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Abstract

Simultaneous machine translation (SiMT) gen-
erates translation before reading the entire
source sentence and hence it has to trade off
between translation quality and latency. To
fulfill the requirements of different translation
quality and latency in practical applications,
the previous methods usually need to train
multiple SiMT models for different latency
levels, resulting in large computational costs.
In this paper, we propose a universal SiMT
model with Mixture-of-Experts Wait-k Policy
to achieve the best translation quality under
arbitrary latency with only one trained model.
Specifically, our method employs multi-head
attention to accomplish the mixture of experts
where each head is treated as a wait-k expert
with its own waiting words number, and given
a test latency and source inputs, the weights
of the experts are accordingly adjusted to pro-
duce the best translation. Experiments on three
datasets show that our method outperforms all
the strong baselines under different latency, in-
cluding the state-of-the-art adaptive policy.

1 Introduction

Simultaneous machine translation (SiMT) (Cho
and Esipova, 2016; Gu et al., 2017; Ma et al., 2019;
Arivazhagan et al., 2019) begins outputting trans-
lation before reading the entire source sentence
and hence has a lower latency compared to full-
sentence machine translation. In practical appli-
cations, SiMT usually has to fulfill the require-
ments with different levels of latency. For exam-
ple, a live broadcast requires a lower latency to
provide smooth translation while a formal confer-
ence focuses on translation quality and allows for
a slightly higher latency. Therefore, an excellent
SiMT model should be able to maintain high trans-
lation quality under different latency levels.

However, the existing SiMT methods, which usu-
ally employ fixed or adaptive policy, cannot achieve
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Figure 1: Performance of wait-k models with differ-
ent ktrain v.s. ktest on IWSLT15 En→Vi SiMT task.
ktrain and ktest mean the number of source tokens to
wait before performing translation during training and
testing, respectively.

the best translation performance under different la-
tency with only one model (Ma et al., 2019, 2020).
With fixed policy, e.g., wait-k policy (Ma et al.,
2019), the SiMT model has to wait for a fixed
number of source words to be fed and then read
one source word and output one target word alter-
nately. In wait-k policy, the number of words to
wait for can be different during training and testing,
denoted as ktrain and ktest respectively, and the
latency is determined by ktest. Figure 1 gives the
performance of the model trained with ktrain un-
der different ktest, and the results show that under
different ktest the SiMT model with the best perfor-
mance corresponds to different ktrain. As a result,
multiple models should be maintained for the best
performance under different latency. With adap-
tive policy, the SiMT model dynamically adjusts
the waiting of source tokens for better translation
by directly involving the latency in the loss func-
tion (Arivazhagan et al., 2019; Ma et al., 2020).
Although the adaptive policy achieves the state-of-
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the-art performance on the open datasets, multiple
models need to be trained for different latency as
the change of model latency is realized by the al-
teration of the loss function during training. There-
fore, to perform SiMT under different latency, both
kinds of methods require training multiple models
for different latency, leading to large costs.

Under these grounds, we propose a universal si-
multaneous machine translation model which can
self-adapt to different latency, so that only one
model is trained for different latency. To this
end, we propose a Mixture-of-Experts Wait-k Policy
(MoE wait-k policy) for SiMT where each expert
employs the wait-k policy with its own number of
waiting source words. For the mixture of experts,
we can consider that different experts correspond to
different parameter subspaces (Zhang et al., 2021),
and fortunately the multi-head attention is designed
to explore different subspaces with different heads
(Vaswani et al., 2017). Therefore, we employ multi-
head attention as the implementation manner of
MoE by assigning different heads with different
waiting words number (wait-1,wait-3,wait-5,· · · ).
Then, the outputs of different heads (aka experts)
are combined with different weights, which are dy-
namically adjusted to achieve the best translation
under different latency.

Experiments on IWSLT15 En→Vi, WMT16
En→Ro and WMT15 De→En show that although
with only a universal SiMT model, our method can
outperform strong baselines under all latency, in-
cluding the state-of-the-art adaptive policy. Further
analyses show the promising improvements of our
method on efficiency and robustness.

2 Background

Our method is based on mixture-of-experts ap-
proach, multi-head attention and wait-k policy, so
we first briefly introduce them respectively.

2.1 Mixture of Experts
Mixture of experts (MoE) (Jacobs et al., 1991;
Eigen et al., 2013; Shazeer et al., 2017; Peng et al.,
2020) is an ensemble learning approach that jointly
trains a set of expert modules and mixes their out-
puts with various weights:

MoE =

n∑
i=1

Gi ·Ei (1)

where n is the number of experts, Ei andGi are the
outputs and weight of the ith expert, respectively.

2.2 Multi-head Attention
Multi-head attention is the key component of the
state-of-the-art Transformer architecture (Vaswani
et al., 2017), which allows the model to jointly
attend to information from different representa-
tion subspaces. Multi-head attention contains h
attention heads, where each head independently
calculates its outputs between queries, keys and
values through scaled dot-product attention. Since
our method and wait-k policy are applied to cross-
attention, the following formal expressions are all
based on cross-attention, where the queries come
from the tth decoder hidden state St, and the keys
and values come from the encoder outputs Z. Thus,
the outputs H̃t

i of the ith head when decoding the
tth target token is calculated as:

H̃t
i = fatt (St,Z,Z;θi)

= softmax

(
StW

Q
i

(
ZWK

i

)>
√
dk

)
ZWV

i

(2)

where fatt (·;θi) represents dot-product attention
of the ith head, WQ

i , WK
i and WV

i are learned
projection matrices,

√
dk is the dimension of keys.

Then, the outputs of h heads are concatenated and
fed through a learned output matrix WO to calcu-
late the context vector Ct:

Ct=MultiHead (St,Z,Z)=
[
H̃t

1,· · ·, H̃t
h

]
WO

(3)

2.3 Wait-k Policy
Wait-k policy (Ma et al., 2019) refers to first wait-
ing for k source tokens and then reading and writ-
ing one token alternately. Since k is input from
the outside of the model, we call k the external
lagging. We define g (t) as a monotonic non-
decreasing function of t, which represents the num-
ber of source tokens read in when generating the
tth target token. In particular, for wait-k policy,
given external lagging k, g (t; k) is calculated as:

g (t; k)=min{k+t−1, |Z|} , t=1, 2,· · · (4)

In the wait-k policy, the source tokens processed
by the encoder are limited to the first g (t; k) tokens
when generating the tth target token. Thus, each
head outputs in the cross-attention is calculated as:

Ht
i = fatt

(
St,Z≤g(t;k),Z≤g(t;k); θi

)
(5)

where Z≤g(t;k) represents the encoder outputs
when the first g (t; k) source tokens are read in.
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The standard wait-k policy (Ma et al., 2019)
trains a set of SiMT models, where each model is
trained through a fixed wait-ktrain and tested with
corresponding wait-ktest (ktest=ktrain). Elbayad
et al. (2020a) proposed multipath training, which
uniformly samples ktrain in each batch during train-
ing. However, training with both ktrain = 1 and
ktrain=∞ definitely make the model parameters
confused between different subspace distributions.

3 The Proposed Method

In this section, we first view multi-head attention
from the perspective of the mixture of experts, and
then introduce our method based on it.

3.1 Multi-head Attention from MoE View
Multi-head attention can be interpreted from the
perspective of the mixture of experts (Peng et al.,
2020), where each head acts as an expert. Thus,
Eq.(3) can be rewritten as:

Ct = MultiHead (St,Z,Z)=
[
H̃t

1,· · ·, H̃t
h

]
WO

=
[
H̃t

1, · · · , H̃t
h

] [
WO

1 , · · · ,WO
h

]>
=

h∑
i=1

H̃t
iW

O
i =

h∑
i=1

1

h
· hH̃t

iW
O
i

=

h∑
i=1

G̃ti · Ẽt
i (6)

where G̃ti =
1

h
, Ẽt

i = hH̃t
iW

O
i (7)

[
WO

1 , · · · ,WO
h

]> is a row-wise block sub-matrix
representation of WO. Ẽt

i is the outputs of the ith

expert at step t, and G̃ti ∈ R is the weight of Ẽt
i.

Therefore, multi-head attention can be regarded as
a mixture of experts, where experts have the same
function but different parameters (Ẽt

i = hH̃t
iW

O
i )

and the normalized weights are equal (G̃ti =
1
h ).

3.2 Mixture-of-Experts Wait-k Policy
To get a universal model which can perform SiMT
with a high translation quality under arbitrary la-
tency, we introduce the Mixture-of-Experts Wait-k
Policy (MoE wait-k) into SiMT to redefine the ex-
perts Ẽt

i and weights G̃ti in multi-head attention
(Eq.(7)). As shown in Figure 2, experts are given
different functions, i.e., performing wait-k policy
with different latency, and their outputs are denoted
as
{
Et
i

}h
i=1

. Meanwhile, under the premise of nor-
malization, the weights of experts are no longer
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Figure 2: The architecture of the mixture-of-experts
wait-k policy. Each expert performs wait-k under dif-
ferent lagging (such as wait-1,wait-3,wait-5,· · · ), and
then their outputs are combined with different weights.

equal but dynamically adjusted according to source
input and latency requirement, denoted as

{
Gti
}h
i=1

.
The details are introduced following.

3.2.1 Experts with Different Functions
The experts in our method are divided into differ-
ent functions, where each expert performs SiMT
with different latency. In addition to the exter-
nal lagging k in standard wait-k policy, we de-
fine expert lagging KMoE=[kE1 , · · · , kEh

], where
kEi is the hyperparameter we set to represent
the fixed lagging of the ith expert. For exam-
ple, for a Transformer with 8 heads, if we set
KMoE = [1, 3, 5, 7, 9, 11, 13, 15], then each expert
corresponds to one head and 8 experts concurrently
perform wait-1, wait-3, wait-5,· · · , wait-15 respec-
tively. Specifically, given KMoE, the outputs Ht

i of
the ith head at step t is calculated as:

Ht
i = fatt

(
St, Z≤min(g(t;kEi),g(t;k))

,

Z≤min(g(t;kEi),g(t;k))
; θi

)
(8)

where g (t; kEi) is the number of source tokens
processed by the ith expert at step t and g (t; k) is
the number of all available source tokens read in at
step t. During training, k is uniformly sampled in
each batch with multipath training (Elbayad et al.,
2020a). During testing, k is the input test lagging.

Then, the outputs Et
i of the ith expert when gen-

erating tth target token is calculated as:

Et
i = hHt

iW
O
i (9)
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3.2.2 Dynamic Weights for Experts
Each expert has a clear division of labor through
expert lagging KMoE. Then for different input and
latency, we dynamically weight each expert with
the predicted

{
Gti
}h
i=1

, where Gti∈R can be con-
sidered as the confidence of expert outputs Et

i. The
factor to predict Gti consists of two components:

• eti: The average cross-attention scores in the
ith expert at step t, which are averaged over
all source tokens read in (Zheng et al., 2019a).

• k: External lagging k in Eq.(8).

At step t, all eti and k are concatenated and fed
through the multi-layer perceptron (MLP) to pre-
dict the confidence score βti of the ith expert, which
are then normalized to calculate the weight Gti:

βti = tanh
(
[et1; · · · ; eth; k]Wi + bi

)
(10)

Gti =
exp(βti)∑h
l=1 exp(β

t
l )

(11)

where Wi and bi are parameters of MLP to predict
Gti. Given expert outputs

{
Et
i

}h
i=1

and weights{
Gti
}h
i=1

, the context vector Ct is calculatas:

Ct =
h∑
i=1

Gti ·Et
i (12)

The algorithm details of proposMoE wait-k pol-
icy are shown in Algorithm 1. At decoding step
t, each expert performs the wait-k policy with
different latency according to the expert lagging
KMoE, and then the expert outputs are dynamically
weighted to calculate the context vector Ct.

3.2.3 Training Method
We apply a two-stage training, both of which apply
multipath training (Elbayad et al., 2020a), i.e., ran-
domly sampling k (k in Eq.(8)) in every batch dur-
ing training. First-stage: Fix the weights Gti equal
to 1

h and pre-train expert parameters. Second-stage:
jointly fine-tune the parameters of experts and their
weights. In the inference time, the universal model
is tested with arbitrary latency (test lagging). In
Sec.5, we compare the proposed two-stage training
method with the one-stage training method which
directly trains the parameters of experts and their
weights together.

We tried the block coordinate descent (BCD)
training (Peng et al., 2020) which is proposed to
train the experts in the same function, but it is not

Algorithm 1: MoE Wait-k Policy
Input :Encoder output Z (incomplete),

Decoder hidden state St,
Expert lagging KMoE,
Test lagging ktest (only in testing)

Output :Context vector Ct

1 if is_Training then // In training
2 k← Sample from( [ 1, 2, · · · , |Z| ] )
3 else // In testing
4 k← ktest
5 end

6 for kEi inKMoE do
7 calculate Z≤min(g(t;kEi),g(t;k))

8 end

9 for i← 1 to h do
10 calculate Et

i according to Eq.(8, 9)
11 calculate Gt

i according to Eq.(10, 11)
12 end
13 calculate Ct according to Eq.(12)

14 Return Ct

suitable for our method, as the experts in MoE wait-
k have already assigned different functions. There-
fore, our method can be stably trained through
back-propagation directly.

4 Related Work

Mixture of experts MoE was first proposed in
multi-task learning (Jacobs et al., 1991; Caruana
et al., 2004; Liu et al., 2018; Ma et al., 2018; Dutt
et al., 2020). Recently, Shazeer et al. (2017) ap-
plied MoE in sequence learning. Some work (He
et al., 2018; Shen et al., 2019; Cho et al., 2019)
applied MoE in diversity generation. Peng et al.
(2020) applied MoE in MT and combined h − 1
heads in Transformer as an expert.

Previous works always applied MoE for diver-
sity. Our method makes the experts more regular
in parameter space, which provides a method to
improves the translation quality with MoE.

SiMT Early read / write policies in SiMT used
segmented translation (Bangalore et al., 2012; Cho
and Esipova, 2016; Siahbani et al., 2018). Gris-
som II et al. (2014) predicted the final verb in SiMT.
Gu et al. (2017) trained a read / write agent with re-
inforcement learning. Alinejad et al. (2018) added
a predict operation based on Gu et al. (2017).

Recent read / write policies fall into two cate-
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gories: fixed and adaptive. For the fixed policy,
Dalvi et al. (2018) proposed STATIC-RW, and Ma
et al. (2019) proposed wait-k policy, which always
generates target k tokens lagging behind the source.
Elbayad et al. (2020a) enhanced wait-k policy by
sampling different k during training. Han et al.
(2020) applied meta-learning in wait-k. Zhang et al.
(2021) proposed future-guided training for wait-k
policy. Zhang and Feng (2021) proposed a char-
level wait-k policy. For the adaptive policy, Zheng
et al. (2019a) trained an agent with gold read /
write sequence. Zheng et al. (2019b) added a “de-
lay” token {ε} to read. Arivazhagan et al. (2019)
proposed MILk, which used a Bernoulli variable
to determine writing. Ma et al. (2020) proposed
MMA, which is the implementation of MILk on
the Transformer. Zheng et al. (2020a) ensembled
multiple wait-k models to develop a adaptive policy.
Zhang and Zhang (2020) and Zhang et al. (2020)
proposed adaptive segmentation policies. Bahar
et al. (2020) and Wilken et al. (2020) proposed
alignment-based chunking policy.

A common weakness of the previous methods
is that they all train separate models for different
latency. Our method only needs a universal model
to complete SiMT under all latency, and meanwhile
achieve better translation quality.

5 Experiments

5.1 Datasets

We evaluated our method on the following three
datasets, the scale of which is from small to large.

IWSLT151 English→Vietnamese (En-Vi)
(133K pairs) (Cettolo et al., 2015) We use TED
tst2012 (1553 pairs) as the validation set and TED
tst2013 (1268 pairs) as the test set. Following
Raffel et al. (2017) and Ma et al. (2020), we
replace tokens that the frequency less than 5 by
〈unk〉. After replacement, the vocabulary sizes
are 17K and 7.7K for English and Vietnamese,
respectively.

WMT162 English→Romanian (En-Ro)
(0.6M pairs) (Lee et al., 2018) We use news-
dev2016 (1999 pairs) as the validation set and
news-test2016 (1999 pairs) as the test set.

WMT153 German→English (De-En) (4.5M
pairs) Following the setting from Ma et al. (2019)
and Ma et al. (2020), we use newstest2013 (3000

1nlp.stanford.edu/projects/nmt/
2www.statmt.org/wmt16/
3www.statmt.org/wmt15/

pairs) as the validation set and newstest2015 (2169
pairs) as the test set.

For En-Ro and De-En, BPE (Sennrich et al.,
2016) is applied with 32K merge operations and
the vocabulary is shared across languages.

5.2 System Settings

We conducted experiments on following systems.
Offline Conventional Transformer (Vaswani

et al., 2017) model for full-sentence translation,
decoding with greedy search.

Standard Wait-k Standard wait-k policy pro-
posed by Ma et al. (2019). When evaluating with
the test lagging ktest, we apply the result from the
model trained with ktrain, where ktrain=ktest.

Optimal Wait-k An optimal variation of stan-
dard wait-k. When decoding with ktest, we tra-
verse all models trained with different ktrain and
apply the optimal result among them. For exam-
ple, if the best result when testing with wait-1
(ktest=1) comes from the model trained by wait-5
(ktrain = 5), we apply this optimal result. ‘Opti-
mal Wait-k’ selects the best result according to the
reference, so it can be considered as an oracle.

Multipath Wait-k An efficient training method
for wait-k policy (Elbayad et al., 2020a). In train-
ing, ktrain is no longer fixed, but randomly sampled
from all possible lagging in each batch.

MU A segmentation policy base on meaning
units proposed by Zhang et al. (2020), which ob-
tains comparable results with SOTA adaptive pol-
icy. At each decoding step, if a meaning unit is de-
tected through a BERT-based classifier, ‘MU’ feeds
the received source tokens into a full-sentence MT
model to generate the target token and stop until
generating the <EOS> token.

MMA4 Monotonic multi-head attention (MMA)
proposed by (Ma et al., 2020), the state-of-the-art
adaptive policy for SiMT, which is the implemen-
tation of ‘MILk’ (Arivazhagan et al., 2019) based
on the Transformer. At each decoding step, ‘MMA’
predicts a Bernoulli variable to decide whether to
start translating or wait for the source token.

MoE Wait-k A variation of our method, which
directly trains the parameters of experts and their
weights together in one-stage training.

Equal-Weight MoE Wait-k A variation of our
method. The weight of each expert is fixed to 1

h .
MoE Wait-k + FT Our method in Sec.3.2.
4github.com/pytorch/fairseq/tree/

master/examples/simultaneous_translation

nlp.stanford.edu/projects/nmt/
www.statmt.org/wmt16/
www.statmt.org/wmt15/
github.com/pytorch/fairseq/tree/master/examples/simultaneous_translation
github.com/pytorch/fairseq/tree/master/examples/simultaneous_translation
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Architecture Expert Lagging KMoE

Transformer-Small
(4 heads)

[1, 6, 11, 16]

Transformer-Base
(8 heads)

[1, 3, 5, 7, 9, 11, 13, 15]

Transformer-Big
(16 heads)

[1, 2, 3, 4, 5, 6, 7, 8,
9,10,11,12,13,14,15,16]

Table 1: The value of expert laggingKMoE for different
Transformer settings.

We compare our method with ‘MMA’ and ‘MU’
on De-En(Big) since they report their results on
De-En with Transformer-Big.

The implementation of all systems are adapted
from Fairseq Library (Ott et al., 2019), and the
setting is exactly the same as Ma et al. (2019)
and Ma et al. (2020). To verify that our method
is effective on Transformer with different head
settings, we conduct experiments on three types
of Transformer, where the settings are the same
as Vaswani et al. (2017). For En-Vi, we apply
Transformer-Small (4 heads). For En-Ro, we ap-
ply Transformer-Base (8 heads). For De-En, we
apply both Transformer-Base and Transformer-
Big (16 heads). Table 2 reports the parameters of
different SiMT systems on De-En(Big). To per-
form SiMT under different latency, both ‘Standard
Wait-k’, ‘Optimal Wait-k’ and ‘MMA’ require mul-
tiple models, while ‘Multipath Wait-k’, ‘MU’ and
‘MoE Wait-k’ only need one trained model.

Expert lagging KMoE in MoE wait-k is the hy-
perparameter we set, which represents the lagging
of each expert. We did not conduct many searches
on KMoE, but set it to be uniformly distributed in
a reasonable lagging interval, as shown in Table 1.
We will analyze the influence of different settings
of KMoE in our method in Sec.6.5.

We evaluate these systems with BLEU (Post,
2018) for translation quality and Average Lagging
(AL5) (Ma et al., 2019) for latency. Given g (t),
latency metric AL is calculated as:

AL =
1

τ

τ∑
t=1

g (t)− t− 1

|y| / |x|
(13)

where τ = argmax
t

(g (t) = |x|) (14)

where |x| and |y| are the length of the source sen-
tence and target sentence respectively.

5github.com/SimulTrans-demo/STACL.

Systems #Para.
per Model

Model
Num.

Total
#Para.

Offline 209.91M 1 209.91M
Wait-k 209.91M 5 1049.55M
Optimal 209.91M 5 1049.55M
Mulitpath 209.91M 1 209.91M
MMA 222.51M 7 1557.57M
MU 319.91M 1 319.91M
MoE Wait-k 209.91M 1 209.91M

Table 2: The parameters of SiMT systems on De-
En(Transformer-Big) in our experiments. ‘#Para. per
model’: The parameters of a single SiMT model.
‘Model Num.’: The number of SiMT models required
to perform SiMT under multiple latency. ‘Total #Para.’:
The total parameters of the SiMT system.

5.3 Main Results

Figure 3 and Figure 4 show the comparison be-
tween our method and the previous methods on
Transformer with the various head settings. In
all settings, ‘MoE wait-k + FT’ outperforms the
previous methods under all latency. Our method
improves the performance of SiMT much closer to
the offline model, which almost reaches the perfor-
mance of full-sentence MT when lagging 9 tokens.

Compared with ‘Standard Wait-k’, our method
improves 0.60 BLEU on En-Vi, 2.11 BLEU on En-
Ro, 2.33 BLEU on De-En(Base), and 2.56 BLEU
on De-En(Big), respectively (average on all la-
tency). More importantly, our method only needs
one well-trained universal model to complete SiMT
under all latency, while ‘Standard wait-k’ requires
training different models for each latency. Besides,
‘Optimal Wait-k’ traverses many models to obtain
the optimal result under each latency. Our method
dynamically weights experts according to the test
latency, and outperforms ‘Optimal Wait-k’ under
all latency, without searching among many models.

Both our method and ‘Multipath Wait-k’ can
train a universal model, but our method avoids the
mutual interference between different sampled k
during training. ‘Multipath Wait-k’ often improves
the translation quality under low latency, but on the
contrary, the translation quality under high latency
is poor (Elbayad et al., 2020b). The reason is that
sampling a slightly larger k in training improves
the translation quality under low latency (Ma et al.,
2019; Zhang et al., 2021), but sampling a smaller k
destroys the translation quality under high latency.
Our method introduces expert lagging and dynam-

github.com/SimulTrans-demo/STACL
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(a) En-Vi, Transformer-Small
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Figure 3: Translation quality (BLEU) against latency (AL) on the En-Vi(Small), En-Ro(Base), De-En(Base). We
show the result of our methods, Standard wait-k, Optimal Wait-k, Multipath Wait-k and offline model.
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Figure 4: Translation quality (BLEU) against latency
(AL) on the De-En with Transformer-Big. We show the
result of our methods, Standard wait-k, Optimal Wait-k,
Multipath Wait-k, MU, MMA (the current SOTA adap-
tive policy) and offline model.

ical weights, avoiding the interference caused by
multipath training.

Compared with ‘MMA’ and ‘MU’, our method
performs better. ‘MU’ sets a threshold to perform
SiMT under different latency and achieves good
translation quality, but it is difficult to complete
SiMT under low latency as it is a segmentation
policy. As a fixed policy, our method maintains
the advantage of simple training and meanwhile
catches up with the adaptive policy ‘MMA’ on
translation quality, which is uplifting. Furthermore,
our method only needs a universal model to per-
form SiMT under different latency and the test
latency can be set artificially, which is impossible
for the previous adaptive policy.

5.4 Ablation Study

We conducted ablation studies on the dynamic
weights and two-stage training, as shown in Fig-
ure 3 and Figure 4. The translation quality de-
creases significantly when each expert is set to
equal-weight. Our method dynamically adjusts the
weight of each expert according to the input and
test lagging, resulting in concurrently performing
well under all latency. For the training methods,
the two-stage training method makes the training of
weights more stable, thereby improving the transla-
tion quality, especially under high latency.

6 Analysis

We conducted extensive analyses to understand the
specific improvements of our method. Unless other-
wise specified, all the results are reported on De-En
with Transformer-Base(8 heads).

6.1 Performance on Various Difficulty Levels

The difference between the target and source word
order is one of the challenges of SiMT, where many
word order inversions force to start translating be-
fore reading the aligned source words. To verify
the performance of our method on SiMT with var-
ious difficulty levels, we evenly divided the test
set into three parts: EASY, MIDDLE and HARD.
Specifically, we used fast-align6 (Dyer et al.,
2013) to align the source with the target, and then
calculated the number of crosses in the alignments
(number of reversed word orders), which is used
as a basis to divide the test set (Chen et al., 2020;
Zhang et al., 2021). After the division, the align-
ments in the EASY set are basically monotonous,

6https://github.com/clab/fast_align

https://github.com/clab/fast_align
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ktest
EASY MIDDLE HARD

Wait-k Ours ∆ Wait-k Ours ∆ Wait-k Ours ∆

1 19.27 21.79 +2.52 18.70 21.87 +3.17 16.14 20.04 +3.90
3 28.79 30.19 +1.40 24.88 25.65 +0.77 21.30 23.81 +2.51
5 31.15 33.80 +2.65 26.56 29.03 +2.47 24.02 25.73 +1.71
7 32.62 34.68 +2.06 28.52 30.42 +1.90 25.65 27.37 +1.72
9 32.52 35.08 +2.56 28.94 31.42 +2.48 26.66 28.40 +1.74

Table 3: Improvement of our method on SiMT with various difficult levels, evaluated with wait-ktest. The difficult
levels are divided according to the word order difference between the source sentence and the target sentence.

0 10 20 30 40 50 60 70 80 90 100
% Last token changed
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MoE Wait-k + FT
Multipath Wait-k
Standard Wait-k

Figure 5: Degradation of performance as the noise of
last source token increases, evaluated with wait-7.

and the sentence pairs in the HARD set contains at
least 12 reversed word orders.

Our method outperforms the standard wait-k
on all difficulty levels, especially improving 3.90
BLEU on HARD set under low latency. HARD
set contains a lot of word order reversal, which is
disastrous for low-latency SiMT such as testing
with wait-1. The standard wait-k enables the model
to gain some implicit prediction ability (Ma et al.,
2019), and our method further strengthens it. MoE
wait-k introduces multiple experts with varying ex-
pert lagging, of which the larger expert lagging
helps the model to improve the implicit prediction
ability (Zhang et al., 2021), while the smaller expert
lagging avoids learning too much future informa-
tion during training and prevents the illusion caused
by over-prediction (Chen et al., 2020). With MoE
wait-k, the implicit prediction ability is stronger
and more stable.

6.2 Improvement on Robustness

Robustness is another major challenge for SiMT
(Zheng et al., 2020b). SiMT is often used as a
downstream task of streaming automatic speech
recognition (ASR), but the results of streaming
ASR are not stable, especially the last recognized
source token (Li et al., 2020; Gaido et al., 2020;
Zheng et al., 2020b). In each decoding step, we ran-

(a) Multipath Wait-k (b) MoE Wait-k + FT

Figure 6: Subspace distribution of expert outputs. Each
color represents the outputs of an expert.

domly modified the last source token with different
proportions, and the results are shown in Figure 5.

Our method is more robust with the noisy last
token, owing to multiple experts. Due to different
expert lagging, the number of source tokens pro-
cessed by each expert is different and some experts
do not consider the last token. Thus, the noisy last
token only affects some experts, while other experts
would not be disturbed, giving rise to robustness.

6.3 Differentiation of Experts Distribution

Our method clearly divides the experts into differ-
ent functions and integrates the expert outputs from
different subspaces for better translation. For ‘Mul-
tipath Wait-k’ and our method, we sampled 200
cases and reduced the dimension of the expert out-
puts (evaluating with wait-5) with the t-Distributed
Stochastic Neighbor Embedding (tSNE) technique,
and shown the subspace distribution of the expert
outputs in Figure 6.

The expert outputs in ‘Multipath Wait-k’ have a
little difference but most of them are fused together,
which shows some similarities in heads. In our
method, due to the clear division of labor, the expert
outputs are significantly different and regular in the
subspace distribution, which proves to be beneficial
to translation (Li et al., 2018). Besides, our method
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E1 E2 E3 E4 E5 E6 E7 E8 Optimal
ModelExpert Lagging KMoE 1 3 5 7 9 11 13 15

Test
Lagging

ktest=1 10.66 13.90 13.82 11.67 13.07 13.49 11.89 11.50 ktrain=3
ktest=3 9.83 12.88 13.75 11.62 13.70 13.51 12.55 12.16 ktrain=5
ktest=5 9.35 12.63 13.52 11.61 13.82 13.6 12.93 12.54 ktrain=9
ktest=7 8.65 12.55 12.82 11.58 14.04 14.10 13.53 12.73 ktrain=9
ktest=9 8.34 12.32 12.55 11.08 14.33 14.69 13.79 12.90 ktrain=9

Table 4: Weight of experts under different latency, averaged on 6 decoder layers at all decoding steps. ‘Optimal
Model’: The optimal standard wait-k model under current test latency, obtained by traversing all models trained
with different wait-ktrain.
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Original:        [1,  3,  5,  7,  9,11,13,15]
Low interval: [2,  3,  4,  5,  6,  7,  8,  9]
High interval: [8,  9,10,11,12,13,14,15]
Repeated:       [3,  3,  3,  3,11,11,11,11]
Wide span:     [1,  4,  7,10,13,16,19,22]
Standard Wait-k

Figure 7: Results of various settings of expert lagging
KMoE in MoE wait-k.

has better space utilization and integrate multiple
designated subspaces information.

6.4 Superiority of Dynamic Weights

Different expert outputs are dynamically weighted
to achieve the best performance under the current
test latency, so we calculated the average weight of
each expert under different latency in Table 4.

Through dynamic weighting, the expert lagging
of the expert with the highest weight is similar
to the ktrain of the optimal model with standard
wait-k, meanwhile avoiding the traversal on many
trained models. When the test lagging is larger,
the expert with larger expert lagging has higher
weight; and vice versa. Besides, the expert with
a slightly larger expert lagging than ktest tends to
get the highest weight for better translation, which
is in line with the previous conclusions (Ma et al.,
2019; Zhang et al., 2021). Furthermore, our method
enables the model to comprehensively consider var-
ious expert outputs with dynamic weights, thereby

getting a more comprehensive translation.

6.5 Effect of Expert Lagging
Expert lagging KMoE is the hyperparameter we set
to control the lagging of each expert. We experi-
mented with several settings of KMoE to study the
effects of different expert lagging KMoE, as shown
in Figure 7.

Totally, all types of KMoE outperform the base-
line, and different KMoE only has a slight impact
on the performance, which shows that our method
is not sensitive to how to set KMoE. Furthermore,
there are some subtle differences between different
KMoE, where the ‘Original’ setting performs best.
‘Low interval’ and ‘High interval’ only perform
well under a part of the latency, as their KMoE is
only concentrated in a small lagging interval. ‘Re-
peated’ performs not well as the diversity of expert
lagging is poor, which lost the advantages of MoE.
The performance of ‘Wide span’ drops under low
latency, because the average length of the sentence
is about 20 tokens where the much larger lagging
is not conducive to low latency SiMT.

In summary, we give a general method for setting
expert lagging KMoE. KMoE should maintain diver-
sity and be uniformly distributed in a reasonable
lagging interval, such as lagging 1 to 15 tokens.

7 Conclusion and Future Work

In this paper, we propose Mixture-of-Experts Wait-
k Policy to develop a universal SiMT, which can
perform high quality SiMT under arbitrary latency
to fulfill different scenarios. Experiments and anal-
yses show that our method achieves promising re-
sults on performance, efficiency and robustness.

In the future, since MoE wait-k develops a uni-
versal SiMT model with high quality, it can be
applied as a SiMT kernel to cooperate with refined
external policy, to further improve performance.
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