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Abstract

Recently, many datasets have been proposed
to test the systematic generalization ability
of neural networks. The companion base-
line Transformers, typically trained with de-
fault hyper-parameters from standard tasks,
are shown to fail dramatically. Here we
demonstrate that by revisiting model config-
urations as basic as scaling of embeddings,
early stopping, relative positional embedding,
and Universal Transformer variants, we can
drastically improve the performance of Trans-
formers on systematic generalization. We re-
port improvements on five popular datasets:
SCAN, CFQ, PCFG, COGS, and Mathemat-
ics dataset. Our models improve accuracy
from 50% to 85% on the PCFG productivity
split, and from 35% to 81% on COGS. On
SCAN, relative positional embedding largely
mitigates the EOS decision problem (Newman
et al., 2020), yielding 100% accuracy on the
length split with a cutoff at 26. Importantly,
performance differences between these mod-
els are typically invisible on the IID data split.
This calls for proper generalization validation
sets for developing neural networks that gen-
eralize systematically. We publicly release the
code to reproduce our results1.

1 Introduction

Systematic generalization (Fodor et al., 1988) is a
desired property for neural networks to extrapolate
compositional rules seen during training beyond
training distribution: for example, performing dif-
ferent combinations of known rules or applying
them to longer problems. Despite the progress of ar-
tificial neural networks in recent years, the problem
of systematic generalization still remains unsolved
(Fodor and McLaughlin, 1990; Lake and Baroni,
2018; Liska et al., 2018; Greff et al., 2020; Hupkes
et al., 2020). While there has been much progress

1https://github.com/robertcsordas/
transformer_generalization

in the past years (Bahdanau et al., 2019; Korrel
et al., 2019; Lake, 2019; Li et al., 2019; Russin
et al., 2019), in particular on the popular SCAN
dataset (Lake and Baroni, 2018) where some meth-
ods even achieve 100% accuracy by introducing
some non-trivial symbolic components into the sys-
tem (Chen et al., 2020; Liu et al., 2020), the flex-
ibility of such solutions is questionable. In fact,
the existing SCAN-inspired solutions have limited
performance gains on other datasets (Furrer et al.,
2020; Shaw et al., 2020). It is thus not enough
to solely focus on the SCAN dataset to progress
research on systematic generalization.

Recently, many datasets have been proposed for
testing systematic generalization, including PCFG
(Hupkes et al., 2020) and COGS (Kim and Linzen,
2020). The baseline Transformer models which
are released together with the dataset are typically
shown to dramatically fail at the task. However, the
configurations of these baseline models are ques-
tionable. In most cases, some standard practices
from machine translation are applied without mod-
ification. Also, some existing techniques such as
relative positional embedding (Shaw et al., 2018;
Dai et al., 2019), which are relevant for the prob-
lem, are not part of the baseline.

In order to develop and evaluate methods to im-
prove systematic generalization, it is necessary to
have not only good datasets but also strong base-
lines to correctly evaluate the limits of existing ar-
chitectures and to avoid false sense of progress over
bad baselines. In this work, we demonstrate that the
capability of Transformers (Vaswani et al., 2017)
and in particular its universal variants (Dehghani
et al., 2019) on these tasks are largely underesti-
mated. We show that careful designs of model and
training configurations are particularly important
for these reasoning tasks testing systematic gen-
eralization. By revisiting configurations such as
basic scaling of word and positional embeddings,
early stopping strategy, and relative positional em-

https://github.com/robertcsordas/transformer_generalization
https://github.com/robertcsordas/transformer_generalization
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bedding, we dramatically improve the performance
of the baseline Transformers. We conduct experi-
ments on five datasets: SCAN (Lake and Baroni,
2018), CFQ (Keysers et al., 2020), PCFG (Hupkes
et al., 2020), COGS (Kim and Linzen, 2020), and
Mathematic dataset (Saxton et al., 2019). In partic-
ular, our new models improve the accuracy on the
PCFG productivity split from 50% to 85%, on the
systematicity split from 72% to 96%, and on COGS
from 35% to 81% over the existing baselines. On
the SCAN dataset, we show that our models with
relative positional embedding largely mitigates the
so-called end-of-sentence (EOS) decision problem
(Newman et al., 2020), achieving 100% accuracy
on the length split with a cutoff at 26.

Also importantly, we show that despite these dra-
matic performance gaps, all these models perform
equally well on IID validation datasets. The con-
sequence of this observation is the need for proper
generalization validation sets for developing neural
networks for systematic generalization.

We thoroughly discuss guidelines that empir-
ically yield good performance across various
datasets, and we will publicly release the code to
make our results reproducible.

2 Datasets and Model Architectures for
Systematic Generalization

Here we describe the five datasets, and specify
the Transformer model variants we use in our
experiments. The selected datasets include both
already popular ones and recently proposed ones.
Statistics of the datasets can be found in Table 10
in the appendix.

2.1 Datasets

Many datasets in the language domain have been
proposed to test systematic generalization. All
datasets we consider here can be formulated as
a sequence-to-sequence mapping task (Sutskever
et al., 2014; Graves, 2012). Common to all these
datasets, the test set is sampled from a distribution
which is systematically different from the one for
training: for example, the test set might systemati-
cally contain longer sequences, new combinations
or deeper compositions of known rules. We call this
split the generalization split. Most of the datasets
also come with a conventional split, where the train
and test (and validation, if available) sets are inde-
pendently and identically distributed samples. We
call this the IID split. In this paper, we consider the

following five datasets:

SCAN (Lake and Baroni, 2018). The task con-
sists of mapping a sentence in natural language into
a sequence of commands simulating navigation in
a grid world. The commands are compositional:
e.g. an input jump twice should be translated
to JUMP JUMP. It comes with multiple data splits:
in addition to the “simple” IID split, in the “length”
split, the training sequences are shorter than test
ones, and in the “add primitive” splits, some com-
mands are presented in the training set only in iso-
lation, without being composed with others. The
test set focuses on these excluded combinations.

CFQ (Keysers et al., 2020). The task consists
of translating a natural language question to a
Freebase SPARQL query. For example Was
M0 a director and producer of M1
should be translated to SELECT count(*)
WHERE {M0 ns:film.director.film
M1 . M0 ns:film.producer.film |
ns:film.production_company.films
M1}. The authors introduce splits based on
“compound divergence” which measures the
difference between the parse trees in the different
data splits. The authors experimentally show that
it is well correlated with generalization difficulty.
It also comes with a length-based split.

PCFG (Hupkes et al., 2020). The task consists
of list manipulations and operations that should
be executed. For example, reverse copy
O14 O4 C12 J14 W3 should be translated to
W3 J14 C12 O4 O14. It comes with different
splits for testing different aspects of generaliza-
tion. In this work, we focus on the “productivity”
split, which focuses on generalization to longer se-
quences, and on the “systematicity” split, which is
about recombining constituents in novel ways.

COGS (Kim and Linzen, 2020). The task
consists of semantic parsing which maps an
English sentence to a logical form. For example,
The puppy slept. should be translated to
* puppy ( x _ 1 ) ; sleep . agent
( x _ 2, x _ 1 ). It comes with a single
split, with a training, IID validation and OOD
generalization testing set.

Mathematics Dataset (Saxton et al., 2019).
The task consists of high school level textual
math questions, e.g. What is -5 - 110911?
should be translated to -110916. The data is
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split into different subsets by the problem category,
called modules. Some of them come with an ex-
trapolation set, designed to measure generalization.
The amount of total data is very large and thus ex-
pensive to train on, but different modules can be
studied individually. We focus on “add_or_sub"
and “place_value" modules.

2.2 Model Architectures

We focus our analysis on two Transformer archi-
tectures: standard Transformers (Vaswani et al.,
2017) and Universal Transformers (Dehghani et al.,
2019), and in both cases with absolute or relative
positional embedding (Dai et al., 2019). Our Uni-
versal Transformer variants are simply Transform-
ers with shared weights between layers, without
adaptive computation time (Schmidhuber, 2012;
Graves, 2016) and timestep embedding. Positional
embedding are only added to the first layer.

Universal Transformers are particularly relevant
for reasoning and algorithmic tasks. For example,
if we assume a task which consists in executing
a sequence of operations, a regular Transformer
will learn successive operations in successive lay-
ers with separate weights. In consequence, if only
some particular orderings of the operations are seen
during training, each layer will only learn a subset
of the operations, and thus, it will be impossible
for them to recombine operations in an arbitrary
order. Moreover, if the same operation has to be
reused multiple times, the network has to re-learn
it, which is harmful for systematic generalization
and reduces the data efficiency of the model (Csor-
dás et al., 2021). Universal Transformers have the
potential to overcome this limitation: sharing the
weights between each layer makes it possible to
reuse the existing knowledge from different com-
positions. On the downside, the Universal Trans-
former’s capacity can be limited because of the
weight sharing.

3 Improving Transformers on Systematic
Generalization

In this section, we present methods which greatly
improve Transformers on systematic generalization
tasks, while they could be considered as details in
standard tasks. For each method, we provide exper-
imental evidences on a few representative datasets.
In Section 4, we apply these findings to all datasets.

3.1 Addressing the EOS Decision Problem
with Relative Positional Embedding

The EOS decision problem. A thorough analy-
sis by Newman et al. (2020) highlights that LSTMs
and Transformers struggle to generalize to longer
output lengths than they are trained for. Specifi-
cally, it is shown that the decision when to end the
sequence (the EOS decision) often overfits to the
specific positions observed in the train set. To mea-
sure whether the models are otherwise able to solve
the task, they conduct a so-called oracle evaluation:
they ignore the EOS token during evaluation, and
use the ground-truth sequence length to stop decod-
ing. The performance with this evaluation mode
is much better, which illustrates that the problem
is indeed the EOS decision. More surprisingly, if
the model is trained without EOS token as part of
output vocabulary (thus it can only be evaluated in
oracle mode), the performance is further improved.
It is concluded that teaching the model when to
end the sequence has undesirable side effects on
the model’s length generalization ability.

We show that the main cause of this EOS de-
cision problem in the case of Transformers is the
absolute positional embedding. Generally speak-
ing, the meaning of a word is rarely dependent
on the word’s absolute position in a document but
depends on its neighbors. Motivated by this as-
sumption, various relative positional embedding
methods (Shaw et al., 2018; Dai et al., 2019) have
been proposed. Unfortunately, they have not been
considered for systematic generalization in prior
work (however, see Sec. 5), even though they are
particularly relevant for that.

We test Transformers with relative positional em-
bedding in the form used in Transformer XL (Dai
et al., 2019). Since it is designed for auto-regressive
models, we directly apply it in the decoder of our
model, while for the encoder, we use a symmetri-
cal variant of it (see Appendix C). The interface
between encoder and decoder uses the standard
attention without any positional embedding.

Our experimental setting is similar to Newman
et al. (2020). The length split in SCAN dataset
restricts the length of the train samples to 22 tokens
(the test set consists of samples with an output of
more than 22 tokens). This removes some compo-
sitions from the train set entirely, which introduces
additional difficulty to the task. 80% of the test
set consists of these missing compositions. In or-
der to mitigate the issue of unknown composition
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Table 1: Exact match accuracies on length splits with different cutoffs. Reported results are the median of 5
runs. Trafo denotes Transformers. The numbers in the rows +EOS+Oracle and -EOS+Oracle are taken from
Newman et al. (2020) as reference numbers but they can not be compared to others as they are evaluated with
oracle length. Our models use different hyperparameters compared to theirs. We refer to Section 3.1 for details.

` (length cutoff) 22 24 25 26 27 28 30 32 33 36 40

R
ef

er
en

ce +EOS 0.00 0.05 0.04 0.00 0.09 0.00 0.09 0.35 0.00 0.00 0.00
+EOS+Oracle 0.53 0.51 0.69 0.76 0.74 0.57 0.78 0.66 0.77 1.00 0.97
-EOS+Oracle 0.58 0.54 0.67 0.82 0.88 0.85 0.89 0.82 1.00 1.00 1.00

O
ur

s
(+

E
O

S) Trafo 0.00 0.04 0.19 0.29 0.30 0.08 0.24 0.36 0.00 0.00 0.00
+ Relative PE 0.20 0.12 0.31 0.61 1.00 1.00 1.00 0.94 1.00 1.00 1.00

Universal Trafo 0.02 0.05 0.14 0.21 0.26 0.00 0.06 0.35 0.00 0.00 0.00
+ Relative PE 0.20 0.12 0.71 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

and focus purely on the length problem, Newman
et al. (2020) re-split SCAN by introducing different
length cutoffs and report the performance of each
split. We test our models similarly. However, our
preliminary experiments showed the performance
of the original model is additionally limited by be-
ing too shallow: it uses only 2 layers for both the
encoder and decoder. We increased the number
of layers to 3. To compensate for the increased
number of parameters, we decrease the size of the
feed-forward layers from 1024 to 256. In total, this
reduces the number of parameters by 30%. We
train our models with Adam optimizer, a learning
rate of 10−4, batch size of 128 for 50k steps.

The results are shown in Table 1. In order to
show that our changes of hyperparameters are not
the main reason for the improved performance, we
report the performance of our modified model with-
out relative positional embedding (row Trafo). We
also include the results from Newman et al. (2020)
for reference. We report the performance of Uni-
versal Transformer models trained with identical
hyperparameters. All our models are trained to
predict the EOS token and are evaluated without
oracle (+EOS configuration). It can be seen that
both our standard and Universal Transformers with
absolute positional embedding have near-zero ac-
curacy for all length cutoffs, whereas models with
relative positional embedding excel: they even out-
perform the models trained without EOS prediction
and evaluated with the ground-truth length.

Although Table 1 highlights the advantages of
relative positional embedding and shows that they
can largely mitigate the EOS-overfitting issue, this
does not mean that the problem of generalizing to
longer sequences is fully solved. The sub-optimal
performance on short length cutoffs (22-25) indi-
cates that the model finds it hard to zero-shot gen-

eralize to unseen compositions of specific rules. To
improve these results further, research on models
which assume analogies between rules and compo-
sitions are necessary, such that they can recombine
known constituents without any training example.

Further benefits of relative positional embed-
ding. In addition to the benefit highlighted in
the previous paragraph, we found that models with
relative positional embedding are easier to train
in general. They converge faster (Figure 6 in the
appendix) and are less sensitive to batch size (Table
9 in the appendix). As another empirical finding,
we note that relative Transformers without shared
layers sometimes catastrophically fail before reach-
ing their final accuracy: the accuracy drops to 0,
and it never recovers. We observed this with PCFG
productivity split and the “Math: place_value” task.
Reducing the number of parameters (either using
Universal Transformers or reducing the state size)
usually stabilizes the network.

3.2 Model Selection Should Be Done
Carefully

The danger of early stopping. Another crucial
aspect greatly influencing the generalization per-
formance of Transformers is model selection, in
particular early stopping. In fact, on these datasets,
it is a common practice to use only the IID split to
tune hyperparameters or select models with early
stopping (e.g. Kim and Linzen (2020)). However,
since any reasonable models achieve nearly 100%
accuracy on the IID validation set, there is no good
reason to believe this to be a good practice for se-
lecting models for generalization splits. To test
this hypothesis, we train models on COGS dataset
without early stopping, but with a fixed number of
50k training steps. The best model achieved a test
accuracy of 81%, while the original performance
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Figure 1: Generalization accuracy on COGS as a func-
tion of training steps for standard Transformers with
different embedding scaling schemes. The vertical
lines show the median of the early stopping points for
the five runs. Early stopping parameters are from Kim
and Linzen (2020). “Token Emb. Up., Noam” corre-
sponds to the baseline configuration (Kim and Linzen,
2020). See Sec. 3.3 for details on scaling.

Table 2: Final IID validation and generalizations accu-
racy for COGS (50k steps) and PCFG Productivity set
(300k steps) with different scaling (Section 3.3). To-
ken Embedding Upscaling (TEU) is unstable on PCFG
with our hyperparameters. Position Embedding Down-
scaling (PED) performs the best on both datasets.

IID Validation Gen. Test

C
O

G
S TEU 1.00 ± 0.00 0.78 ± 0.03

No scaling 1.00 ± 0.00 0.62 ± 0.06
PED 1.00 ± 0.00 0.80 ± 0.00

PC
FG

TEU 0.92 ± 0.07 0.47 ± 0.27
No scaling 0.97 ± 0.01 0.63 ± 0.02
PED 0.96 ± 0.01 0.65 ± 0.03

by Kim and Linzen (2020) is 35%. Motivated by
this huge performance gap, we had no other choice
but to conduct an analysis on the generalization
split to demonstrate the danger of early stopping
and discrepancies between the performance on the
IID and generalization split. The corresponding
results are shown in Figure 1 (further effect of em-
bedding scaling is discussed in next Sec. 3.3) and
Table 2. Following Kim and Linzen (2020), we
measure the model’s performance every 500 steps,
and mark the point where early stopping with pa-
tience of 5 would pick the best performing model.
It can be seen that in some cases the model chosen
by early stopping is not even reaching half of the
final generalization accuracy.

To confirm this observation in the exact setting
of Kim and Linzen (2020), we also disabled the
early stopping in the original codebase 2, and ob-
served that the accuracy improved to 65% without
any other tricks. We discuss further performance
improvements on COGS dataset in Section 4.4.

2https://github.com/najoungkim/COGS
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Figure 2: Relationship between validation loss and test
accuracy (same distribution) on CFQ MCD 1 split for
a relative Transformer. The color shows the training
step. Five runs are shown. The loss has a logarithmic
scale. High accuracy corresponds to higher loss, which
is unexpected. For detailed analysis, see Figure 5.

The lack of validation set for the generalization
split. A general problem raised in the previous
paragraph is the lack of validation set for evaluating
models for generalization. Most of the datasets
come without a validation set for the generalization
split (SCAN, COGS, and PCFG). Although CFQ
comes with such a set, the authors argue that only
the IID split should be used for hyperparameter
search, and it is not clear what should be used for
model development.

In order to test novel ideas, a way to gradually
measure progress is necessary, such that the effect
of changes can be evaluated. If the test set is used
for developing the model, it implicitly risks overfit-
ting to this test set. On the other hand, measuring
performance on the IID split does not necessarily
provide any valuable information about the gener-
alization performance on the systematically differ-
ent test set (see Table 2). The IID accuracy of all
the considered datasets is 100% (except on PCFG
where it’s also almost 100%); thus, no further im-
provement, nor potential difference between gener-
alization performance of models can be measured
(see also Table 8 in the appendix).

It would be beneficial if future datasets would
have a validation and test set for both the IID and
the generalization split. For the generalization split,
the test set could be designed to be more difficult
than the validation set. This way, the validation set
can be used to measure progress during develop-
ment, but overfitting to it would prevent the model
to generalize well to the test set. Such a division
can be easily done on the splits for testing produc-
tivity. For other types of generalization, we could
use multiple datasets sharing the same generaliza-
tion problem. Some of them could be dedicated for
development and others for testing.

https://github.com/najoungkim/COGS


624

0 50k 100k 150k 200k 250k 300k
Training steps

0

25

50

75
A

cc
ur

ac
y

[%
]

Standard
Uni.
Rel. Uni.

0 50k 100k 150k 200k 250k 300k
Training steps

2

4

6

Lo
ss

Standard Uni. Rel. Uni.

Figure 3: Test loss and accuracy on PCFG during train-
ing. The loss exhibits an epoch-wise double descent
phenomenon (Nakkiran et al., 2019), while the accu-
racy increases monotonically. Standard Transformer
with PED (Sec. 3.3), Universal Transformer with ab-
solute, and relative positional embeddings are shown.

Intriguing relationship between generalization
accuracy and loss. Finally, we also note the
importance of using accuracy (instead of loss) as
the model selection criterion. We find that the
generalization accuracy and loss do not necessarily
correlate, while sometimes, model selection based
on the loss is reported in practice e.g. in Kim
and Linzen (2020). Examples of this undesirable
behavior are shown on Figure 2 for CFQ and
on Figure 4 in the appendix for COGS dataset.
On these datasets, the loss and accuracy on the
generalization split both grows during training. We
conducted an analysis to understand the cause of
this surprising phenomenon, we find that the total
loss grows because the loss of the samples with
incorrect outputs increases more than it improves
on the correct ones. For the corresponding
experimental results, we refer to Figure 5 in the
appendix. We conclude that even if a validation
set is available for the generalization split, it would
be crucial to use the accuracy instead of the loss
for early stopping and hyperparameter tuning.

Finally, on PCFG dataset, we observed epoch-
wise double descent phenomenon (Nakkiran et al.,
2019), as shown in Figure 3. This can lead to
equally problematic results if the loss is used for
model selection or tuning.

3.3 Large Impacts of Embedding Scaling
The last surprising detail which greatly influences
generalization performance of Transformers is the
choice of embedding scaling scheme. This is espe-

cially important for Transformers with absolute po-
sitional embedding, where the word and positional
embedding have to be combined. We experimented
with the following scaling schemes:

1. Token Embedding Upscaling (TEU). This is
the standard scaling used by Vaswani et al.
(2017). It uses Glorot initialization (Glorot
and Bengio, 2010) for the word embeddings.
However, the range of the sinusoidal posi-
tional embedding is always in [−1, 1]. Since
the positional embedding is directly added
to the word embeddings, this discrepancy can
make the model untrainable. Thus, the authors
upscale the word embeddings by

√
dmodel

where dmodel is the embedding size. Open-
NMT3, the framework used for the baseline
models for PCFG and COGS datasets respec-
tively by Hupkes et al. (2020) and Kim and
Linzen (2020), also uses this scaling scheme.

2. No scaling. It initializes the word embedding
with N (0, 1) (normal distribution with mean
0 and standard deviation of 1). Positional
embeddings are added without scaling.

3. Position Embedding Downscaling (PED),
which uses Kaiming initialization (He et al.,
2015), and scales the positional embeddings
by 1√

dmodel
.

The PED differs from TEU used in Vaswani
et al. (2017) in two ways: instead of scaling the em-
bedding up, PED scales the positional embedding
down and uses Kaiming instead of Glorot initializa-
tion. The magnitude of the embeddings should not
depend on the number of words in the vocabulary
but on the embedding dimension.

Table 2 shows the results. Although “no scaling”
variant is better than TEU on the PCFG test set,
it is worse on the COGS test set. PED performs
consistently the best on both datasets. Importantly,
the gap between the best and worst configurations
is large on the test sets. The choice of scaling
thus also contributes in the large improvements we
report over the existing baselines.

4 Results Across Different Datasets

In this section, we apply the methods we illustrated
in the previous section across different datasets. Ta-
ble 3 provides an overview of all improvements we

3https://opennmt.net/

https://opennmt.net/
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obtain on all considered datasets. Unless reported
otherwise, all results are the mean and standard
deviation of 5 different random seeds. If multi-
ple embedding scaling schemes are available, we
pick the best performing one for a fair compari-
son. Transformer variants with relative positional
embedding outperform the absolute variants on al-
most all tested datasets. Except for COGS and
CFQ MCD 1, the universal variants outperform the
standard ones. In the following, we discuss and
highlight the improvements we obtained for each
individual dataset.

4.1 SCAN
We focused on the length split of the dataset. We
show that it is possible to mitigate the effect of
overfitting to the absolute position of the EOS token
by using relative positional embedding. We already
discussed the details in Sec. 3.1 and Table 1.

4.2 CFQ
On the output length split of CFQ, our Universal
Transformer with absolute positional embedding
achieves significantly better performance than the
one reported in Keysers et al. (2020): 77% versus
∼ 66%4. Here, we were unable to identify the ex-
act reason for this large improvement. The only
architectural difference between the models is that
ours does not make use of any timestep (i.e. layer
ID) embedding. Also, the positional embedding
is only injected to the first layer in case of abso-
lute positional embeddings (Sec. 2.2). The relative
positional embedding variant performs even better,
achieving 81%. This confirms the importance of
using relative positional embedding as a default
choice for length generalization tasks, as we also
demonstrated on SCAN in Sec. 3.1.

On the MCD splits, our results slightly outper-
form the baseline in Keysers et al. (2020), as shown
in Table 3. Relative Universal Transformers per-
form marginally better than all other variants, ex-
cept for MCD 1 split, where the standard Trans-
former wins with a slight margin. We use hyper-
parameters from Keysers et al. (2020). We report
performance after 35k training training steps.

4.3 PCFG
The performance of different models on the PCFG
dataset is shown on Table 3. First of all, simply
by increasing the number of training epochs from

4As Keysers et al. (2020) only report charts, the exact value
is unknown.

25, used by Hupkes et al. (2020), to ∼237 (300k
steps), our model achieves 65% on the productiv-
ity split compared to the 50% reported in Hupkes
et al. (2020) and 87% compared to 72% on the
systematicity split. Furthermore, we found that
Universal Transformers with relative positional em-
beddings further improve performance to a large
extent, achieving 85% final performance on the
productivity and 96% on the systematicity split.
We experienced instabilities while training Trans-
formers with relative positional embeddings on the
productivity split; thus, the corresponding numbers
are omitted in Table 3 and Figure 6 in the appendix.

4.4 COGS

On COGS, our best model achieves the generaliza-
tion accuracy of 81% which greatly outperforms
the 35% accuracy reported in Kim and Linzen
(2020). As we discussed in Sec. 3.2, just by re-
moving early stopping in the setting of Kim and
Linzen (2020), the performance improves to 65%.
Moreover, the baseline with early stopping is very
sensitive to the random seed and even sensitive to
the GPU type it is run on. Changing the seed in the
official repository from 1 to 2 causes a dramatic
performance drop with a 2.5% final accuracy. By
changing the scaling of embeddings (Sec. 3.3), dis-
abling label smoothing, fixing the learning rate to
10−4, we achieved 81% generalization accuracy,
which is stable over multiple random seeds.

Table 3 compares different model variants. Stan-
dard Transformers with absolute and relative posi-
tional encoding perform similarly, with the relative
positional variant having a slight advantage. Here
Universal Transformers perform slightly worse.

4.5 Mathematics Dataset

We also test our approaches on subsets of Mathe-
matics Dataset (Saxton et al., 2019). Since train-
ing models on the whole dataset is too resource-
demanding, we only conduct experiments on two
subsets: “place_value” and “add_or_sub”.

The results are shown in Table 3. While we
can not directly compare our numbers with those
reported in Saxton et al. (2019) (a single model
is jointly trained on the whole dataset there), our
results show that relative positional embedding is
advantageous for the generalization ability on both
subsets.
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Table 3: Test accuracy of different Transformer (Trafo) variants on the considered datasets. See Sec. 4 for de-
tails. The last column shows previously reported accuracies. References: [1] Newman et al. (2020), [2] Keysers
et al. (2020), [3] https://github.com/google-research/google-research/tree/master/
cfq, [4] Hupkes et al. (2020), [5] Kim and Linzen (2020), [6] Saxton et al. (2019). Results marked with ∗
cannot be directly compared because of different training setups. ∼ denotes approximative numbers read from
charts reported in previous works.

Trafo Uni. Trafo Rel. Trafo Rel. Uni. Trafo Prior Work

SCAN (length cutoff=26) 0.30 ± 0.02 0.21 ± 0.01 0.72 ± 0.21 1.00 ± 0.00 0.00[1]

CFQ Output length 0.57 ± 0.00 0.77 ± 0.02 0.64 ± 0.06 0.81 ± 0.01 ∼ 0.66[2]

CFQ MCD 1 0.40 ± 0.01 0.39 ± 0.03 0.39 ± 0.01 0.39 ± 0.04 0.37± 0.02[3]

CFQ MCD 2 0.10 ± 0.01 0.09 ± 0.02 0.09 ± 0.01 0.10 ± 0.02 0.08± 0.02[3]

CFQ MCD 3 0.11 ± 0.00 0.11 ± 0.01 0.11 ± 0.01 0.11 ± 0.03 0.11± 0.00[3]

CFQ MCD mean 0.20 ± 0.14 0.20 ± 0.14 0.20 ± 0.14 0.20 ± 0.14 0.19± 0.01[2]

PCFG Productivity split 0.65 ± 0.03 0.78 ± 0.01 - 0.85 ± 0.01 0.50± 0.02[4]

PCFG Systematicity split 0.87 ± 0.01 0.93 ± 0.01 0.89 ± 0.02 0.96 ± 0.01 0.72± 0.00[4]

COGS 0.80 ± 0.00 0.78 ± 0.03 0.81 ± 0.01 0.77 ± 0.01 0.35± 0.06[5]

Math: add_or_sub 0.89 ± 0.01 0.94 ± 0.01 0.91 ± 0.03 0.97 ± 0.01 ∼ 0.91[6]∗

Math: place_value 0.12 ± 0.07 0.20 ± 0.02 - 0.75 ± 0.10 ∼ 0.69[6]∗

5 Related Work

Many recent papers focus on improving general-
ization on the SCAN dataset. Some of them de-
velop specialized architectures (Korrel et al., 2019;
Li et al., 2019; Russin et al., 2019; Gordon et al.,
2020; Herzig and Berant, 2020) or data augmenta-
tion methods (Andreas, 2020), others apply meta-
learning (Lake, 2019). As an alternative, the CFQ
dataset proposed in (Keysers et al., 2020) is gaining
attention recently (Guo et al., 2020; Furrer et al.,
2020). Mathematical problem solving has also be-
come a popular domain for testing generalization
of neural networks (Kaiser and Sutskever, 2016;
Schlag et al., 2019; Charton et al., 2021). The
PCFG (Hupkes et al., 2020) and COGS (Kim and
Linzen, 2020) are also datasets proposed relatively
recently. Despite increasing interests in systematic
generalization tasks, interestingly, no prior work
has questioned the baseline configurations which
could be overfitted to the machine translation tasks.

Generalizing to longer sequences have been
proven to be especially difficult. Currently only hy-
brid task-specific neuro-symbolic approaches can
solve it (Nye et al., 2020; Chen et al., 2020; Liu
et al., 2020). In this work, we focus on a subprob-
lem required for length generalization: the EOS
decision problem (Newman et al., 2020), and we
show that it can be mitigated by using relative posi-
tional embeddings.

The study of generalization ability of neural net-
works at different stages of training has been a

general topic of interest (Nakkiran et al., 2019;
Roelofs, 2019). Our analysis has shown that this
question is particularly relevant to the problem of
systematic generalization, as demonstrated by large
performance gaps in our experiments, which has
not been discussed in prior work.

Prior work proposed several sophisticated initial-
ization methods for Transformers (Zhang et al.,
2019; Zhu et al., 2021), e.g. with a purpose
of removing the layer normalization components
(Huang et al., 2020). While our work only revisited
basic scaling methods, we demonstrated their par-
ticular importance for systematic generalization.

In recent work,5 Ontañón et al. (2021) have also
focused on improving the compositional general-
ization abilities of Transformers. In addition to
relative positional encodings and Universal Trans-
formers, novel architectural changes such as "copy
decoder" as well as dataset-specific "intermediate
representations" (Herzig et al., 2021) have been
studied. However, other aspects we found crucial,
such as early stopping, scaling of the positional
embeddings, and the validation set issues have
not been considered. In consequence, our mod-
els achieve substantially higher performance than
the best results reported by Ontañón et al. (2021)
across all standard datasets: PCFG, COGS, and
CFQ (without intermediate representations).

Finally, our study focused on the basic Trans-
5Our work was submitted to EMNLP 2021 on May 17,

2021 and has been under the anonymity period until Aug. 25.
Ontañón et al. (2021) appeared on arXiv on Aug. 9, 2021.

https://github.com/google-research/google-research/tree/master/cfq
https://github.com/google-research/google-research/tree/master/cfq
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former architectures. However, the details dis-
cussed above in the context of algorithmic tasks
should also be relevant for other Transformer vari-
ants and fast weight programmers (Schmidhuber,
1992; Schlag et al., 2021; Irie et al., 2021), as well
as other architectures specifically designed for al-
gorithmic reasoning (Graves et al., 2016; Kaiser
and Sutskever, 2016; Csordás and Schmidhuber,
2019; Freivalds et al., 2019).

6 Conclusion

In this work we showed that the performance of
Transformer architectures on many recently pro-
posed datasets for systematic generalization can
be greatly improved by revisiting basic model and
training configurations. Model variants with rel-
ative positional embedding often outperform the
ones with absolute positional embedding. They
also mitigate the EOS decision problem, an impor-
tant problem previously found by Newman et al.
(2020) when considering the length generalization
of neural networks. This allows us to focus on the
problem of compositions in the future, which is the
remaining problem for the length generalization.

We also demonstrated that reconsidering early
stopping and embedding scaling can greatly im-
prove baseline Transformers, in particular on the
COGS and PCFG datasets. These results shed light
on the discrepancy between the model performance
on the IID validation set and the test accuracy on
the systematically different generalization split. As
consequence, currently common practice of vali-
dating models on the IID dataset is problematic.
We conclude that the community should discuss
proper ways to develop models for systematic gen-
eralization. In particular, we hope that our work
clearly demonstrated the necessity of a validation
set for systematic generalization in order to estab-
lish strong baselines and to avoid a false sense of
progress.
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A Evaluation Metrics

For all tasks, accuracy is computed on the sequence-
level, i.e. all tokens in the sequence should be cor-
rect for the output to be counted as correct. For the
losses, we always report the average token-wise
cross entropy loss.

B Hyperparameters

For all of our models we use an Adam opti-
mizer with the default hyperparameters of PyTorch
(Paszke et al., 2019). We only change the learn-
ing rate. We use dropout with probability of 0.1
after each component of the transformer: both af-
ter the attention heads and linear transformations.
We specify the dataset-specific hyperparameters
in Table 4. For all Universal Transformer experi-
ments, we use both the “No scaling” and the “Po-
sitional Embedding Downscaling” methods. For
the standard Transformers with absolute positional
embedding we test different scaling variants on dif-
ferent datasets shown in Table 6. When multiple
scaling methods are available, we choose the best
performing ones when reporting results in Table 3.
We always use the same number of layers for both
encoder and decoder. The embedding and the final
softmax weights of the decoder are always shared
(tied embeddings).

The number of parameters for different models
and the corresponding to representative execution
time is shown in Table 5.

C Relative Positional Embedding

We use the relative positional embedding variant
of self attention from Dai et al. (2019). Here, we
use a decomposed attention matrix of the following
form:

Arel
i,j = H>i W>

q Wk,EHj︸ ︷︷ ︸
(a)

+H>i W>
q Wk,PPi−j︸ ︷︷ ︸
(b)

+ u>Wk,EHj︸ ︷︷ ︸
(c)

+v>Wk,PPi−j︸ ︷︷ ︸
(d)

where Hi is the hidden state of the ith column of
the Transformer, Pi is an embedding for position
(or in this case distance) i. Matrix Wq maps the
states to queries, Wk,E maps states to keys, while
Wk,P maps positional embedding to keys. u and v
are learned vectors. Component (a) corresponds to

content-based addressing, (b) to content based rela-
tive positional addressing, (c) represents a global
content bias, while (d) represents a global position
bias.

We use sinusoidal positional embedding Pi ∈
Rdmodel . The relative position, i, can be both positive
and negative. Inspired by Vaswani et al. (2017), we
define Pi,j as:

Pi,j =

{
sin(i/100002j/dmodel), if j = 2k

cos(i/100002j/dmodel) if j = 2k + 1

(1)

Prior to applying the softmax, Arel
i,j is scaled by

1√
dmodel

, as in Vaswani et al. (2017).
We never combine absolute with relative posi-

tional embedding. In case of a relative positional
variant of any Transformer model, we do not add
absolute positional encoding to the word embed-
digs. We use relative positional attention in every
layer, except at the interface between encoder and
decoder, where we use the standard formulation
from Vaswani et al. (2017), without adding any
positional embedding.

D Embedding Scaling

In this section, we provide full descriptions of em-
bedding scaling strategies we investigated. In the
following, wi denotes the word index at input posi-
tion i, Ew ∈ Rdmodel denotes learned word embed-
ding for word index w. Positional embedding for
position i is defined as in Eq. 1.

Token Embedding Upscaling. Vaswani et al.
(2017) combine the input word and positional
embeddings for each position i as Hi =√
dmodelEwi + Pi. Although in the original

paper, the initialization of E is not discussed,
most implementations use Glorot initialization
(Glorot and Bengio, 2010), which in this case
means that each component of E is drawn from
U(−

√
6

dmodel+Nwords
,
√

6
dmodel+Nwords

) where U(a, b)
represents the uniform distribution in range [a, b].

No scaling. This corresponds to how PyTorch
initializes embedding layers by default: each el-
ement of E is drawn from N (0, 1). N (µ, σ) is
the normal distribution with mean µ and standard
deviation of σ. The word embeddings are com-
bined with the positional embeddings without any
scaling: Hi = Ewi + Pi
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Table 4: Hyperparameters used for different tasks. We denote the feedforward size as dFF. For the learning rate of
CFQ (denoted by *), the learning rate seemingly differs from Keysers et al. (2020). In fact, although Keysers et al.
(2020) use Noam learning rate scheduling, scaling by 1√

dmodel
is not used, so we had to compensate for this to make

them functionally equivalent.

dmodel dFF nhead nlayers batch size learning rate warmup scheduler

SCAN 128 256 8 3 256 10−3 - -
CFQ - Non-universal 128 256 16 2 4096 0.9* 4000 Noam
CFQ - Universal 256 512 4 6 2048 2.24* 8000 Noam
PCFG 512 2048 8 6 64 10−4 - -
COGS 512 512 8 2 128 10−4 - -
COGS Noam 512 512 8 2 128 2 4000 Noam
Mathematics 512 2048 8 6 256 10−4 - -

Table 5: Model sizes and execution times. One representative split is shown per dataset. Other splits have the same
number of parameters, and their execution time is in the same order of magnitude.

Dataset Model No. of params Execution time GPU type

SCAN

Standard 992k 1:30

Titan X MaxwellUniversal 333k 1:15
Relative Pos. 1.1M 1:45
Universal, Relative Pos. 366k 1:30

CFQ MCD 2

Standard 685k 10:00

Tesla V100-SXM2-32GB-LSUniversal 1.4M 12:00
Relative Pos. 751k 14:15
Universal, Relative Pos. 1.5M 14:00

PCFG Systematicity

Standard 44.7M 20:30

Tesla V100-PCIE-16GBUniversal 7.9M 17:00
Relative Pos. 47.8M 21:30
Universal, Relative Pos. 8.4M 21:30

COGS

Standard 9.3M 17:30

Tesla V100-SXM2-32GB-LSUniversal 5.1M 17:15
Relative Pos. 10.3M 21:00
Universal, Relative Pos. 5.6M 20:00

Math: add_or_sub

Standard 4.4M 8:00

Tesla P100-SXM2-16GBUniversal 7.4M 7:30
Relative Pos. 4.7M 8:30
Universal, Relative Pos. 7.9M 8:00

Table 6: Scaling types used for standard transform-
ers with absolute positional embedding on different
datasets. TEU denotes Token Embedding Upscaling,
PED denotes Position Embedding Downscaling.

TEU No scaling PED

SCAN X X
CFQ MCD X X
CFQ Length X X X
PCFG Productivity X X X
PCFG Systematicity X X X
COGS X X X
Mathematics X X

Position Embedding Downscaling. We propose
to use Kaiming initialization (He et al., 2015)
for the word embeddings: each element of E ∼
N (0, 1√

dmodel
). Instead of scaling up the word em-

beddings, the positional embeddings are scaled
down: Hi = Ewi +

1√
dmodel

Pi

E Analyzing the Positively Correlated
Loss and Accuracy

In Sec. 3.2, we reported that on the generaliza-
tion splits of some datasets both the accuracy and
the loss grows together during training. Here we
further analyze this behavior in Figure 5 (see the
caption).

F Accuracies on the IID Split

To show that the IID accuracy does not provide any
useful signal for assessing the quality of the final
model, we report IID accuracies of the models from
Table 3 in Table 8. We only show datasets for which
an IID validation set is available in the same split
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Table 7: Test accuracy of different Transformer (Trafo) variants and different initializations on the considered
datasets. This is a more detailed version of Table 3, with detailed scores for all initialization variants. The last col-
umn shows previously reported accuracies. References: [1] Newman et al. (2020), [2] Keysers et al. (2020),
[3] https://github.com/google-research/google-research/tree/master/cfq, [4] Hup-
kes et al. (2020), [5] Kim and Linzen (2020), [6] Saxton et al. (2019). Results marked with ∗ cannot be directly
compared because of different training setups. ∼ denotes imprecise numbers read from charts in prior works. For
the configuration marked by †, the results are obtained by running 8 seeds from which 3 crashed, resulting in 5 use-
ful runs reported below. Crashed runs suddenly drop their accuracy to 0, which never recovers during the training.
The reason for the crashing is the overly big learning rate (2.24, from the baseline). We run another 10 seeds with
learning rate of 2.0, obtaining similar final accuracy of 0.75± 0.02, but without any crashed runs.

Init Trafo Uni. Trafo Rel. Trafo Rel. Uni. Trafo Reported

SCAN (length cutoff=26) PED 0.30 ± 0.02 0.21 ± 0.01 - -
0.00[1]No scaling 0.15 ± 0.07 0.14 ± 0.05 0.72 ± 0.21 1.00 ± 0.00

CFQ Output length
PED 0.56 ± 0.02 0.60 ± 0.34 - -

∼ 0.66[2]TEU 0.57 ± 0.00 0.74 ± 0.02 † - -
No scaling 0.53 ± 0.04 0.77 ± 0.02 0.64 ± 0.06 0.81 ± 0.01

CFQ MCD 1 PED 0.36 ± 0.02 0.37 ± 0.05 - -
0.37± 0.02[3]No scaling 0.40 ± 0.01 0.39 ± 0.03 0.39 ± 0.01 0.39 ± 0.04

CFQ MCD 2 PED 0.08 ± 0.01 0.09 ± 0.01 - -
0.08± 0.02[3]No scaling 0.10 ± 0.01 0.09 ± 0.02 0.09 ± 0.01 0.10 ± 0.02

CFQ MCD 3 PED 0.10 ± 0.00 0.11 ± 0.00 - -
0.11± 0.00[3]No scaling 0.11 ± 0.00 0.11 ± 0.01 0.11 ± 0.01 0.11 ± 0.03

CFQ MCD mean PED 0.18 ± 0.13 0.19 ± 0.14 - -
0.19± 0.01[2]No scaling 0.20 ± 0.14 0.20 ± 0.14 0.20 ± 0.14 0.20 ± 0.14

PCFG Productivity split
PED 0.65 ± 0.03 0.78 ± 0.01 - -

0.50± 0.02[4]TEU 0.47 ± 0.27 0.78 ± 0.01 - -
No scaling 0.63 ± 0.02 0.76 ± 0.01 - 0.85 ± 0.01

PCFG Systematicity split
PED 0.87 ± 0.01 0.93 ± 0.01 - -

0.72± 0.00[4]TEU 0.75 ± 0.08 0.92 ± 0.01 - -
No scaling 0.86 ± 0.02 0.92 ± 0.00 0.89 ± 0.02 0.96 ± 0.01

COGS
PED 0.80 ± 0.00 0.77 ± 0.02 - -

0.35± 0.06[5]TEU 0.78 ± 0.03 0.78 ± 0.03 - -
No scaling 0.62 ± 0.06 0.51 ± 0.07 0.81 ± 0.01 0.77 ± 0.01

Math: add_or_sub PED 0.80 ± 0.01 0.92 ± 0.02 - - ∼ 0.91[6]∗No scaling 0.89 ± 0.01 0.94 ± 0.01 0.91 ± 0.03 0.97 ± 0.01

Math: place_value PED 0.00 ± 0.00 0.20 ± 0.02 - - ∼ 0.69[6]∗No scaling 0.12 ± 0.07 0.12 ± 0.01 - 0.75 ± 0.10

https://github.com/google-research/google-research/tree/master/cfq
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(b) COGS: Generalization test set

Figure 4: Relationship between the loss and accuracy
on (a) IID validation set and (b) the generalization test
set on COGS (it comes without a validation set for the
generalization splits). Standard Transformers are used.
The color shows the training step. Five runs are shown.
The loss is shown on a logarithmic scale. On the IID
validation set (a), the accuracy increases when the loss
decreases, as expected. In contrast, on the generaliza-
tion split (b), high accuracy corresponds to higher loss.
For generalization validation loss versus generalization
accuracy on CFQ MCD 1, see Figure 2. For the analy-
sis of the underlying reason, see Figure 5.

as the one reported in Table 3. This complements
the IID and generalization accuracies on COGS
and PCFG with different embedding scalings we
reported in Table 2. With the exception of standard
Transformer on PCFG and the “place_value” mod-
ule of the Mathematics dataset, all other validation
accuracies are 100%, while their generalization
accuracy vary wildly.

G Additional Results

Figure 4 shows that both the test loss and accuracy
grows on COGS dataset during training. Addition-
ally, it shows the expected, IID behavior on the
same dataset for contrast.

Figure 6 shows the relative change in conver-
gence speed when using relative positional embed-
dings.
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(c) Histogram of “bad” loss (first and last measurement)

Figure 5: Analysis of the growing test loss on the sys-
tematically different test set on CFQ MCD 1 split. We
measure the loss individually for each sample in the test
set. We categorize samples as “good” if the network
output on the corresponding input matched the target
exactly any point during the training, and as “bad” oth-
erwise. (a) The total loss (increasing) can be decom-
posed to the loss of the “good” samples (decreasing),
and the loss of the “bad” samples (increasing). (b, c)
The histogram of the loss for the “good” and “bad” sam-
ples at the beginning and end of the training. The loss
of the “good” samples concentrates near zero, while the
“bad” samples spread out and the corresponding loss
can be very high. The net effect is a growing total loss.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

PCFG
CFQ MCD 1
CFQ MCD 2
CFQ MCD 3

COGS
Math: add or sub
Math: place value Trafo

Uni. Trafo

Figure 6: Relative change in convergence speed by
using relative positional embeddings instead of abso-
lute. Convergence speed is measured as the mean num-
ber of steps needed to achieve 80% of the final perfor-
mance of the model. Relative variants usually converge
faster. Universal Transformers benefit more than the
non-universal ones. The non-universal variants are not
shown for PCFG and “Math: place_value”, because the
relative variants do not converge (see Sec. 3.1).
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Table 8: IID validation accuracy for datasets where IID test set is available. CFQ and PCFG are not shown because
they require the model to be trained on a separate, IID split. The other settings correspond to Table 3 in the main
text. Generalization split test accuracies are shown in parenthesis for easy comparison.

Transformer Uni. Transformer Rel. Transformer Rel. Uni. Transformer

SCAN (length cutoff=26) 1.00 ± 0.00 (0.30) 1.00 ± 0.00 (0.21) 1.00 ± 0.00 (0.72) 1.00 ± 0.00 (1.00)

COGS 1.00 ± 0.00 (0.80) 1.00 ± 0.00 (0.78) 1.00 ± 0.00 (0.81) 1.00 ± 0.00 (0.77)

Math: add_or_sub 1.00 ± 0.00 (0.89) 1.00 ± 0.00 (0.94) 1.00 ± 0.00 (0.91) 1.00 ± 0.00 (0.97)
Math: place_value 0.80 ± 0.45 (0.12) 1.00 ± 0.00 (0.20) - 1.00 ± 0.00 (0.75)

Table 9: Accuracy of different Transformer variants on CFQ. “Big” variant has a batch size of 4096, and is trained
with Noam scheduler (learning rate 0.9). “Small” variant has a batch size of 512 and a fixed learning rate of 10−4.
The ratio of accuracies of “small” and “big” variants are also shown in the “Ratio” column, indicating the relative
performance drop caused by decreasing the batch size. Relative variants experience less accuracy drop.

Variant Transformer Rel. Transformer Uni. Transformer Rel. Uni. Transformer

CFQ MCD 1
Big 0.40± 0.01 0.39± 0.02 0.41± 0.03 0.42± 0.02
Small 0.26± 0.02 0.32± 0.01 0.28± 0.00 0.36± 0.01

Ratio 0.65 0.80 0.68 0.85

CFQ MCD 2
Big 0.10± 0.01 0.09± 0.01 0.09± 0.00 0.09± 0.02
Small 0.05± 0.01 0.07± 0.01 0.04± 0.01 0.10± 0.01

Ratio 0.51 0.76 0.50 1.05

CFQ MCD 3
Big 0.11± 0.00 0.11± 0.01 0.11± 0.01 0.12± 0.02
Small 0.09± 0.00 0.09± 0.00 0.09± 0.01 0.11± 0.01

Ratio 0.80 0.85 0.85 0.98

CFQ Out. len.
Big 0.57± 0.02 0.64± 0.04 0.76± 0.03 0.81± 0.02
Small 0.41± 0.03 0.51± 0.02 0.55± 0.02 0.70± 0.03

Ratio 0.72 0.80 0.73 0.87

Table 10: Dataset statistics. “#” denotes number of samples. Vocabulary size shows the union of input and output
vocabularies. Train and test length denotes the maximum input/output length in the train and test set, respectively.

Dataset # train # IID valid. # gen. test # gen. valid. Voc. size Train len. Test len.

Scan (length cutoff=26) 16458 1828 2624 - 19 9/26 9/48

CFQ MCD 1 95743 - 11968 11968 181 29/95 30/103
CFQ MCD 2 95743 - 11968 11968 181 29/107 30/91
CFQ MCD 3 95743 - 11968 11968 181 29/107 30/103
CFQ Output Length 100654 - 9512 9512 181 29/77 29/107

PCFG Productivity 81010 - 11333 - 535 53/200 71/736
PCFG Systematicity 82168 - 10175 - 535 71/736 71/496

COGS 24155 3000 21000 - 871 22/153 61/480

Math: add_or_sub 1969029 10000 10000 - 69 60/19 62/23
Math: place_value 1492268 9988 10000 - 69 50/1 52/1


