over mUSE from cross-lingual sentence
matching tasks (Feng et al., 2020) also to the multi-
lingual ID task. More importantly, the results indi-
cate very high absolute accuracy scores for all tar-
get languages, confirming the validity of MT-based
approaches to multilingual ID, at least for major
languages with developed MT. For instance, the
results for all languages are > 95% (except for KO
and PL) with LaBSE in the no-aux translate-to-EN
setup. In other words, we empirically demonstrate
the viability of the simple “ASR-then-translate” ap-
proach when dealing with voice-based input, at
least for MINDS-14 languages, all considered rea-
sonably high-resource in NLP terms.’

Our findings suggest that even this simple, easy-
to-build, and efficient sentence encoder-based ap-
proach may offer competitive ID from spoken data

"While performing on-the-fly translation naturally in-
creases the system’s latency, we have verified that this in-
crease does not hinder nor substantially impact the system’s
production value.
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Figure 1: Results with added training data from the
ASR n-best list. Target-only standard; LaBSE.
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Figure 2: Results when training with translations ob-
tained from two translation services: Google Translate
and DeepL. Translate-to-EN standard setup.

in different languages. Future work will investigate
the extent of performance drops once the focus
is shifted to lower-resource languages where rea-
sonably performing ASR and MT models cannot
be guaranteed (Conneau et al., 2020; Pratap et al.,
2020), as well as to finer-grained intent classes and
other domains.

Different Setups. A comparison of different se-
tups reveals that even small in-domain training data
(without any external data augmentation, the no-
aux setup) are sufficient to learn strong intent de-
tectors. In fact, the best overall results are achieved
with the no-aux translate-to-EN setup with LaBSE.
The aux-only setup fall substantially behind in-
domain trained models, validating the crucial im-
portance of collecting additional in-domain exam-
ples: using even the small portions of fully in-
domain training data to boost performance. Lim-
ited usefulness of aux-en data, beyond a slight do-
main and style mismatch, may also be attributed to
the actual data content: it covers very-specific cases
with repetitive sentences, which may also misguide
classifiers trained with such repetitive data.

The peak scores on average are achieved in the
“translate-to-EN” scenario. However, the differ-
ences when using LaBSE are slight, and there are
some languages with higher scores achieved in the
other two scenarios. '’

Impact of ASR. We also evaluate whether includ-
ing additional ASR hypotheses might make intent
detectors more robust: adding more transcriptions
from the n-best list may be seen as a form of data
augmentation. The results are provided in Fig-

Interestingly, we do not observe any boosts on average

with data augmentation in the multilingual setup. This war-
rants further investigation in future work.

ure 1.!" The scores suggest that relying on more
transcriptions (n = 5 and n = 10) does yield
slight gains on average, but the trend is not present
in all the test languages (cf., Spanish). This might
stem from the fact that the transcriptions are highly
similar, and there is limited additional information
available down the n-best ASR list.

Impact of Additional Translations. Another ap-
proach to improving ID robustness is generating
more than one (machine) translation per transcrip-
tion. We achieve that by passing each transcription
through GT plus another translation service: DeepL.
(www .deepl.com/). The results are provided in
Figure 2. They indicate that this “augmentation via
translation” step indeed yields slightly improved
ID: we hit 1-2% performance gains with both en-
coders (cf., Figure 2 and Table 1) compared to
using only 1 translation per transcription.

6 Conclusion and Future Work

We have presented a first study focused on mul-
tilingual and cross-lingual intent detection (ID)
from spoken data. To this end, we have presented
MINDS-14, a first training and evaluation resource
for the task with spoken data, covering 14 in-
tents extracted from a commercial system in the
e-banking domain, with spoken examples avail-
able in 14 language varieties. Our key results have
revealed that it is possible to build accurate ID mod-
els in all target languages relying on a simple yet
efficient paradigm based on current state-of-the-
art multilingual sentence encoders such as LaBSE
and machine translation. In future work we plan
to expand the MINDS-14 dataset and put more
focus on similar evaluations for truly low-resource
languages, where reliable ASR, MT, and even sen-
tence encoders cannot be guaranteed. In the long
run, we hope that our initiative will foster future
developments and evaluation of multilingual ID
from spoken data, as one of the first steps towards
truly multilingual voice-based dialogue systems.
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"For test examples we always take the top transcription.
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A Appendix

A.1 List of Intents and Per-Intent Scores

BUSINESS LOAN 98.5
FREEZE 94 4
ABROAD 96.6
APP ERROR 94.6
DIRECT DEBIT 95.2
CARD ISSUES 94.2
JOINT ACCOUNT 99.3
BALANCE 96.5
HIGH VALUE PAYMENT  95.6
ATM LIMIT 96.9
ADDRESS 98.9
PAY BILL 92.0
CASH DEPOSIT 93.9
LATEST TRANSACTIONS 91.3

Along with the list of intent classes, we also
provide the scores (Accuracy x 100), averaged over
all language varieties, per each individual intent
class. The scores are available in the second col-
umn after each intent label. The scores are again
averages over 3 runs, and are obtained with the
highest-performing model variant from Table 1:
no-aux with LaBSE in the “translate-to-EN” setup.
A general finding is that, while there does exist
a certain variance across some intents (cf., LAT-
EST TRANSACTIONS versus ADDRESS or JOINT
ACCOUNT), we observe a very high average perfor-
mance for each intent classs.

A.2 Number of Examples

Language Number of Examples
CS 574
DE 611
EN-AU 654
EN-GB 592
EN-US 563
ES 486
FR 539
IT 696
KO 592
NL 654
PL 562
PT 604
RU 539
ZH 502

Table 2: Number of examples per language.

A.3 Performance Variance

We remind the reader that the reported scores are
the average across 3 runs, and further note that
performance may vary between different runs with
the same hyperparameters, which is a known prob-
lem when fine-tuning large pretrained models with
small amounts of task data (Phang et al., 2018;
Ruder, 2021). For instance, variance for the target-
only standard setup with LaBSE is at 3.8 accuracy
points on average. This is also the reason why we
have mostly focused on high-level trends in the dis-
cussion of the results in the main paper, and why
we always average the scores over several indepen-
dent runs with the same hyperparameters (Dodge
et al., 2019).

A.4 Training and Evaluation Data and
Scenarios: An Illustration

Target Translate to
only English
ASR | == translate | ——
(RN EE
speech data transcribed translated
—— | translate | ——
.‘7
aux-target

aux-en

Figure 3: Illustration of different training and evalua-
tion data and scenarios.
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