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Abstract

Cross-domain Named Entity Recognition
(NER) transfers the NER knowledge from
high-resource domains to the low-resource
target domain. Due to limited labeled re-
sources and domain shift, cross-domain NER
is a challenging task. To address these chal-
lenges, we propose a progressive domain
adaptation Knowledge Distillation (KD) ap-
proach – PDALN. It achieves superior domain
adaptability by employing three components:
(1) Adaptive data augmentation techniques,
which alleviate cross-domain gap and label
sparsity simultaneously; (2) Multi-level Do-
main invariant features, derived from a multi-
grained MMD (Maximum Mean Discrepancy)
approach, to enable knowledge transfer across
domains; (3) Advanced KD schema, which
progressively enables powerful pre-trained lan-
guage models to perform domain adaptation.
Extensive experiments on four benchmarks
show that PDALN can effectively adapt high-
resource domains to low-resource target do-
mains, even if they are diverse in terms and
writing styles. Comparison with other base-
lines indicates the state-of-the-art performance
of PDALN.

1 Introduction

Named Entity Recognition (NER) is typically
framed as a sequence labeling task that targets to
locate and classify named entities in text into prede-
fined semantic types, such as Person, Organization,
Location, etc. NER is a fundamental task in in-
formation extraction (Karatay and Karagoz, 2015)
and text understanding (Krasnashchok and Jouili,
2018). The effectiveness of most existing NER
models depends on sufficient labeled data, which
is time-consuming and labor-intensive. Current re-
search proposes cross-domain NER, which enables
NER on the low-resource target domain by trans-
ferring knowledge from other high-resource source
domains.

However, it is challenging to build a cross-
domain NER component with high precision and
recall, due to the domain shift problem (Ben-David
et al., 2010). When casting the cross-domain NER
as a transfer learning problem, most solutions (He
and Sun, 2017; Yang et al., 2017; Aguilar et al.,
2017; Lee et al., 2018; Liu et al., 2020b) require
high-quality cross-domain features for knowledge
transfer. Limited labeled data prohibit transfer
learning from extracting informative features. Be-
sides, it is hard to find a single training dataset
covering all the required NER types. Even if words
overlap across domains, their combination or usage
is different from each other.

Domain adaptation (Sun et al., 2015) is widely
studied to solve the domain shift issue. Existing
approaches mainly introduce either word-level or
discourse-level domain adaptations to enable cross-
domain NER. To mitigate the word-level discrep-
ancy, previous endeavors propose distributed word
embedding (Kulkarni et al., 2016), label-aware
maximum mean discrepancy estimation (Wang
et al., 2018), and projecting learning (Lin and Lu,
2018). As to the discourse-level discrepancy, ex-
isting approaches introduce multi-level adaptation
layers (Lin and Lu, 2018), tensor decomposition
(Jia et al., 2019), and multi-task learning with ex-
ternal information (Liu et al., 2020b; Aguilar et al.,
2017). However, those methods require sufficient
labeled data, which hinders their performances un-
der low-resource scenarios. To tackle both label
sparsity and domain shift problem, existing ap-
proaches (Liang et al., 2020; Simpson et al., 2020;
Cao et al., 2020) exploit external resources to gen-
erate pseudo labels for the low-resource domain.
Nevertheless, the less confident labels may deterio-
rate the robustness of models because of noise.

In this paper, we propose a progressive domain
adaptation cross-domain NER model PDALN. It
introduces a novel domain adaptation component,
which is enhanced by a progressive KD framework.
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PDALN addresses both word- and discourse-level
domain adaptation on two low-resource scenarios:
unsupervised and semi-supervised cross-domain
NER. We first augment mix-domain training data
by cross-domain anchor pairs, which alleviates the
sparsity of annotated target domain. Next, we en-
able knowledge transfer across domains through
domain invariant features learned from a multi-
grained MMD adaptation metric. Additionally, we
fuse contrastive learning (Hadsell et al., 2006) with
a pre-trained model to extract robust features. Fi-
nally, instead of directly fine-tuning the model on
the augmented adaptive data under the MMD-based
metric, we integrate the cross-domain NER model
into a sequential KD framework to learn a low-
capacity student model. The low-capacity student
can avoid over-fitting on limited annotated data
because it progressively only cares about general
cross-domain features retrieved by its sequential
teachers to increase model confidence over domain
invariant features. Our main contributions are sum-
marized as follows:
• We propose a low-resource cross-domain NER

model, PDALN, to transfer multi-level domain
invariant knowledge from high-resource source
domain to minimal-resource target domain with-
out external retrieval auxiliary. Besides, PDALN
can perform on both zero-resource and minimal-
resource scenarios.

• We design an adaptive data augmentation for the
low-resource domains. Moreover, we propose a
multi-grained domain adaptation metric on the
adaptive data to explore both word-level and
discourse-level domain invariant features. We
exploit a contrastive-learning fused pre-trained
language model in a progressive self-training
manner to enhance feature extraction.

• We conduct extensive experiments on four bench-
marks to show our new state-of-the-art perfor-
mance on two low-resource settings, including
unsupervised and semi-supervised cross-domain
NER.

2 Problem Definition

NER is typically formulated as a sequence labeling
task. Based on the BIO schema 1, NER is to assign
a sequence of labels Y = [y1, ..., yN ] to a given
sentence X = [x1, ..., xN ] with N tokens. An
entity is a span of tokens e = [xi, ...xj ](1 ≤ i ≤
j ≤ N) associated with an entity type.

1https://en.wikipedia.org/wiki/Inside-outside-
beginning_(tagging)

In unsupervised NER domain adaptation, we are
given source domain {(X sm,Ysm)}Ns

m=1 with Ns la-
beled examples, and target domain data {X tm}

Nt
m=1

withNt unlabeled testing examples. The source do-
main and target domain are characterized by prob-
ability distributions Ps and Pt, respectively. We
aim to construct a model which can learn transfer-
able features to bridge the cross-domain discrep-
ancy, and build a classifier F = f(X ; θ) which
can minimize target prediction error using source
supervision. For low-resource cross-domain NER,
it is a semi-supervised adaptation where the target
has a few labeled examples. We denote the source
domain data Ds = {(X sm,Ysm)}Ns

m=1, unannotated
target data Dtu = {X tui }

Nu
i=1, and annotated target

data Dta = {(X taj ,Y
ta
j )}Na

j=1. Dt = Dtu ∪Dta is
the total target data.

3 Preliminary

3.1 Base Model

To obtain expressive sentence features, we adopt a
pre-trained language model (e.g. BERT(Devlin
et al., 2018)) to encode the sentence X =
[xCLS, x1, ..., xN , xSEP] (after padding tokens
in BERT) into sentence representation h =
[hCLS, h1, ..., hN , hSEP]. The task objective is de-
note as CRF loss, where Lcrf = log p(Y|X ).

p(Y|X ) =
1

Z

N∏
i=1

φn(yi|hi,V)
N−1∏
i=1

φe(yi,i+1|A),

(1)

Lcrf =
N∑
i=1

φn(yi|hi,V) +
N−1∑
i=1

Ayi,yi+1 + logZ,

(2)
where log φn(yi = j|hi,V) = exp(VT

j hi), hi is
the encoded contextualized word vector, V is the
weight matrix. A is the parameter for the transition
matrix φe. Z(·) is the normalization constant.

3.2 Maximum Mean Discrepancy (MMD)
Measurement

The MMD is defined in particular function spaces
Hk that measures the difference in cross domain
distributions (Ps, Pt). Hk is the Reproducing Ker-
nel Hilbert Space (RKHS) endowed with a charac-
teristic kernel k. The squared formulation of MMD,
d2
k(Ps, Pt), is defined as

d2
k(Ps, Pt) = ‖EPs [ϕ(Ds)]−EPt [ϕ(Dt)]‖2Hk

,
(3)
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Figure 1: Toy illustration of the method. (A) There are two distributions of sentence embeddings. Data points in
red represent the source dataset, and those in blue are the target. The oversized dots are the samples selected from
each domain to construct the adaptive data. (B) The adaptive data is the yellow stars that form the adaptive space in
gray. Each yellow star corresponds to an oversized dot near it. The adaptive data usually share the same sentence
feature but perform cross-domain word replacement, like switched words in yellow. (C) Finally, we fine-tune the
pre-trained model by adaptive data and MMD-based domain invariant features. In effect, the adaptive space works
to guide the model to explore the target domain space as much as possible. The MMD-based domain adaptation
approach gathers data points with similar sentence features. The domain-shared knowledge is the domain invariant
features learned from these gathering points nearby the bridge.

where ϕ : X → Hk. The most important property
is that Ps = Pt iff d2

k(Ps, Pt) = 0. The character-
istic kernel associated with the feature map ϕ and
Gaussian Kernel k(Ds,Dt).

To calculate MMD loss in cross-domain NER,
we first compute the squared formulation of MMD
between the BERT representations of source/target
samples:

d2
k(H

s,Ht) =
1

(N s)2

Ns∑
i,j=1

k(hsi , h
s
j)+

1

(N t)2

Nt∑
i,j=1

k(hti, h
t
j)−

2

N sN t

NsNt∑
i,j=1

k(hsi , h
t
j),

(4)
where Hs and Ht are sets of the BERT embeddings
hs and ht with corresponding number N s and N t.

4 The Proposed Model

In this section, we present the structure of the pro-
posed model. We first introduce domain adaptation
components. On the one hand, we design an adap-
tive data augmentation to tackle the label sparsity
issue. On the other hand, we introduce a multi-
grained MMD metric on the augmented adaptive
data to extract domain invariant features. There is
an intuitive illustration in Figure 1 to show how our
domain adaption approach mitigates the domain
shifting. Besides, we exploit the power of the pre-
trained model to capture expressive data features.
We integrate a sequential self-training strategy to
progressively and effectively perform our domain
adaption components, as shown in Figure 2. We
describe the details of cross-domain adaptation in

Section 4.1 and progressive self-training for low-
resource domain adaptation in Section 4.2.

4.1 Cross-domain Adaptation

When labels are insufficient in the target domain,
most cross-domain NER models are vulnerable
to over-fitting, thus yielding unsatisfactory perfor-
mance. Therefore, we augment mix-domain data
by Cross-Domain Anchor pairs. Those augmented
data is defined as adaptive data, which can alle-
viate the data insufficiency problem. Our adaptive
data is designed to simultaneously mitigate the do-
main gaps on both word-level and discourse-level.
Those adaptive data form an adaptive space, as
shown in Figure 1, which bridge two domains for
cross-domain knowledge transferring.

4.1.1 Adaptive Data Augmentation
We first give the definition of Cross-Domain An-
chor. An entity in source domain is denoted by
es whose labels are [ysis , ...y

s
js ]. A target entity is

et whose labels are [ytit , ...y
t
jt ]. Cross-Domain An-

chor pairs are MAnchor = {(es, et), ysis = ytit}.
The cross-domain anchor is a relationship between
two entities from different domains. ysis = ytit de-
notes two entities belong to same entity type when
their first label is the same. Intuitively, the anchor
pairs address the cross-domain word discrepancy
by sharing words per NER type cross domains.

Then, we use the cross-domain anchor pairs
MAnchor to create adaptive data Daug. Suppose
we have ep, where p ∈ {s, t} and ep ∈ X p =
[xp1, ..., x

p
ip , ...x

p
jp , ..., x

p
|X p|]. Given an anchor pair
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Figure 2: Unsupervised and Semi-supervised Training Schema. Semi-supervised Training mainly contains pro-
gressive Knowledge Distillation strategy with adaptive data augmentation in 4.2. The Contrastive augmentation
denotes the data augmentation mentioned in 4.2.1.

(ep, eq) ∈ MAnchor, where q ∈ {s, t} and q 6= p,
we replace ep inX p with eq as the augmented adap-
tive data X p′ = [xp1, ..., x

q
iq , ...x

q
jq , ..., x

p
|X p|]. Fi-

nally, we obtain the adaptive data Daug = {X p′}.
Intuitively, the augmented adaptive sentences are

regarded as mix-domain augmented data that share
sentence pattern cross domains. Such semantically
or syntactically similar sentences are the adaptive
data, which can explore the unknown area in the
target domain. The grey space, shown in Figure
1 (b), denotes the adaptive space, which is com-
prised of adaptive sentences like " The Australia
firm’s parent company." and "San Francisco will
play three one-day internationals.". These two sen-
tences are augmented by the Cross-Domain An-
chor pair ("Australia", "San Francisco") which are
both assigned to the label "LOC". When model
fine-tuning is processed on the adaptive data, the
model can benefit from the cross-domain features
acquired from the adaptive space to improve model
generalizability on the low-resource target domain.

4.1.2 Multi-grained MMD for
Domain-invariant Features

As aforementioned, the adaptive space function is
regarded as a cross-domain bridge. In this part, we
seek to strengthen its domain adaptability and fur-
ther aggregate the cross-domain features. We adapt
domain-adaptation MMD (Long et al., 2015) to
gather data points with similar word and sentence
features, as shown in Figure 1 (c). Since MMD is
to compute the norm of the difference between two
domain means, MMD-based NER objective can
thus learn both discriminative and domain invari-

ant representations. We propose the multi-grained
MMD method to simultaneously alleviate both the
word-level and discourse-level discrepancy.

To distinguish the adaptation on word-level and
discourse-level, we propose word MMD loss and
sentence MMD loss, denoted by LwMMD and LdMMD
respectively.

LdMMD(Ds,Dt) = d2
k(H

s
CLS,H

t
CLS), (5)

where HCLS is the set of CLS token embeddings.
CLS is the sentence pool output for the token
CLS in pre-trained language model. The word
level MMD loss is denoted by the same label
y ∈ label = {B-X, I-X,O}:
LwMMD(Ds,Dt) =

∑
y∈label

µyd
2
k(Hy(D

s),Hy(D
t)),

(6)
where µy is the corresponding coefficient. Hy are
the set of token embeddings with the label y.

Finally, the representations of a sentence and its
tokens are the domain invariant features, which cap-
ture the cross-domain knowledge under the guide
of LdMMD and LwMMD. As shown in Figure 1 (c), the
domain invariant features work to gather samples
around the adaptive space to assist adaptation on
both source and target domains.

4.2 Self-training for Low-Resource Domain
Adaptation(DA)

4.2.1 Robust Feature Adaptation
Considering limited vocabulary and noise data sam-
ples on both source and target domains, we adopt
contrastive learning (Hadsell et al., 2006; Ye et al.,
2020; Chen et al., 2020; Liu et al., 2020a; Wu
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et al., 2020) to extract robust features through text
augmentation like synonym replacement(Wu et al.,
2020) and span deletion (Wei and Zou, 2019). We
construct a distorted dataset Dc = {(X ′,Y ′)} over
a given dataset D = {(X ,Y)}.

Lc = − log
exp(z · z̄)/τ∑

zi∈{z̄}∪Zneg exp(z · zi/τ)
, (7)

where z = W>hCLS is a mapping vector of a
sentence X . W is a trainable parameter. z̄ =
W>h̄CLS is the mapping vector of X ′ that is aug-
mented by operating synonym replacement or span
deletion on X . Zneg is constructed by other sen-
tences in D∪Dc except X and X ′. τ is a tempera-
ture hyper-parameter.

4.2.2 Low-Resource Objectives
To address the low-resource scenarios, we consider
both zero-resource and minimal-resource cross-
domain NER training settings. We first perform the
base model on both the source domain and target
domain to seek the cross-domain bridge through
multi-grained MMD adaptation. The unsuper-
vised cross-domain NER loss is denoted as:
LunDA = α′LdMMD(Ds,Dtu) + Lcrf + Lc. (8)

which is free of any annotated target exam-
ples but still enables domain adaptation by
LdMMD(Ds,Dtu). The semi-supervised cross-
domain NER objective is denoted as:

LsemiDA = α · LdMMD(Ds,Dt)+

β · LwMMD(Ds,Dta) + Lcrf + Lc,
(9)

where α and β are the hyperparameters to balance
the multi-grained MMD loss terms.

4.2.3 Progressive Joint KD and DA
We propose a progressive domain adaptation by
integrating a sequential teacher-student framework
to prevent the model from over-fitting on limited
labeled data and augmented adaptive data. The
intuition is that the student easily overlooks “prob-
lematic" examples but learns things that generalize
well. Therefore, the KD framework enjoys the
merits that it progressively improves the domain
adaptation confidence over data.

The cross-domain NER loss over adaptive data
is denoted as:

LsemiDA = α · LdMMD(Daug,Dt)+

β · LwMMD(Daug,Dta) + Lcrf + Lc.
(10)

In the progressive KD framework, we use fθtea
and fθstu to denote teacher and student models,

respectively. Suppose fθ̂ is the base model learned
by the objective in Equation 9, we initial the teacher
model and the student model as: θ(0)

tea = θ
(0)
stu = θ̂.

At t-th iteration, the student model loss is de-
noted as:

Ldistill = (1− γ) · LsemiDA+

γ · 1

N

N∑
n=1

−f
θ
(t)
tea,n

(X ) log fθstu,n(X ),
(11)

Where X ∈ Daug, containing N entities. f·,n(X )
means the output of entity n.

The updated model is θ̂(t)
stu = arg minθstu Ldistill.

Finally, we update the teacher-student model for
the (t+ 1)-th iteration by: θ(t+1)

tea = θ
(t+1)
stu = θ̂

(t)
stu.

5 Experiments

In this section, we evaluate PDALN and other base-
lines on four public benchmarks. We conduct two
groups of comparison experiments for unsuper-
vised and semi-supervised cross-domain NER sep-
arately. We also conduct further ablation studies
and hyperparameter studies to validate the efficacy
of the domain adaptation approaches.

5.1 Datasets
The datasets in the source and target domains
contain the same four types of entities, namely,
PER (person), LOC (location), ORG (organiza-
tion), and MISC (miscellaneous). Our source do-
main is CoNLL-2003 English NER data (Sang and
De Meulder, 2003) containing 15.0K/3.5K/3.7K
samples for the training/validation/test sets. We
consider four target doamins: (1) SciTech (Jia
et al., 2019) News with 2K sentences; (2) WNUT
2016 (Strauss et al., 2016) containing 2400 tweets
(comprising 34k tokens) with 10 entity types; (3)
Webpage (Ratinov and Roth, 2009) comprising 20
webpages and 783 entities with documents vary-
ing from personal, academic, to computer science
conference; (4) Wikigold (Balasuriya et al., 2009),
a set of Wikipedia articles with 40k tokens. To
make the datasets consistent, we convert 10 types
in WNUT 2016 NER into four CoNLL03 entity
types.

5.2 Baselines
We compare PDALN with the following state-of-
the-art cross-domain NER models:
BiLSTM+CRF (Lample et al., 2016) harnesses
character-level Bi-LSTMs to capture the morpho-
logical and orthographic features and word-level
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Bi-LSTMs to integrate the sentence grammar fea-
ture. At last, the model stacks a CRF layer to
predict the labels considering their dependencies.
BERT+CRF replaces traditional BiLSTM compo-
nent with the powerful pre-trained language model
BERT to obtain more informative and contextual
enhanced word representations.
La-DTL (Simpson et al., 2020) proposes the label-
aware MMD metric learning to mitigate the word
distribution discrepancy.
DATNet (Zhou et al., 2019) proposes a generalized
resource-adversarial discriminator to capture the
share feature space across different domains. Then
the domain shared space guides the target domain
prediction on NER task.
JIA2019 (Jia et al., 2019) combines language
model and NER task to construct multi-task learn-
ing structure, and then exploits tensor decomposi-
tion to learn the task embedding for cross-domain
NER prediction over such task embeddings.
Multi-Cell (Jia and Zhang, 2020) proposes a
multi-cell compositional LSTM structure for cross-
domain NER under the multi-task learning strategy.

In addition, we compare the evaluation of two
variants of PDALN. We replace the sequential
KD framework in the self-training stage with MT
and VAT, Mean Teacher strategy (Tarvainen and
Valpola, 2017) and Virtual Adversarial Training
(Miyato et al., 2018), respectively.

5.3 Training and Implementation Details
We adopt the Adam optimization algorithm with
a decreasing learning rate of 0.00005. We utilize
the pre-trained BERT (BERT-base, cased) where
the number of transformer blocks is 12, the hidden
layer size is 768, and the number of self-attention
heads is 12. Each batch contains 32 examples,
with a maximum encoding length of 128. The
coefficient µy in Equation 6 is 0.25. The temper-
ature hyper-parameter τ = 0.05. We choose 100
labeled target examples and 500 labeled source
examples to augment adaptive data in the size of
1400 (100*4+500*2). Each target example oper-
ates 4 times anchor word replacement into 4 aug-
mented sentences, while 2 replacements for each
source example. Particularly, we take 10/100/240
as target/source/adaptation examples in the Web-
page dataset, due to its insufficient target examples.

5.4 Results and Discussion
Domain Adaptation on Unsupervised NER The
unsupervised NER follows the zero-shot paradigm,

preventing model training from any testing labeled
data. Compared with other unsupervised NER
baselines, PDALN achieves the best F-1 on all
benchmarks, even suffering failure on the preci-
sion scores. As the unsupervised NER results
are shown in Table 1, PDALN and BERT+CRF
both attain competitive performance on the re-
call scores, which benefits from the powerful
contrastive-learning fused pre-trained language
model. But for WNUT2016 and Wikigold, PDALN
surpassing BERT+CRF shows the benefits from
sentence-level domain adaptation through LdMMD
and robust feature extraction through Lc.

Evaluation on Semi-supervised NER As shown
in Table 1, most of the baselines cannot achieve
decent performance gain by taking in limited an-
notated resources. But PDALN outperforms the
best public baseline range from 1.5% to 4.0% on
all benchmarks. Most of the existing approaches
adopt BiLSTM as their fundamental component to
aggregate input information. Unfortunately, BiL-
STM cannot capture expressive sentence features
due to its intrinsic shortcomings, vanishing or ex-
ploding gradient problems. Therefore, these ap-
proaches are prone to increasing false-positive pre-
dictions and suffer unsatisfied recall scores. Even
though pre-trained language models can attain stun-
ning recall scores, their precision scores dramati-
cally fall behind the baselines. The main reason
is that such a powerful pre-trained model is prone
to over-fitting on small annotated data. Compared
with BERT+CRF, our promising precision gain and
increasing recall scores show that our model can
make a successful tradeoff between the precisions
and recalls. Besides, we compare with two variants
(w/ MT and w/ VAT) of our model with differ-
ent KD strategies, like Mean Teacher and Virtual
Adversarial Training. Their performance is close
to ours on the high-quality labeled data, SciTech.
But their performance on the other domains shows
they are vulnerable to the noise and easily overfit
on limited annotated samples. PDALN overcomes
that well by the progressive domain adaptation with
moderate knowledge distillation from the teachers.

Ablation Study We conduct ablation studies that
quantify the contribution of each adaptation com-
ponent in PDALN. As Table 2 shows, the removal
of augmented data causes dramatic performance
decreases on all four benchmarks. That indicates
adaptive data augmentation plays the most vital
role in the low-resource cross-domain NER task.
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Baselines
SciTech WNUT 2016 Webpage Wikigold

F1 ( Pre/Rec ) F1 ( Pre/Rec ) F1 ( Pre/Rec ) F1 ( Pre/Rec )

Un-supervised NER
BiLSTM+CRF 67.01 ( 73.53 / 61.56 ) 24.76 ( 47.01 / 16.81 ) 43.34 ( 58.05 / 34.59 ) 42.92 ( 47.55 / 39.11 )

BERT+CRF 74.26 ( 68.57 / 80.97 ) 44.37 ( 34.39 / 62.50 ) 55.94 ( 58.29 / 53.78 ) 47.99 ( 44.13 / 52.61 )

JIA2019 73.58 ( 74.28 / 72.91 ) 38.16 ( 47.26 / 32.00 ) 46.96 ( 51.61 / 43.08 ) 45.18 ( 48.68 / 42.15 )

Multi-Cell 75.01 ( 77.10 / 73.03 ) 41.07 ( 47.96 / 35.91 ) 48.62 ( 58.27 / 41.72 ) 46.04 ( 47.94 / 44.29 )

PDALN
75.80 ( 70.21 / 82.36 ) 46.12 ( 36.00 / 64.19 ) 56.93 ( 58.36 / 55.57 ) 49.73 ( 45.39 / 54.99 )

75.56 ± 0.41 45.93 ± 0.35 57.25 ± 0.31 49.55 ± 0.44
Semi-supervised NER
BiLSTM+CRF 67.83 ( 72.95 / 63.39 ) 27.61 ( 48.56 / 19.29 ) 44.46 ( 58.88 / 35.72 ) 44.65 ( 48.40 / 41.44 )

BERT+CRF 75.29 ( 70.23 / 81.14 ) 45.31 ( 35.15 / 63.77 ) 56.78 ( 58.71 / 54.99 ) 48.45 ( 44.02 / 53.88 )

La-DTL 73.30 ( 74.10 / 72.52 ) 35.97 ( 37.22 / 34.78 ) 51.39 ( 48.81 / 54.23 ) 47.74 ( 46.70 / 48.83 )

DATNet 69.22 ( 65.14 / 73.84 ) 32.67 ( 35.56 / 30.21 ) 47.71 ( 47.53 / 47.90 ) 37.92 ( 36.90 / 39.00 )

JIA2019 74.65 ( 75.65 / 74.01 ) 39.14 ( 48.89 / 32.64 ) 47.39 ( 52.19 / 43.40 ) 45.77 ( 49.24 / 42.76 )

Multi-Cell 75.89 ( 76.89 / 74.92 ) 42.19 ( 47.83 / 37.74 ) 49.45 ( 59.94 / 42.09 ) 46.45 ( 45.29 / 47.67 )

PDALN w/ MT 77.80 ( 72.93 / 83.38 ) 46.45 ( 36.11 / 65.10 ) 57.43 ( 58.69 / 56.24 ) 51.74 ( 47.39 / 56.97 )

PDALN w/ VAT 77.33 ( 73.10 / 82.08 ) 46.68 ( 36.46 / 64.87 ) 57.14 ( 58.26 / 56.07 ) 51.08 ( 46.88 / 56.13 )

PDALN
78.23 ( 73.58 / 83.51 ) 48.22 ( 37.78 / 66.66 ) 58.56 ( 59.99/ 57.20 ) 53.06 ( 48.77 / 58.19 )

77.31 ± 0.59 47.63 ± 0.61 58.25 ± 0.34 52.48 ± 0.49

Table 1: Model evaluation on four benchmarks: F1 Score (Precision/Recall) (in %). PDALN’s performance
contains two parts: the best score of five runs in the top, average F-1 score with deviation in the bottom.

Baselines
SciTech WNUT 2016 Webpage Wikigold

F1 ( Pre/Rec ) F1 ( Pre/Rec ) F1 ( Pre/Rec ) F1 ( Pre/Rec )

PDALN 78.23 ( 73.58 / 83.51 ) 48.22 ( 37.78 / 66.66 ) 58.56 ( 59.99 / 57.20 ) 53.06 ( 48.77 / 58.19 )

w/o Lc -0.56 ( -0.56 / -0.57 ) -0.72 ( -0.64 / -0.81 ) -0.27 ( -0.35 / -0.21 ) -1.20 ( -1.22 / -1.18 )

w/o Ld
MMD -1.25 ( -1.42 / -1.02 ) -1.21 ( -0.93 / -1.77 ) -0.80 ( -0.64 / -0.95 ) -1.46 ( -1.33 / -1.64 )

w/o Lw
MMD -1.59 ( -1.91 / -1.14 ) -1.39 ( -1.23 / -1.53 ) -0.98 ( -0.81 / -1.14 ) -1.51 ( -1.49 / -1.54 )

w/o Ldistill -1.94 ( -2.57 / -1.10 ) -1.68 ( -1.60 / -1.46 ) -1.38 ( -1.30 / -1.46 ) -1.56 ( -1.68 / -1.37 )

w/o Daug -1.96 ( -2.36 / -1.44 ) -1.79 ( -1.56 / -2.02 ) -2.17 ( -2.16 / -2.19 ) -1.64 ( -1.51 / -1.81 )

Table 2: Ablation study. All the results are percentages. The minus number means performance drop after
removing or replacing the methods. (w/o Lc) means the removal of robust feature extraction by Equation 7. (w/o
Ld

MMD) and (w/o Lw
MMD) mean the removal of the sentence-level MMD loss and word-level MMD loss in Equation

9, respectively. (w/o Ldistill) means the removal of progressive knowledge distillation loss in Equation 11.

PDALN
PER LOC ORG MISC

F1 ( Pre/Rec ) F1 ( Pre/Rec ) F1 ( Pre/Rec ) F1 ( Pre/Rec )

SciTech 91.42 ( 92.25 / 90.61 ) 71.36 ( 64.21 / 80.31 ) 68.76 ( 60.56 / 79.54 ) 48.81 ( 45.12 / 53.17 )

WNUT 86.27 ( 84.51 / 88.12 ) 48.57 ( 44.33 / 53.71 ) 46.81 ( 41.11 / 54.36 ) 27.90 ( 21.48 / 39.79 )

Webpage 80.34 ( 78.45 / 82.34 ) 45.75 ( 41.50 / 50.97 ) 45.60 ( 43.12 / 48.39 ) 42.48 ( 39.61 / 45.81 )

Wikigold 84.95 ( 85.69 / 84.24 ) 43.36 ( 39.45 / 48.14 ) 42.12 ( 35.94 / 50.89 ) 37.53 ( 32.11 / 45.16 )

Table 3: PDALN’s performance on each entity type.

Our progressive KD framework shows its impor-
tance on precision gain as w/o Ldistill causes the
worst precision drop. Our multi-grained MMD (ei-
ther the sentence-level or word-level MMD) meth-

ods play noteworthy contributions for cross-domain
NER adaptation as well, as their removals also
cause serious performance loss. The removal of
Lc attests the robust feature extraction works well
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Figure 3: Hyper-parameter (γ, α, α′,β) study on four benchmarks.

when the annotated data (e.g. Wikigold) are not
very precise.

Evaluation on Entity Type We provide PDALN’s
performance on each entity type in Table 3. The
performance on PER is more stable than the
other three, LOC, ORG, and MISC. The other
three types mainly exhibits the difference of en-
tity distributions and topics between the four
benchmarks. Besides, the long-chunk entities
(e.g. “New[B-ORG] Jersey[I-ORG] Department[I-
ORG] of[I-ORG] Public[I-ORG] Safety[I-ORG].”)
easily cause mixed or incomplete labeling, which
degrades the evaluation scores, especially for
dataset Webpage and Wikigold even on all four
types. A large group of MISC entities in WNUT
also impede the model performance.

Parameter Study We investigate the effects of
each adaptation component by its coefficients.
When the coefficient is under evaluation, the others
are assigned with default values. We tune the best
score of coefficients on each domain, as shown in
Figure 3. Besides, we conduct experiments to in-
vestigate model behavior over the different sizes
of augmented data. We fix the number of target
labeled examples but provide a range of source sam-
ples. From Table 4, performance on all datasets
increases fast at the first three augmented groups.
But the increasing speed cools down at the last
group. Hence, adaptive data can benefit domain
adaptation but be careful to avoid overusing.

Error Analysis Thanks to the power of being
pre-trained on large corpora, BERT is easy to
assign specific labels to a roughly-labeled sen-
tence. For example, the test example is “Chinese[B-
MISC] President[O] Xi[B-PER] Jinping[I-PER]
at[O] the[O] G-20[B-MISC] summit[O] in[O] Ar-
gentina[O].”. Even if the ground truth for the en-
tity “Argentina” is [O], BERT correctly assigns it
with [B-LOC], but not by BiLSTM-CRF. There-

fore, the pre-trained model group achieves much
higher recalls but lower precisions. Apart from
data annotation errors in datasets, occasionally over
labelling occurs in PDALN, like the test sentence,
“Jared[B-PER] put[O] together[O] this[O] thing[O]
called[O] Environmentor[O]”. PDALN prefers
to label the last entity with “Environmentor[B-
ORG]”.

Method SciTech WNUT2016 Wikigold
Ours-MMDd 75.80 46.12 49.73

Ours(DA[1:1]) 76.29 46.55 50.16

Ours(DA[1:3]) 77.38 47.74 51.81

Ours(DA[1:5]) 78.23 48.22 53.06

Ours(DA[1:7]) 78.38 48.59 53.71

Table 4: Evaluation on augmented data size (F1 score
in %). DA[1:X] means data augmentation uses the ratio
1:X over the target and source samples. Then anchor
word replacement operates on them to make the ratio be
(1*4):(X*2). 4 / 2 means generated examples of each
sample after the replacement.

6 Related Work

Recently, label sparsity has achieved great success
in many research frontiers (Liu et al., 2019, 2021;
Zhang et al., 2020c; Xia et al., 2018, 2020, 2021;
Zhang et al., 2020a,b). One of the widely adopted
strategies is a cross-domain transfer which mainly
deals with the domain shift problem. The causes
for domain shift in NER are mainly twofold in-
cluding the discrepancies of word distributions and
sentence patterns between source and target do-
main.

On the one hand, word distributions are not com-
patible between different domain datasets. There-
fore, existing works equip the model with diverse
domain adaptation components to alleviate domain
shift. Kulkarni et al. (2016) propose distributed
word embedding methods to leverage domain-
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specific knowledge to boost their cross-domain
NER performance. Wang et al. (2018) introduce a
label-aware mechanism into maximum mean dis-
crepancy (MMD) to explicitly reduce domain shift
between the same labels across domains in medical
data. Lin and Lu (2018) employ projecting learning
to obtain a transfer matrix that maps target domain
words into the word space of the source domain.

On the other hand, diverse sentence patterns
are usually caused by various factors, like written
styles, publication categories, data quality, etc. The
solutions for mitigating the discourse-level discrep-
ancy mainly include multi-level adaptation layers
(Lin and Lu, 2018), tensor decomposition (Jia et al.,
2019) and multi-task learning with external infor-
mation (Liu et al., 2020b; Aguilar et al., 2017). As
we mentioned before, Lin and Lu (2018) construct
the word adaptation component in their model. Be-
sides, they construct another sentence-adaptation
layer, which takes in the adapted word embedding
to extract another adaptation sentence feature. Jia
et al. (2019) use multi-task learning and tensor
decomposition to extract latent factors. Through
latent factors, knowledge can be transferred across
source and target domains. Liu et al. (2020b) em-
ploy NER label experts to guide model learning
between domains. The label-aware guidance layer
is key to enable domain adaptation. Jia and Zhang
(2020) a multi-cell compositional LSTM structure
for cross-domain NER under the multi-task learn-
ing strategy. Besides, those (Liang et al., 2020;
Simpson et al., 2020; Cao et al., 2020) exploit ex-
ternal resources to generate pseudo labels for the
low-resource domain with the assistance of a pre-
trained language model.

However, those methods either lack the capa-
bility to capture expressive text features for the
adaptation or require sufficient labeled target data,
which impedes their performances under both zero-
resource and minimal-resource scenarios. For the
pre-trained model assisted approaches mainly rely
on external knwledge bases which introduces too
much noise.

7 Conclusion

In this paper, we propose a progressive adapta-
tion knowledge distillation framework, including
anchor-guided adaptive data to address data spar-
sity, multi-grained MMD to bridge the domain
adaptation, and progressive KD to stably distill
cross-domain knowledge. The results exhibit the

model’s superiority over the most state-of-the-arts.
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