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Abstract

Back-translation (BT) of target monolingual
corpora is a widely used data augmentation
strategy for neural machine translation (NMT),
especially for low-resource language pairs. To
improve effectiveness of the available BT data,
we introduce HintedBT—a family of tech-
niques which provides hints (through tags) to
the encoder and decoder. First, we propose a
novel method of using both high and low qual-
ity BT data by providing hints (as source tags
on the encoder) to the model about the qual-
ity of each source-target pair. We don’t fil-
ter out low quality data but instead show that
these hints enable the model to learn effec-
tively from noisy data. Second, we address
the problem of predicting whether a source to-
ken needs to be translated or transliterated to
the target language, which is common in cross-
script translation tasks (i.e., where source and
target do not share the written script). For
such cases, we propose training the model
with additional hints (as target tags on the
decoder) that provide information about the
operation required on the source (translation
or both translation and transliteration). We
conduct experiments and detailed analyses on
standard WMT benchmarks for three cross-
script low/medium-resource language pairs:
{Hindi,Gujarati,Tamil } -+English. Our meth-
ods compare favorably with five strong and
well established baselines. We show that us-
ing these hints, both separately and together,
significantly improves translation quality and
leads to state-of-the-art performance in all
three language pairs in corresponding bilin-
gual settings.

1 Introduction

Neural machine translation (NMT) (Kalchbren-
ner and Blunsom, 2013; Bahdanau et al., 2014,
Sutskever et al., 2014; Wu et al., 2016; Hassan et al.,
2018) models have become the state-of-the-art ap-
proach to machine translation. However, NMT
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Only Translation

Source - 3B ST oA a8 aTa # Ggd fewdaTet & &1
Target - It was really daring what they did.
Translation + Transliteration

Source - BIHA 7 T YoT P I B & Q7 B #fcsT o1 g fasar
Target - CotJ'Ison used QhGne hackirTg to verify tip.

Figure 1: Examples from the WMT 2014
Hindi—English test set. The top example is a
case of only translation, and the bottom one is a
case where some words in the source (a named-entity
"Coulson", and English words ‘phone’, ‘hacking’
written in Hindi) need to be transliterated.

models are data hungry and have been shown to
under-perform in low-resource scenarios (Koehn
and Knowles, 2017). Various supervised and unsu-
pervised techniques (Song et al., 2019; Gulcehre
et al., 2015) have been proposed to address the
paucity of high-quality parallel data in such cases.
Back-translation (Sennrich et al., 2016b) is one
such widely used data augmentation technique in
which synthetic parallel data is created by translat-
ing monolingual data in the target language to the
source language using a baseline system. However,
in order to get high quality parallel back-translated
(BT) data, we need a high quality target—source
translation model (Burlot and Yvon, 2019). This
in turn depends on having a substantial amount
of high quality parallel (bitext) data already avail-
able. For low-resource languages, both the quantity
and quality of bitext data is limited, leading to
poor back-translation models. Existing methods ei-
ther use all BT data available (Sennrich and Zhang,
2019), or use various cleaning techniques to iden-
tify and filter out lower quality BT data (Khatri
and Bhattacharyya, 2020; Imankulova et al., 2017).
However, filtering reduces the amount of data avail-
able for training in a scenario which is already low-
resource. How to efficiently use back-translation
data in a situation where data is both scarce and of
varied quality is the first key challenge we tackle
in this paper.

The second challenge that arises increasingly
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often in low-resource MT is that of cross-script
NMT: translation tasks where the source and target
languages do not share the same script. Cross-
script NMT tasks have been steadily increasing in
the WMT shared news translation tasks' over the
past few years (28% of tasks in 2017 and 2018,
44% in 2019, and 63% in 2020). Cross-script NMT
models must implicitly predict whether a source
token needs to be translated or transliterated (see
example in Figure 1). Lack of shared vocabulary
coupled with low data quantity and quality makes
cross-script NMT in low-resource settings a very
challenging task.

In this work, we propose HintedBT, a family
of techniques that provide hints to the model to
make the limited BT data even more effective. We
present results on three cross-script WMT datasets:
Hindi(hi)/Gujarati(gu)/Tamil(ta)—English(en). In
our first proposed HintedBT method, Quality Tag-
ging, we use tags to provide hints to the model
about the quality of each source-target BT pair.
In the second method, Translit Tagging, we use
tags to address the cross-script NMT challenge de-
scribed above: we force the decoder to predict the
operation that needs to be done on the source - only
translation (or) both translation + transliteration, in
addition to predicting the translated sentence. The
correct operation is provided as an additional tag
during training.

We make the following contributions in this paper:

1. Two novel hinting techniques: Quality Tag-
ging (Section 3) and Translit Tagging (Sec-
tion 4) to address two key challenges in low-
resource cross-script MT.

2. Extensive experiments and comparisons to
competitive baselines which show that a com-
bination of our methods outperform bilingual
state-of-the-art models for all three languages
studied (Section 5, 6). Table 1 shows BLEU
scores of our methods compared to SoTA.

3. Applications of proposed techniques in other
situations that arise commonly in low-
resource language settings (Section 7).

2 Related Work

Leveraging monolingual data for NMT: Initial
efforts in this space focused on using target-side
language models (He et al., 2016; Gulcehre et al.,
2015). Recently, back-translation, first introduced

"http://www.statmt.org/wmt20/translation-task.html

SoTA
16.7 [Bilingual]
(Matthews et al., 2014)

28.7 [Multilingual]
(Wang et al., 2020)

18.4 [Bilingual]

(Bei et al., 2019)
24.9 [Multilingual]

(Lietal., 2019)

15.8 [Bilingual]

(Parthasarathy et al., 2020)

21.5 [Multilingual]
(Chen et al., 2020)

Lang. Pair This work

hi—en 32.0

gu—en 20.8

ta—en 17.2

Table 1: Current SoTA versus our contributions. Our
methods beat the bilingual SoTA for all three language
pairs, and are competent with the multilingual SoTA,
despite not using additional information in the form of
pivot languages and/or multilingual models.

for phrase-based models (Bertoldi and Federico,
2009; Bojar and Tamchyna, 2011) and popular-
ized for NMT by Sennrich et al. (2016b), has
been widely used. It has been shown that the
quality of the back-translated data matters (Hoang
et al., 2018; Burlot and Yvon, 2018). Given
this finding, several works have performed filter-
ing using sentence-level similarity metrics on the
round-trip translated target and the original tar-
get (Imankulova et al., 2017; Khatri and Bhat-
tacharyya, 2020), or cross-entropy scores (Junczys-
Dowmunt, 2018). Several works have looked into
iterative back-translation for supervised and unsu-
pervised MT (Hoang et al., 2018; Cotterell and
Kreutzer, 2018; Niu et al., 2018; Lample et al.,
2018; Artetxe et al., 2018).

Multilingual models: Another direction in low-
data settings is to leverage parallel data from other
language-pairs through pre-training or jointly train-
ing multilingual models (Zoph et al., 2016; John-
son et al., 2017; Nguyen and Chiang, 2017; Gu
et al., 2018; Kocmi and Bojar, 2018; Aharoni et al.,
2019; Arivazhagan et al., 2019). Amongst recent
WMT submissions, Chen et al. (2020); Zhang et al.
(2020b); Kocmi and Bojar (2019) train multilin-
gual models for ta—en and gu—en, whereas Goyal
and Sharma (2019); Bawden et al. (2019); Dabre
et al. (2019); Li et al. (2019) pivot through Hindi,
or transliterate Hindi data to Gujarati for training
gu—en models. Wang et al. (2020) train a multilin-
gual model for hi—en with a multi-task learning
framework that jointly trains the model on a trans-
lation task on parallel data and two denoising tasks
on monolingual data. Improving low-resource MT
without leveraging data from other language-pairs
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has received lesser attention, notably in Nguyen
and Chiang (2018); Ramesh and Sankaranarayanan
(2018); Sennrich and Zhang (2019). In this work,
we experiment with bilingual models only, using no
additional information from other language pairs.

Using tags during NMT training: Tags on the
source side of NMT systems have been used
to denote the target language in a multilingual
system (Johnson et al., 2017), formality or po-
liteness (Yamagishi et al., 2016; Sennrich et al.,
2016a), gender information (Kuczmarski and John-
son, 2018), the source domain (Kobus et al., 2017),
translationese (Riley et al., 2020), or whether the
source is a back-translation (Caswell et al., 2019a).
In this work, we use tags on the source side to rep-
resent the quality of the BT pair, and tags on the
target side to represent the operation done on the
source (translation, or translation + transliteration).

3 Quality-based Tagging of the BT data

In low-resource scenarios, where bitext data is low
in quantity and quality, BT data will likely contain
pairs with varying quality. So far, there have been
two broad approaches to deal with BT data: (a)
full-BT: use all the BT data without considering
the quality of the BT pairs (Sennrich and Zhang,
2019) (b) topk-BT: use only high quality BT pairs
by introducing some notion of quality between the
source and target (Khatri and Bhattacharyya, 2020;
Imankulova et al., 2017). The full-BT method suf-
fers from the disadvantage that it mixes the good
and bad quality data, hence confusing the model.
This was one of the primary motivations for intro-
ducing topk-BT models. However topk-BT models,
while being quality-aware, filter away a substantial
chunk of the parallel data which could be harmful
in low-resource settings.

In this work, we introduce a third type of using
BT data called Quality Tagging. This approach
uses all the BT data by utilizing quality informa-
tion about each instance. Our method extends the
Tagged BT approach (Caswell et al., 2019a) that
uses “tags" or markers on the source to differentiate
between bitext and BT data. We attach multiple
tags to the BT data, where each tag corresponds
to a quality bin. The quality bin provides a hint of
the quality of the BT pair being tagged. We use
LaBSE (Feng et al., 2020), a BERT-based language-
agnostic cross-lingual model to compute sentence
embeddings. The cosine similarity between these
source and target embeddings is treated as the qual-

Quality Tagging

<bin4> 379 FeR Wi TTEd 872 You want the number plate?

<bin1> &t -7+t 98 TP W 3T Sometimes she turns and stares at the
2 3R a1t 1 screen.

Translit Tagging

B A9 b -gR HTAHT aRd 81 <Txn> We're all supportive of each other.

3T F6R Wie ITed 87 <Both> You want the number plate?

Quality Tagging + Translit Tagging

<bin4> 3719 FeR W< TTed 87 <Both> You want the number plate?

Figure 2: Quality tags are prepended to the source, with
<binl>/<bin4> samples being the lowest/highest
quality respectively. Translit tags are prepended to the
target, with <Txn>/<Both> being translation only or
translation + transliteration respectively. Correct trans-
lation of <binl> example: Sometimes she comes on
the screen and stares.

ity score of the BT pair. BT pairs are then binned
into k£ groups based on the quality score, and the
bin-id is used as a tag in the source while training
(cf. examples in Figure 2).

We explore three design choices in Quality Tag-
ging below: a) Bin Assignment: How to assign a
particular BT pair to a bin? b) Number of bins to
use ¢) Bitext Quality Tagging.

Design Choice 1 - Bin Assignment: We have two
direct options: Equal Width Binning or Equal Vol-
ume Binning. In Equal Width Binning, we divide
quality score range into k intervals of equal size.
Each interval then corresponds to a bin and each
BT pair is assigned to the bin which contains its
quality score. In Equal Volume Binning we sort
the N data points by their quality score and divide
points into k equally sized groups. Each group
then corresponds to a bin. We see that Equal Width
Binning (and other size-agnostic approaches like
k-means) can cause severely size-unbalanced bins,
with the lowest bin(s) not adding any signal at all.
This is primarily because the cosine similarity used
as quality score is language-pair agnostic and not
calibrated to well separated quality bins. Equal
Volume binning addresses this concern while also
providing sufficiently inherent quality-based clus-
ters with a good choice of k.

Design Choice 2 - Number of Bins: We experi-
mented with different number of bins (see detailed
results in Appendix E). From the dev-BLEU scores,
we found that for hi—en and gu—en, four bins pro-
vide the best performance, while for ta—en either
three or four bins work equally well. We uniformly
use four bins for the sake of simplicity and point
out that deeper analysis of the interplay between
bitext, BT quality and number of bins is an inter-
esting area of future work.
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Design Choice 3 - Bitext Quality Tagging: We
have three choices for this question: a) Bitext is
left untagged. b)Bitext is always tagged with the
highest quality bin. c) A Bitext pair is also scored
using LaBSE and assigned to a bin just as a BT pair
would be. We discuss this design choice further in
Section 5.5.

4 Translit Tagging of the BT data

When the source and target are written in different
scripts, certain words in the source explicitly need
to be transliterated to the target language, such as
entities, or target language words written in the
source script (see example in Figure 1). In such
cases, the model needs to identify which source
words should be translated to the target language,
and which need to be transliterated. To understand
the prevalence of this pattern, we split the test data
into two categories: {Txn, Both}. ‘Txn’ means the
target sentence requires translating every source
word and ‘Both’ means the a mix of translation
and transliteration is needed to generate the target
from the source words. Then we compare the per-
centage of sentence pairs in each category for the
hi/gu/ta—en WMT test sets. For each word in the
source sentence, we use FST transliteration models
(Hellsten et al., 2017) to generate 10 English (i.e.,
the target language) transliterations. If any of these
transliterations are present in the corresponding tar-
get, we categorize the pair as Both, else as Txn.
From Table 3, we see that for all the three WMT
test sets, ~60-80% of the test corpora require a mix
of translation and transliteration to be performed
on the source sentences. Further details about the
FST models are included in Appendix D.

To utilize this information about cross-script data
in training, we propose a novel method: Translit
Tagging. We use the aforementioned methodology
to split the train data into two categories: {7Txn,
Both} as before. We then convert this informa-
tion into tags, which we prepend to the farget sen-
tence (refer Figure 2 for an example). This method
teaches the model to predict if the transliteration
operation is required or not for the given source
sentence, hence the name ‘translit’ tagging. Dur-
ing inference, the model first produces the translit
tag on the output, before producing the rest of the
translated text. Another option is to present translit
tags on the source side while training. This method
does not perform as well and also has practical chal-
lenges that we describe in detail in Appendix F.

S Experiments

5.1 Datasets

Table 2 describes the train, dev, and test data used
in our experiments. We train source—target and
target—source NMT models on the available bi-
text data for all language pairs. We use the latter
to generate synthetic back-translation data from
the WMT Newscrawl 2013 English monolingual
corpus.

5.2 Model Architecture

We train standard Transformer encoder-decoder
models as described in Vaswani et al. (2017). The
dimension of transformer layers, token embeddings
and positional embeddings is 1024, the feedforward
layer dimension is 8192, and number of attention
heads is 16. We use 6 layers in both encoder and
decoder for the hi—en models and 4 layers for the
gu—en and ta—en models. For training, we use the
Adafactor optimizer with 51 = 0.9 and 85 = 0.98,
and the learning rate is varied with warmup for
40,000 steps followed by decay as in Vaswani et al.
(2017). We perform all experiments on TPUs, and
train models for 300k steps. We use a batch size
of 3k across all models and tokenize the source
and target using WordPiece tokenization (Schus-
ter and Nakajima, 2012; Wu et al., 2016). Further
details on hyper-parameter selection and experi-
mental setup can be found in Appendix B.

5.3 Evaluation Metrics

We use SacreBLEU? (Post, 2018) to evaluate our
models. For human evaluation of our data, we
ask raters to evaluate each source-target pair on a
scale of 0-6 similar to Wu et al. (2016), where O
is the lowest and 6 is the highest (more details in
Appendix C).

5.4 Baselines

We present the following five baseline models to
compare our methods against. Baselines 3-5 are our
re-implementations of relevant prior work which
introduce different methods of improving on the
full-BT baseline (Baseline 2).

1. bitext - Model trained only on bitext data.
The size of train data is shown in Table 5.

2. bitext + full-BT - Model trained on bitext
data and an additional 23M back-translated
pairs.

2SacreBLEU Hash: BLEU+case.mixed+numrefs.1+
smooth.exp+tok.13a+version.1.5.0

1720



Train WMT newsdev/test
hi—en IIT Bombay en-hi Corpus (Kunchukuttan et al., 2017) - 1.68M pairs WMT-2014 (520/2.5k pairs)
gu—en WMT-2019 gu-en, TED2020 (Reimers and Gurevych, 2020), GNOME

& Ubuntu (Tiedemann, 2012), OPUS (Zhang et al., 2020a) - 162k pairs WMT-2019 (3.4k/1k pairs)
ta—en | WMT-2020 ta-en, GNOME (Tiedemann, 2012), OPUS (Zhang et al., 2020a) - 630k pairs WMT-2020 (2k/1k pairs)

Table 2: Datasets used for training. The dev and tests are used from the WMT corpus.

WMT Test Set Txn: Translation | Both: Trz}nslat.ion +
Only Transliteration
hi—en (2014) 21.3% 78.7%
gu—en (2019) 30.6% 69.4%
ta—en (2020) 40.5% 59.5%

Table 3: % of the WMT test sets where task is either
only translation or a mix of translation & transliteration

3. bitext + Iterative-BT - Iterative training of
models in the forward and reverse direc-
tions (Hoang et al., 2018). In our experiments,
models are trained with two iterations of back-
translation. We also study the interaction of
Iterative-BT with HintedBT in Section 5.8.

4. bitext + tagged-full-BT - Model trained on
bitext data and tagged full-BT data (Caswell
et al., 2019b). A tag is added to the source in
every BT pair to help the model distinguish
between natural (bitext) and synthetic (BT)
data.

5. bitext + LaBSE topk-BT - Model trained
on bitext data and topk best quality BT pairs.
Quality is estimated using LaBSE scores, and
we grid-search with at least 6 LaBSE thresh-
old values and choose the one which gives
the best BLEU on the dev set (see Appendix
A for more details). The chosen threshold
yields 20M BT sentences for hi—en, 10M for
gu—en and 5M for ta—en.

We report the performance of these baseline mod-
els on the WMT test sets in rows 1-5 in Table
4. Adding BT data alone (Row-2) provides a sig-
nificant improvement in performance for hi—en
(+58%) and gu—en (+78%) over the plain bi-
text baseline (Row-1). However for ta—en, the
improvement is comparatively smaller (+24.7%).
To understand this deviation further, we conduct
a human evaluation (Section 5.3) on a random
500 samples of the bitext data. The results are
reported in Table 5. We see that the ta—en bi-
text data is much poorer in quality compared to
the other two pairs. This affects the quality of the
back-translation model and hence influences the
results of a few more experiments we report further.

Next we see that iterative back-translation (Row-3)
and tagged back-translation (Row-4) do improve
the performance for gu—en, ta—en but not for
hi—en, when compared to Row-2. Comparison
between full-BT (Row-2) and topk-BT (Row-5)
shows choosing high quality BT data instead of
using all the BT data proves beneficial for all 3
language pairs.

5.5 Quality Tagging

As explained in Section 3, we assign each BT pair
to one of four quality bins that have equal volume
of pairs in them. Table 6 presents the mean quality
score as annotated by humans for different bins. We
see a perceptible difference in the quality of data
across bins for all languages. This confirms our
hypothesis that BT data will be of varied quality. It
reinforces faith in our choice of four equal volume
bins and also in LaBSE as a method for automatic
quality evaluation.

We now explore the choice of how to tag the
bitext data (i.e., design choice 3), using human
evaluation of the bitext and BT data (see Table 7).
To re-iterate, we perform human evaluation of data
by having raters evaluate each source-target pair
on a scale of 0-6, with 0 being the lowest, and 6
being the highest (more details in Appendix C).
For hi—en, both bitext and BT data are of high
quality (>4). Hence, we decide to tag the bitext
with the highest quality bin <bin4>. For gu—en,
the BT data is of lower quality compared to the bi-
text. Hence, we decide to leave the bitext untagged,
making the BT data’s quality tags both an indicator
of quality, as well as an indicator that the data is
synthetic. For ta—en, both bitext and BT are of
lower quality (<4), with the bitext’s quality being
slightly higher. Hence, here as well, we decide to
leave the bitext untagged. We further demonstrate
our choices using experiments. From Table 7, we
see that for hi—en, tagging with <bin4> works
best, while for gu—en leaving it untagged works
best. For ta—en, there is no clear winner.

For the remaining experiments in this paper, we
stick to this assignment for bitext tagging: gu—en
and ta—en (untagged), hi—en (<bind> tag).
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# | Modeling Methodology hi—en | gu—en | ta—en
WMT Data | 1 | bitext 19.5 8.4 11.3
Baselines 2 | bitext + full-BT 30.9 15.0 14.1
Prior 3 b?text + Iter-BT 29.2 16.5 14.9
Work 4 b%text + tagged-full-BT 30.2 17.0 16.0
5 | bitext + LaBSE topk-BT 31.2 16.0 16.4
6 | bitext + full-BT + LaBSE quality tags 31.2 17.6 15.5
HintedBT 7 | bitext + full-BT + translit-tags 31.0 15.2 15.0
8 | bitext + full-BT + LaBSE quality tags + translit-tags | 31.6 17.9 16.0
lterative 9 b?text + tagged-Iter-BT . 30.0 20.5 16.5
HintedBT 10 b;text + Iter-BT + LaBSE qual}ty tags . 29.9 20.0 17.2
11 | bitext + Iter-BT + LaBSE quality tags + translit-tags | 29.5 20.8 16.3
Table 4: Performance of models on WMT test sets.
Data Quality | hi—en gu—-en ta—en Bitext tagging hi—en | gu—en | ta—en
bitext 4.16+0.15 | 4.374+0.15 | 3.73+£0.17 Untagged 30.0 17.6 15.5
full-BT 4.414+0.11 | 3.4240.14 | 3.51£0.13 Tagged with <bind> | 31.2 16.8 15.6
LaBSE Quality Tags | 30.9 16.2 15.7

Table 5: Mean human quality scores on 500 samples
of bitext and full-BT data alone with 95% CI. Integer
ratings for individual sentence pairs lie in [0,6].

Bin 1

4.05 £0.13
2.28 +0.17
1.44 £0.17

Bin 2

4.47 £0.10
2.79 +0.15
2.78 £0.15

Bin 3

4.53 +0.10
3.18 +0.15
3.31 +0.14

Bin 4

4.87 +£0.09
3.85 £0.15
3.99 £0.13

hi—en
gu—en
ta—yen

Table 6: Mean human quality scores for the 4 quality
bins along with 95% Cls.

We present results of the quality tagged mod-
els in Row-6 of Table 4. First when we com-
pare Row-6 with full-BT in Row-2, we see that
quality tagging always yields higher BLEU. Same
pattern exists with Row-3 where quality tagging
always outperforms Iterative-BT for all language
pairs. This is an important result because, while
Iterative-BT is effective, it is also very computa-
tionally expensive. Quality tagging is able to pro-
duce better results than Iterative-BT with far lesser
computational costs. Quality Tagging again out-
performs both tagged-BT and topk-BT for hi—en
and gu—en. For ta—en, topk-BT still has the best
BLEU. We delve into more details on why this hap-
pens in Section 6.1. To summarize, we see qual-
ity tagging provides the best performance across
all previous baselines (except in two ta—en in-
stances). In addition, quality tagging is far more
efficient than topk-BT in terms of computational
resources since topk-BT requires multiple models
to be trained for the threshold parameter search.

5.6 Translit Tagging

As explained in Section 4, we train the decoder to
generate the translit tag (‘Txn’ or ‘Both’) along with

Table 7: Quality tagging on full-BT data, with bitext
tagged/untagged

the target sentence. During evaluation, we remove
the translit tag which the model has produced in
the output. Row-7 in Table 4 shows the BLEU of
the translit tagging models, and the corresponding
baseline is Row-2. As we can see, translit tagging
improves the performance of all three language-
pairs over the baseline.

5.7 HintedBT: Quality + Translit Tagging

We combine our methods of Quality Tagging and
Translit Tagging in this experiment: we tag the
source with quality tags (as per Section 5.5), and
we tag the target with translit-tags (as per Sec-
tion 5.6). We report the results as Row-8 in Table 4.
We see that for all 3 language pairs, the combina-
tion of these 2 methods outperforms both methods
individually (comparing with Rows 6 and 7). For
hi—en, this combination gives the overall best re-
sults of 31.6, and to the best of our knowledge, this
outperforms the bilingual SOTA (Matthews et al.,
2014) as well as the multilingual SOTA (Wang et al.,
2020) for hi—en. For gu—en, the combination pro-
duces +1.9 over an already strong topk-BT baseline.
However for ta—en, topk-BT still remains as the
best method thus far.

5.8 TIterative HintedBT

In this section, we apply Iterative Back-Translation
(Hoang et al., 2018) in combination with the two
methods in HintedBT: Quality Tagging and Translit
Tagging. The goal here is to understand if our
method is able to capitalize on the gains of Iterative-
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BT or whether its gains are subsumed by a powerful
method like Iterative-BT. We run Iterative-BT first
with quality tagging alone, and next Iterative-BT
with the combination of both quality tagging and
translit tagging. As an additional baseline, we also
run Iterative-BT with back-translation tagging as
in Row-4 (Caswell et al., 2019b). We run two
iterations of back-translation in all experiments.
We perform quality tagging for models in both
directions using the Equal Volume method with
four bins. In every round, we generate the BT,
compute the LaBSE scores and assign each pair
to the right bin and train the model. Row-10 in
Table 4 shows BLEU when quality tagging is ap-
plied along with Iterative-BT. Comparing Row-10
with its corresponding full-BT baseline in Row-6,
we see that the iterative version performs even bet-
ter, with gu—en and ta—en getting BLEU scores
of 20.0 and 17.2, respectively. To the best of our
knowledge, this outperforms the bilingual SoTA
for ta—en (Parthasarathy et al., 2020).

Row-11 shows the performance when Iterative-
BT is combined with both Quality Tagging and
Translit Tagging. Comparing Row-11 with its cor-
responding full-BT baseline in Row-8, we see that
this helps for gu—en, giving a further boost in per-
formance of +0.8 to get a final BLEU score of 20.8.
To the best of our knowledge this outperforms the
bilingual SoTA performance for gu—en (Bei et al.,
2019). To summarize, except for hi—en, Iterative-
BT helps improve Hinted BT significantly. For
hi—en, even plain Iterative-BT does not help as
seen in Row-3. Further investigating the cause of
this result is delegated to future work.

6 Experiment Analysis

In this section, we analyse a few key aspects of the
experiments described in the previous section.

6.1 Uniqueness of ta—en

We observed in Section 5.5 that Quality Tagging
does not surpass the performance of the topk fil-
tering strategy only for ta—en. In this section we
investigate this observation further. Ta—en has two
significant differences compared to the other two
language pairs. First, from Table 5 we see that the
bitext quality of ta—en is much poorer. Second,
only 22% of the 23M BT data is present in topk-BT
for ta—en, compared to 87% and 43% for hi—en
and gu—en respectively. We posit that the large
fraction of poor quality BT data interferes with the

model learning from the bitext and high quality
filtered BT data used in the topk-BT setting. In
order to study this hypothesis, we train a model
on a combination of 3 datasets: 630K of bitext,
the 5SM topk-BT, and 10M pairs randomly selected
from the remaining 18M BT data. In total, we have
15M BT and 630K bitext pairs. To be consistent,
we perform quality binning as in Section 5.5. In
this setting, the model gets a BLEU score of 16.6,
outperforming the topk-BT method by +0.2 BLEU
points. We repeat the above experiment by sam-
pling 12 M noisy BT data (instead of 10M in the
above set up). This drops the BLEU by 0.3 points.
Hence we see that the overarching trends of be-
ing able to learn from poor quality data via quality
tagging also holds for ta—en. However ratio be-
tween good and poor quality BT data is important
to achieve this improvement; especially when the
bitext data is of poor quality. Understanding this
interaction in more depth is left to future work.

6.2 Randomized Bin Assignment

In order to study the efficacy of Quality Tagging,
we perform an experiment where instead of using
Equal Volume Binning to choose bins (Row-6 of
Table 4), we randomly assign every BT pair to one
of four bins. We observe that BLEU of hi—en,
gu—en and ta—en drops to 30.6, 16.8 and 15.9
respectively. In summary, we see that random bin
assignment degrades performance of Quality Bin-
ning to almost match that of Tagged-BT.

6.3 Prediction of Translit Tags

As mentioned in Section 4, one of the key problems
in cross-script NMT is to know when to translate,
or transliterate a source word. In this section, we
study the performance of our techniques in solving
this problem. We pose the decision of translate
vs transliterate as a binary classification problem
as follows: comparing the source and target, we
assign a binary label to every word in the source
- true if it needs to be translated, false if it needs
to be transliterated. Every NMT model we train is
seen as a classifier that decides whether to trans-
late/transliterate a word; we measure its F1 score
that we call as ‘word-level F1° (reported in Table 8).
In Table 8, we see that models based on Translit
Tags (Row-2) and Quality Binning + Translit Tags
(Row-3) have equal/better F1 scores than the full-
BT model (Row-1) across all languages. We also
observe that adding quality tags, though unrelated
to transliteration, helps improve the word-level F1.
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Data hi—en | gu—en | ta—en
bitext + full-BT 77.3 62.2 56.9
bitext + full-BT + translit-tags | 77.8 62.2 58.9
bitext + full-BT + LaBSE
quality tags + translit-tags
4 | Correlation with BLEU 0.81 0.99 0.97

[SSERESTEENE:S

78.0 66.0 59.8

Table 8: %Word-level F1 scores of models in translit-
erating correct source words accurately. Row-4 shows
Pearson’s correlation of F1 scores with corresponding
BLEU scores in Table 4.

We compute Pearson correlation between the word-
level F1 scores with corresponding model BLEU
scores (Row-4). As seen, there is a very strong
correlation between these two variables, confirming
that adding quality tags leads to better translate vs
transliterate decisions. The combination of these
two factors partially explain why the two hints lead
to additive BLEU gains seen in Row-8 of Table 4.

6.4 Meta-Evaluation of Results

In this section, we perform meta-evaluation of our
results using human evaluation and statistical sig-
nificance tests as suggested by the guidelines in
Marie et al. (2021). We compare each language
pair’s best non-iterative model (test system) and
topk-BT model (base system) in Table 9. We first
report their BLEU scores computed using Sacre-
BLEU.

Then, we compute human evaluation scores for
both the base and test systems (using the same met-
ric described in Section 5.3). We have three human
raters compare the base and test system translations
using 500 randomly chosen source sentences from
the test set. We report the difference in scores be-
tween the two systems (the Side-by-Side, i.e., SxS
score) as the human evaluation metric. A SxS score
of £0.1 between the two systems is considered sig-
nificant. We see in Table 9 that hi—en and gu—en
have sufficient SxS scores, whereas ta—en falls a
little short of 0.1.

Finally, we perform statistical significance tests
to compare the base and test systems (as described
in Koehn (2004)). We create 1000 test sets with 500
random test datapoints each and calculate the two
models’ SacreBLEU scores. We use the resultant
SacreBLEU scores to conduct T-tests>. For all
three language pairs, we see significant T-statistics
(reported in Table 9) which have p-values < 0.001.

3scipy.stats.ttest_ind

Metric hi—en | gu—en | ta—en
Best (non-iterative)

model’s BLEU 31.6 17.9 16.6
topk-BT BLEU 31.2 16.0 16.4
Side-by-Side

Human Eval. 0.11 0.19 0.05
T-statistic 11.05 64.03 8.43

Table 9: Meta-Evaluation of results. In this table, we
compare each language pair’s best non-iterative model
(test system) and topk-BT model (base system) us-
ing three metrics - BLEU scores, SxS human evalua-
tion scores, and T-statistics from statistical significance
tests.

Bitext data size —
Data Used | 500k | 200k | 100k 50Kk
bitext 28.6 245 8.1 05
bitext + full-BT | 33.7 312 274 15
bitext + full-BT + | 36.6 343 309 31
LaBSE qual. tags | (+8.6%) | (+9.9%) | (+12.8%) | (+106.6%)

Table 10: Quality Tagging on simulated low resource
scenarios of de—en

7 Issues in Low-Resource Settings

In this section, we discuss three issues that arise
in low-resource settings, that are relevant to Hint-
edBT. A language can be low resource if it (a) does
not have enough bitext data (Section 7.1) or (b) is
not well represented in open multilingual word /
sentence embedding models (Section 7.2). Further,
in scarce bitext settings, does having a large mono-
lingual target corpus help HintedBT? (Section 7.3).

7.1 Low Bitext Quantity Simulation

Inspired by the experimentation methodology
in Sennrich and Zhang (2019), we simulate differ-
ent levels of low resource conditions using a high
resource language pair German(de)—English(en).
From the 38M bitext data points in de—en WMT
2019 news translation task, we randomly choose
500K, 200K, 100K, 50K bitext data points to sim-
ulate different low-resource scenarios. From 23M
sentences of WMT 2013 Newscrawl’s English
monolingual data, we generate BT data and bench-
mark both full-BT and quality tagging on it. BT
data is generated with en—de models trained on
the restricted bitext for each setting. We use all
of the 23M BT pairs since English monolingual
data is easily available and we wanted to keep the
setup as realistic as possible. Results in Table 10
clearly show that quality binning outperforms full
BT under all scenarios. More interestingly, the
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effectiveness of quality tagging increases as the
low-resourcedness increases. This shows quality
tagging is able to use all the data as full-BT, but
more effectively, a very desirable characteristic in
a low-resource setting.

7.2 Quality Metric for Extremely Low
Resource Languages

LaBSE scoring (Feng et al., 2020) depends upon
the availability of the pre-trained embedding model.
Some very low-resource languages may not have
multilingual embeddings or, even if present, may
not have high quality embeddings. One alterna-
tive is to use round-trip-translation (Khatri and
Bhattacharyya, 2020) and a syntactic comparison
between the original target and the round-trip target.
We use the Jaccard similarity index (Huang et al.,
2008) between character tri-gram sets as the syn-
tactic similarity measure. We call this measure the
Bag of Trigram Jaccard or BoT-Jaccard in short.

We study BoT-Jaccard vs LaBSE in more de-
tail in Appendix H. We summarize the results as
follows. BoT-Jaccard has weaker correlation to hu-
man judgement of similarity compared to LaBSE.
In our study of the failure patterns, most failures
stem from the syntactic nature of the metric. De-
spite the above drawbacks of BoT-Jaccard over
LaBSE, we see that it performs almost on par with
LaBSE and hence is a very good alternative when
LaBSE is not available. We repeat all our experi-
ments with BoT-Jaccard and we see following im-
provements on the full-BT baseline. We get BLEU
increases of 0.4 for hi—en, 2.8 for gu—en using
quality tagging, and 1.4 for ta—en using topk-BT.

7.3 Does a larger monolingual corpus help?

In this section, we analyze if providing more BT
data helps the model. We re-run HintedBT experi-
ments from Section 5 with monolingual data from
both Newscrawl 2013 and 2014, resulting in a to-
tal of 46M BT pairs. We report results in Table
11. For hi—en, quality tagging improves BLEU
to 32.0 (an increase of 0.4 from our previous best
of 31.6). For gu—en and ta—en, quality + translit
tagging delivers performances of 18.2 and 16.1,
+0.3 and +0.1 respectively from previous best ex-
periments. This experiment shows while HintedBT
does benefit from more data, the increase in perfor-
mance does not commensurate to the large increase
in volume of data.

# | Data hi—en | gu—en | ta—en
Using 23M BT - - -

1 | bitext + full-BT 30.9 15.0 14.1

2 | Row-1 + LaBSE qual.tags | 31.2 17.6 15.5

3 | Row-2 + Translit-tags 31.6 17.9 16.0
Using 46M BT - - -

4 | bitext + full-BT 31.3 14.9 144

5 | Row-4 + LaBSE qual.tags | 32.0 17.9 16.0

6 | Row-5 + Translit-tags 31.3 18.2 16.1

Table 11: Experiments with a larger monolingual cor-
pus. Rows 4-6 are directly comparable to rows 1-3.

8 Conclusion

In this work, we propose HintedBT, a family of
techniques that adds hints to back-translation data
to improve their effectiveness. We first propose
Quality Tagging wherein we add tags to the source
which indicate the quality of the source-target pair.
We then propose Translit Tagging which uses tags
on the target side corresponding to the transla-
tion/transliteration operations that are required on
the source. We present strong experimental results
over competitive baselines and demonstrate that
models trained with our tagged data are compe-
tent with state-of-the-art systems for all three lan-
guage pairs. The application of our techniques to
multilingual models and to other generation tech-
niques for back-translation (such as noised beam
(Edunov et al., 2018)) are interesting avenues for
future work.
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A Topk-BT Baseline

We report our extensive experiments for finding
the best topk-BT data here for both LaBSE and
BoT-Jaccard based scoring of back-translated data
pairs.

\ Data used | WMT test set | Dev set |
LaBSE top 6.5M 29.6 20.1
LaBSE top 8M 30.4 20.2
LaBSE top 10M 30.6 20.5
LaBSE top 15M 30.7 20.3
LaBSE top 18M 31.2 20.3
LaBSE top 20M 31.2 20.6
Full-BT 30.9 20
BoT-Jaccard top 6.5M 30.4 20.8
BoT-Jaccard top 8M 30.7 21.1
BoT-Jaccard top 10M 30.4 20.5
BoT-Jaccard top 15M 31 20.6
BoT-Jaccard top 18M 30.6 20.5
BoT-Jaccard top 20M 30.7 20.3
Full-BT 30.9 20

Table 12: Grid search for best topk-BT data for hi—en

Data used WMT test set | Dev set ‘
LaBSE top 650k 13 22.3
LaBSE top 1M 13 23.3
LaBSE top 3.5M 15.4 26.3
LaBSE top 6.5M 15.7 27
LaBSE top 8M 16.3 26.9
LaBSE top 10M 16 27.2
LaBSE top 15M 16.1 26.8
Full-BT 15 25.8
BoT-Jaccard top 650k 12.2 21.5
BoT-Jaccard top 1M 12.8 22.3
BoT-Jaccard top 3.5M 15 25.7
BoT-Jaccard top 6.5M 15.4 26.7
BoT-Jaccard top 8M 16 26.9
BoT-Jaccard top 10M 16.3 27
BoT-Jaccard top 15M 15.5 26.7
Full-BT 15 25.8

Table 13: Grid search for best topk-BT data for gu—en

B Experimental Setup

We experiment with
parameters -

Number of encoder-decoder layers - 4, 6
Number of attention heads - 12, 16
Embedding dimensions - 768, 1024
Hidden dimension - 1536, 8192

the following hyper-

We choose the final model configuration described
in Section 5.2 based on the dev-BLEU scores of

Data used

‘ WMT test set ‘ Dev set

LaBSE top 2.5M 15.5 19
LaBSE top 5SM 16.4 19.9
LaBSE top 8M 16 19.8
LaBSE top 10M 15.5 18.6
LaBSE top 15M 15.5 19.3
LaBSE top 20M 14.6 18.7

Full-BT 14.1 18.5
BoT-Jaccard top 2.5M 15.1 18.8
BoT-Jaccard top SM 16.5 19.6
BoT-Jaccard top 8M 154 19.3
BoT-Jaccard top 10M 15.1 19.3
BoT-Jaccard top 15M 15.1 18.6
Full-BT 14.1 18.5

Table 14: Grid search for best topk-BT data for ta—en

the respective bitext models. However, further re-
duction of model size (reducing the number of
attention heads, hidden dimension etc.) caused
the models to underfit. The hi—+en models have
375M parameters and gu—en and ta—en models
have 283M parameters. Training was done using
Tensorflow-Lingvo (Shen et al., 2019).

Note: For gu—en and ta—en, we randomly
pick 200 pairs from each train source (from Table
2) and append them to the WMT newsdev set for
better diversity.

C Human Evaluation of Data Quality

We ask human raters to evaluate the quality of
source-target pairs (similar to Wu et al. (2016)).
Quality scores range from 0 to 6, with a score of 0
meaning “completely nonsense translation”,and
a score of 6 meaning “perfect translation: the
meaning of the translation is completely consistent
with the source, and the grammar is correct”. A
translation is given a score of 4 if “the sentence
retains most of the meaning of the source sentence,
but may have some grammar mistakes”, and a
translation is given a score of 2 if “the sentence
preserves some of the meaning of the source
sentence but misses significant parts”. These
scores are generated by human raters who are
fluent in both source and target languages.

The final human evaluation score of a set of n ex-
amples is given by the average of the n individual
scores. When comparing two systems side-by-side,
the difference between their two final scores quanti-
fies the change in quality. In this case, a difference
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of 0.1 is considered significant.

D FST Transliteration Models

To generate source to target language translitera-
tions for Translit Tagging, we use FST translitera-
tion models from Hellsten et al. (2017). Weighted
Finite State Transducer (WFST) models are trained
on individual word transliterations of native words
from a set vocabulary, collected from 5 speakers
amongst a large pool of speakers. These models
are evaluated on annotated test sets for Hindi and
Tamil, and they achieve 84% and 78% word-level
accuracies respectively.

E Number of Bins : Quality Binning

We experiment with different number of bins in
Equal Volume Binning for Quality Tagging. We
show our experiments and corresponding dev-
BLEU scores in Table 15.

Data hi—en | gu—en | ta—en
bitext + full-BT 20.0 25.8 18.5
+ 3 LaBSE qual. tags | 20.6 28.0 18.4
+ 4 LaBSE qual. tags | 20.8 28.4 18.6
+ 5 LaBSE qual. tags | 20.5 28.0 18.2

Table 15: Quality-Tagging Experiments with different
number of bins

F Translit-tagging on the source side

In previous sections, we trained models with
translit tags on the target side, hence enabling
the models to predict whether or not translitera-
tion should be done on the source. An alternative
method is to provide these translit tags as informa-
tion to the model, on the source side.

As we explain in Section 4, we require the target
sentence to determine the translit tags. This is fine
in the target-tagging case, since we do have access
to the target while training; during inference, the
model predicts the tag by itself. However, when
we train a model with these tags on the source,
it becomes necessary to provide this tag during
inference as well - this renders this method is in-
feasible at test time. We conduct an oracle experi-
ment where we assume the right tags are available
from the target at test time. We report the results
in Table 16. We see that for hi—en and ta—en,
source tagging improves upon the full-BT base-
line by +0.3; however for gu—en source tagging is
worse by -0.2. For hi—en, source-tagging is better

than target-tagging by +0.2; however for gu—en
and ta—en, target-tagging is significantly better.

Data hi—en | gu—en | ta—en
bitext + full-BT | 30.9 15.0 14.1

(+ translit tags) | - - -
Source-Tagged | 31.2 14.8 14.4
Target-Tagged | 31.0 15.2 15.0

Table 16: Source side Translit-tagging on full-BT data

G Alternate Experiments for hi—en

In our hi—en experiments, we use the IIT Bom-
bay en-hi Corpus (Kunchukuttan et al., 2017) with
1.68M source-target pairs as the training dataset.
In this section, we repeat our HintedBT experi-
ments with the original training set from WMT-
2014, which has 271k source-target pairs. We re-
port test scores on the WMT-2014 hi—en newstest
set in Table 17.

Modeling Methodology Test
bitext 10.3
bitext + full-BT 25.5
bitext + full-BT + LaBSE quality tags 274
bitext + full-BT + LaBSE quality tags + translit-tags | 27.0

Table 17: Experiments with hi—en WMT-2014 train
set.

H Comparison of BoT-Jaccard against
LaBSE as a Quality Metric

We run all the experiments in Section 5 with BoT-
Jaccard scores in the place of LaBSE scores. We
present results in Table 18. We see for hi—en, the
topk-BT baseline is lower than the full-BT base-
line, whereas for gu/ta—en, topk-BT is higher. For
hi/gu—en, the BoT-Jaccard score based quality tag-
ging gives competent results, whereas for ta—en,
the topk-BT model remains the best result.

To better understand patterns of LaBSE or BoT-
Jaccard mistakes in evaluating quality for parallel
data, we manually annotate back-translations for
hi—en where the metrics oppose each other. We
select 200 random instances where,

abs(BoT-Jaccard — LaBSE) > 0.2
and min(BoT-Jaccard, LaBSE) < 0.5

We manually annotate which metric is correct, and
the reason for the other metric’s failure. We present
the analysis in two parts, one where BoT-Jaccard
score is higher than LaBSE, and the other where
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Data hi—en | gu—en | ta—en
bitext 19.5 8.4 11.3
bitext + full-BT 30.9 15.0 14.1
bitext + Jacc. topk-BT | 30.7 16.3 16.5
bitext + full BT 33 | 178 | 157

+ Jacc. quality tags
bitext + Jacc. topk-BT
+ translit-tags

bitext + full-BT

+ Jacc. quality tags 31.0 17.7 16.3
+ translit-tags

30.7 16.1 15.8

Table 18: Performance of models on WMT test sets,
using BoT-Jaccard scoring. These results are directly
comparable to corresponding rows in Table 4.

Quality Metric | hi—en | gu—en | ta—en
BoT-Jaccard 0.127 | 0.306 0.245
LaBSE 0.262 | 0.399 0.314

Table 19: Spearman’s correlation coefficient for qual-
ity metrics against human judgements of quality (1500
samples for each). p-value < 0.001 for all scores.

LaBSE is higher than BoT-Jaccard. In Table 20 and
Table 21 we present the categorizations of mistakes
made by either method. Figure 3 shows examples
of source sentences, their back translations, and
round trip translations which are referred to in the
analysis.
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Ex. # Source Back Translation Round Trip Translation

1 Data Library 3ifehsT oSSy Data Library
2 Derby City 4t R4Er City name (optional, probably Derby City
does not need a translation)
3 This is how it will work. dHIeT T =11 % 1| (Literal This is how it works.
translation: He immediately jumped
down)
4 Skilled Labor FRIST 94 (9379 is used for pregnancy Skilled Labor
related labor, so incorrect in the context)
5 Nightingale eldel Nightingale
6 Mild special needs golhr faY 3argehan Light Requirements
7 My dignity. Y soord| Thank you so much.
8 Extra aid sifaRera agrgar Additional Support
9 10 - Milk shake 10 -QI%T‘HT (Literal translation: 10 -milk | |t is like moving
shaking)
10 Religion of peace. RIGRE Shanti Dharma.

Figure 3: Examples from the qualitative analysis of Jaccard and LaBSE scores. Text in italics are added as
comments. Everything else is part of system output.

Reason # Explanation

LaBSE cannot capture | 45 | This is probably because LaBSE has not been trained on parallel
similarity for transliter- data which contains transliterations. Entities in particular are often
ations transliterated (transcribed in Devanagari), but sometimes even com-

mon words like “library” are used through transliteration rather than
translation, in Hindi. Row 1 in Figure 3 is an example for this.
Mistake in BT fixed by | 40 | There are further three categories of mistakes in BT here.

RTT deceives Jaccard

1. The first is some random noise added to the BT probably stem-
ming from the training data. The phrase "City name (optional,
probably does not need a translation)" on Row 2 in Figure 3 is
generated by the BT model and corrected by the RTT model.

2. Second, is a completely irrelevant BT that is somehow corrected
by the RTT like Row 3 in Figure 3. This might also be due to
faulty training data for the BT and RTT models.

3. The last mode of failure is where the BT is wrong because it
uses a wrong synonym for translating a source word like Row
4 in Figure 3 where the word for pregnancy labor is used for
translating the phrase “skilled labor".

LaBSE misses seman- | 15 | This is the least common mode of failure and might point to some

tic similarity in source gaps in LaBSE training for this language pair (not trained with

and BT enough data to cover rare synonyms or formulations). On Row
5 in Figure 3, LaBSE does not recognize the correct translation for
“Nightingale".

Table 20: Categorization and number of examples where LaBSE >> Jaccard.
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Reason

Explanation

Model translating BT
to RTT makes a mis-
take and deceives Jac-
card

46

In the most common case, the Back Translation is correct, and this is
correctly captured by LaBSE. However, the model translating BT to
RTT makes a mistake, and therefore fools Jaccard on this instance.
Row 6 in Figure 3 is an example of slight difference in meaning
between the correct BT and the RTT. In Row 7 the BT is correct,
however the RTT is completely random.

Synonyms used in RTT
which preserves mean-
ing but deceives Jac-
card

41

In the second most common case, both the BT and RTT seem to
have the same meaning as the original source sentence. However, the
model translating BT to RTT uses synonyms of words in the source
and therefore results in a low Jaccard score. Row 8 in Figure 3 is an
example of this.

Mistake in both BT and | 9 In this case, there is a slight mistake in meaning when source is

RTT - wrongly marked translated to BT and it is further compounded by RTT. However,

as close by LaBSE LaBSE marks the source and BT as close, which is incorrect. Row 9
in Figure 3 is an example of this.

Reverse model translit- | 5 Finally, in some examples, the reverse model transliterates the BT

erates, which deceives
Jaccard

instead of translating it, resulting in low Jaccard scores. Row 10 in
Figure 3 is an example of this.

Table 21: Categorization and number of examples where Jaccard >> LaBSE.
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