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Abstract

Targeted evaluations have found that machine
translation systems often output incorrect gen-
der in translations, even when the gender is
clear from context. Furthermore, these incor-
rectly gendered translations have the potential
to reflect or amplify social biases. We propose
gender-filtered self-training (GFST) to improve
gender translation accuracy on unambiguously
gendered inputs. Our GFST approach uses a
source monolingual corpus and an initial model
to generate gender-specific pseudo-parallel cor-
pora which are then filtered and added to the
training data. We evaluate GFST on translation
from English into five languages, finding that
it improves gender accuracy without damaging
generic quality. We also show the viability of
GFST on several experimental settings, includ-
ing re-training from scratch, fine-tuning, con-
trolling the gender balance of the data, forward
translation, and back-translation.1

1 Introduction

Recent work has drawn attention to the harms that
machine learning algorithms can cause by reflect-
ing or even amplifying data biases against protected
groups (Barocas et al., 2019; Kearns and Roth,
2019). For the most part, machine translation (MT)
studies on bias have focused on gender bias in neu-
ral machine translation (NMT) and have identified
a series of representational harms and stereotyp-
ing.2 For example, on input sentences that are un-
derspecified in terms of gender, MT models often

∗Equal contribution.
†Work done as an intern at Amazon AI Translate.

1Code and data are available at https://github.
com/amazon-research/gfst-nmt.

2Following the taxonomy of Blodgett et al. (2020), repre-
sentational harms occur when a model’s performance is lower
on input data associated with a protected group as opposed to
other groups. Stereotyping occurs when a model’s prediction
reflects negative stereotypes, for example about a specific eth-
nicity, or other stereotypical correlations, for example between
professions and gender.
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Figure 1: GFST approach for NMT.

default to masculine or gender-stereotypical out-
puts (Cho et al., 2019; Prates et al., 2018), which
can exclude female and non-binary people (e.g., the
sentence I am a doctor spoken by a woman may
be translated incorrectly as I am a (male) doctor).
Even on unambiguously gendered inputs, NMT
models can exhibit poorer performance, in terms of
overall quality or gender translation accuracy, on
content with non-masculine referents (Bentivogli
et al., 2020; Stanovsky et al., 2019).

In this paper, we take on the task of improving
gender translation accuracy, focusing on unambigu-
ous inputs where there is only one correct transla-
tion with respect to gender. This task is especially
difficult when translating from languages with very
limited grammatical gender (such as English) into
languages with extensive gender markings (such as
German).

Known sources of gender bias in MT include
sample bias (a.k.a. selection bias), which occurs
when the input (source) distribution differs from
that of the target application; label bias, which in
MT occurs when gender-neutral sentences are trans-
lated predominantly into a specific gender or when
the gender is translated incorrectly in the training
data; and over-amplification, which is a property
of the machine learning model (Shah et al., 2020).
In this paper we focus on sample bias, starting
from the observation that MT training data is often

https://github.com/amazon-research/gfst-nmt
https://github.com/amazon-research/gfst-nmt


1641

en-de en-fr en-he en-it en-ru
Fem 0.7% 0.9% 1.9% 1.9% 0.5%
Msc 4.8% 3.1% 4.9% 4.9% 2.4%
Mix 94.5% 96.0% 93.2% 93.2% 97.1%

Table 1: Distribution of feminine (Fem), masculine
(Msc), and mixed data in our parallel training data. Data
is from WMT/IWSLT (described in Appendix A).

gender imbalanced. Indeed, Table 1 shows the rela-
tive proportion of masculine-referring vs. feminine-
referring3 sentences in our training data (extracted
using the FILTERSRC algorithm described in Sec-
tion 2). Though over 90% of the data is not specific
to one gender (Mix in Table 1), there are at least
2.6 times more masculine-specific than feminine-
specific sentences in all of our training sets. Sim-
ilarly, Vanmassenhove et al. (2018) showed that,
across 10 languages, only 30% of Europarl (Koehn,
2005) has female speaker gender.

This paper proposes a data augmentation-
based method to address sample bias using only
source-language monolingual data. Our approach,
dubbed gender-filtered self-training (GFST), con-
sists of self-training the NMT model using gender-
balanced monolingual data that is filtered to re-
duce error propagation. Our framework is simple,
generic, and easily scalable to any target language
for which a morphological tagger is available. Our
main contributions are:

1. We propose GFST, a broadly applicable
self-training technique that leverages natural
monolingual corpora exhibiting diverse gen-
der phenomena.

2. We show that GFST yields significant im-
provements in gender translation accuracy on
both feminine and masculine gendered input
without harming overall translation quality.

3. We perform a wide set of experiments that
show that these results hold on several lan-
guage pairs and settings, including adapting
to fine-tuning and to back-translation.

2 Gender-Filtered Self-Training (GFST)

In this paper, we propose gender-filtered self-
training (GFST) for improving gender translation

3This work helps to mitigate representational harms caused
by low gender translation accuracy in MT systems. Since male
and female genders have been the focus of most targeted MT
gender bias evaluations, we focus on these two genders and
as such do not address representational harms against non-
binary genders. See our impact statement in Section 9 for
more discussion.

accuracy on unambiguously gendered input sen-
tences. We use filtering and self-training to aug-
ment the data used to train the MT model. Our
GFST approach is illustrated in Figure 1.

GFST assumes access to a parallel corpus Dpar

and a monolingual source corpus Dsrc. We first
train an initial model Θini on Dpar. Due to the
skewed gender representation of the training data
(see Table 1), Θini may fail to use relevant gender
cues from context, incorrectly translating gender-
unmarked feminine words (such as friend in the
sentence She is my friend) as masculine or vice
versa. The extent of such errors can vary with the
amount and quality of the training data, the domain
of the data, or linguistic features of the languages.
Nonetheless, we assume that our baseline models
can render the correct gender for at least some
inputs (Escudé Font and Costa-jussà, 2019).

Therefore, we use Θini to generate translations
for gender-specific sentences extracted from Dsrc.
This forward-translated data is then filtered to en-
sure that the translations accurately reflect the gen-
der of the source, balanced by gender, and used
as additional training data. Note that filtering is
only done on the additional pseudo-parallel data;
the original parallel data is used in its entirety. The
full process is illustrated in Algorithm 1, and we
describe each step in detail below.

Algorithm 1 GFST for NMT.
Require: Parallel and src mono data Dpar, Dsrc

1: Train Θini on Dpar

2: For gen in {fem,msc}
3: Dgen

src ← FILTERSRC(Dsrc, gen)
4: Dgen

trg ← Translate Dgen
src using Θini

5: Dgen
par ← FILTERTRG(Dgen

src , Dgen
trg , gen)

6: Train Θfin on Dpar + Dfem
par + Dmsc

par

7: return Θfin

FILTERSRC: We extract a feminine and a mas-
culine subset of sentence candidates (Dgen

src for
gen ∈ {fem,msc}) from the source-language
(in our case, English) monolingual corpus Dsrc.
Specifically, given lists of feminine and masculine
words, we consider a source sentence masculine if
it meets all of the following criteria:

1. Has at least one masculine pronoun
2. Does not have any feminine pronouns
3. Does not contain any feminine words

We use an equivalent set of criteria to extract femi-
nine sentence candidates from the data. To define
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Target-Filtered Sentences
Source My daughter is hurt at being rejected by the girl she called her best friend
Target Meine Tochter ist verletzt, weil sie von dem Mädchen, das sie als ihren besten Freund [...]

Source Another passenger was held for three days for using her phone on board a flight [...]
Target Ein weiterer Passagier wurde drei Tage lang festgehalten, weil er sein Telefon [...]

Table 2: Sentence pairs removed in the FILTERTRG step. Both pairs are removed because the target sentences
contain words with masculine grammatical gender (underlined along with their aligned source words). The source
sentences were selected by the FILTERSRC step due to the feminine words in bold.

gender-specific words, we use a list from Zhao et al.
(2018)4 that contains a total of 104 pairs of words
(such as brother/sister or boy/girl).

FILTERTRG: Filtering on the target side of the
data is done to exclude sentence pairs for which the
model failed to preserve the gender of the source
sentence. We run morphological analysis on the
translations Dmsc

trg of Dmsc
src and keep only those sen-

tences that have:
1. No grammatically feminine words, and
2. At least one grammatically masculine word

and similarly for the translations of Dfem
src .5 This

results in parallel datasets Dmsc
par and Dfem

par . Table 2
shows examples of sentences that passed FILTER-
SRC but were removed during FILTERTRG.

Note that FILTERTRG suffices to generate
gender-specific sentence pairs. However, FILTER-
SRC reduces computational cost by limiting the
search space for the candidate sentences and re-
duces the risk of introducing wrongly translated
sentence pairs that may pass FILTERTRG.

Self-Training NMT: After obtaining gender-
specific pseudo-parallel corpora, the larger of the
two is sub-sampled to balance the pseudo-parallel
data. Finally, the original parallel corpus Dpar is
concatenated with the two pseudo-parallel corpora
Dfem

par and Dmsc
par and used to train a final MT model

Θfin.

3 Evaluation

3.1 Gender Accuracy on WinoMT
We evaluate on the WinoMT (Stanovsky et al.,
2019) gender-annotated test sets. WinoMT con-

4Found at https://github.com/uclanlp/
corefBias/blob/master/WinoBias/wino/
generalized_swaps.txt.

5FILTERTRG is entirely based on grammatical gender.
Since the target languages in our experiments mark gender
on inanimate objects, this step may exclude valid translations
where the gender is correctly preserved. However, we prefer
to keep a smaller set of high-confidence sentences in order
to avoid introducing too much noise during self-training. We
analyze this trade-off in Appendix D.

tains 3888 English sentences taken from the Wino-
gender (Rudinger et al., 2018) and WinoBias (Zhao
et al., 2018) datasets. Each sentence contains a
target occupation that lacks gender marking at the
lexical level, such as salesperson. The gender of
the referent is implicitly defined by a coreferential
pronoun in the sentential context, leading to sen-
tences such as The salesperson sold some books to
the librarian because it was her job, where sales-
person is implicitly but unambiguously feminine.
The dataset distinguishes between anti- and pro-
stereotypical occupations, and contains 3648 sen-
tences equally balanced between masculine and
feminine as well as pro-stereotypical and anti-
stereotypical occupations. Target occupations in
the remaining 240 sentences are identified with
neutral gender (e.g. The technician told someone
that they could pay with cash) and are excluded
from the stereotype annotation.

WinoMT Metrics: On the WinoMT data, the au-
tomated evaluation strategy first uses fast_align
(Dyer et al., 2013) to find the alignment for the
target occupation in the translation. Then, using
heuristic rules over language-specific morpholog-
ical analysis, it identifies the gender of the trans-
lated occupation and uses three metrics to estimate
the overall bias. Accuracy is the percentage of
translations that correctly reflect the gender of tar-
get occupation, while ∆G and ∆S are defined
as the difference in F1 scores between masculine
and feminine and between pro-stereotypical and
anti-stereotypical target occupations respectively.

∆R: ∆G may not give a complete picture of
gender bias when the test set includes samples with
unambiguously neutral gender (e.g. WinoMT sen-
tences with they). To understand how this can hap-
pen, consider two hypothetical MT models that
both have equal accuracy on feminine and mas-
culine inputs but differ in how they treat neutral

https://github.com/uclanlp/corefBias/blob/master/WinoBias/wino/generalized_swaps.txt
https://github.com/uclanlp/corefBias/blob/master/WinoBias/wino/generalized_swaps.txt
https://github.com/uclanlp/corefBias/blob/master/WinoBias/wino/generalized_swaps.txt
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inputs.6 Model A translates all neutral inputs as
masculine, whereas model B translates half of the
neutral inputs as masculine and half as feminine.
In this scenario, model A will have a lower ∆G
because it has lower precision on masculine inputs
but the same recall for masculine and feminine in-
puts. However, we argue that model A may still
be biased towards the masculine gender, since it
defaults to masculine when the inputs are neutral.

Therefore, we propose a new metric for the
WinoMT test suite: ∆R, which we define as the
difference in recall between masculine and femi-
nine samples. This metric complements the exist-
ing metrics and gives a more complete picture of
model biases. ∆R decouples precision from the
∆G metric by excluding neutral inputs from con-
sideration and only evaluating on unambiguously
gendered input sentences. Thus, it is an indicator
of the model’s bias towards outputting masculine
vs. feminine gender. We use ∆R because GFST
does not specifically address translation of neutral
inputs, and we do not take a stance on how such
inputs should be translated.

Human Evaluations: The WinoMT automatic
gender accuracy metric was originally validated us-
ing human annotators. While the metric was shown
to be relatively accurate, with an agreement be-
tween annotators and the metric of over 85% across
all languages and systems, in this paper we com-
plement the automatic metric with a small-scale
human evaluation. Fluent speakers of German, Ital-
ian, and Russian were asked to annotate the gender
translation accuracy of a random subset of 100 un-
ambiguously gendered sentences from WinoMT
(balanced for masculine/feminine and pro-/anti-
stereotype). Annotators were instructed to clas-
sify a translation with one of five discrete labels:
besides masculine or feminine (as in automatic eval-
uations), we added inconsistent (if some words in
the translation indicate one gender and some in-
dicate another for the same referent), ambiguous7

(if the translation is valid for both masculine and
feminine referents), and N/A (if the referent of in-
terest is completely omitted from the translation)8.

6The correct gender translations of such sentences depends
on the grammatical conventions of the target language.

7Although we assume that the input sentences are unam-
biguous for gender, the outputs might still be ambiguous for
gender. See Table 7 for an example.

8The labels were created in consultation with a linguist
and piloted independently by the authors and language experts
to ensure all possibilities were covered and exclusive.

We classify translations as incorrect if they are
inconsistent, N/A, or a different gender from the
unambiguous source (e.g. masculine if the source
sentence is feminine), and correct if they are am-
biguous or the same gender as the source.

3.2 Gender Accuracy on MuST-SHE
In addition to WinoMT, we also use the MuST-
SHE gender-specific translation test set (Bentivogli
et al., 2020) to evaluate gender translation accuracy.
MuST-SHE consists of roughly 1000 triples of au-
dio, transcript, and reference translations taken
from MuST-C (Di Gangi et al., 2019) for en-fr and
en-it. Each triple is identified with either masculine
or feminine gender based on speaker gender (cate-
gory 1) or explicit gender markers such as pronouns
(category 2). Furthermore, for each correct refer-
ence translation, the dataset includes a wrong alter-
native translation that changes the gender-marked
words (e.g. feminine words are changed to mascu-
line). MuST-SHE is balanced between masculine
and feminine and between categories 1 and 2.

Automatic Metrics for MuST-SHE: We use
the category 2 samples (which contain explicitly
marked gender words on the source side) from
MuST-SHE to evaluate our en-fr and en-it mod-
els. Following Bentivogli et al. (2020), we evaluate
the gender accuracy for translations and also look
at ∆Acc, which is the difference between the gen-
der accuracy of translation with respect to correct
and counterfactual references. Higher ∆Acc is bet-
ter, as this indicates that the model is closer to the
correct reference than to the counterfactual one.

3.3 Generic Quality
Our main goal is to improve gender translation
accuracy. Additionally, we measure generic quality
using BLEU and human evaluations to investigate
any potential overall quality loss. Generic human
quality evaluations on WinoMT also allow us to
investigate whether changes in gender accuracy
lead to noticeable quality improvements.

4 Experiments

With source language as English (EN), we experi-
ment on five target languages from four families, all
of which have grammatical gender: French (FR),
Italian (IT), Russian (RU), Hebrew (HE), and Ger-
man (DE). Our experiments include low-, medium-
and high-resource settings. Table 3 shows the num-
ber of parallel training sentences after preprocess-
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Dataset en-de en-fr en-he en-it en-ru
Dpar 5.2M 35.7M 180k 161k 1.6M
Dfem

src 1.8M 4.2M 1.8M 1.8M 1.8M
Dfem

par 428k 150k 29k 81k 184k

Table 3: Number of sentences in each training set. Dpar

is the original parallel training data, Dfem
src the source-

filtered feminine monolingual data, and Dfem
par the fem-

inine data after target filtering. We downsample the
larger masculine data Dmsc

par to match the size of Dfem
par .

ing, and the number of sentences in the pseudo-
parallel corpus after source and target filtering. For
a full description of the data used, see Appendix A.

We use Transformers (Vaswani et al., 2017) im-
plemented in Fairseq-py (Ott et al., 2019). Exact
hyperparameters are detailed in the appendix. We
experiment with the following models:

• Baseline models are trained on the original
bitext Dpar only; these correspond to Θini.

• RANDST models are trained on Dpar with
additional data consisting of random pseudo-
parallel sentence pairs.9

• GFST models are our proposed gender-
filtered self-training models; they are trained
on masculine and feminine pseudo-parallel
data (Dmsc

par and Dfem
par ) and on Dpar.

• +HD models additionally use encoder sub-
word embeddings that are hard-debiased fol-
lowing Bolukbasi et al. (2016).

5 Results

5.1 Gender Translation Accuracy

Automatic WinoMT Accuracy: Table 4 com-
pares all models on the WinoMT benchmark using
accuracy (Acc), ∆G, and our proposed ∆R met-
ric.10 Our proposed gender-filtered self-training
method consistently yields gains in accuracy of up
to 11.2 points over the baseline. Largest gains
are on feminine inputs, although we see gains
on masculine inputs too.11 By contrast, simply
self-training on randomly sampled data (RANDST)
does not improve gender accuracy significantly: av-
erage accuracy is 52.4 for the baseline and 52.7 for
RANDST.

9Random pseudo-parallel sentence pairs are obtained
through forward translation of the monolingual English corpus
but without the FILTERSRC and FILTERTRG steps. For fair
comparison, we keep the size of random pairs equal to the
combined size of masculine and feminine pairs used in GFST.

10∆S results are shown in the appendix, since debiasing
according to stereotypes is not the main focus of this work.

11Full results for gender-specific F1 are in Appendix B.

The GFST model also outperforms a baseline
model that uses hard-debiasing (Bolukbasi et al.,
2016) on both accuracy and ∆R for all language
pairs. Since hard-debiasing is orthogonal to GFST,
we also apply it to the GFST model; this is shown in
the +HD row. However, hard-debiased embeddings
do not improve accuracy significantly on average
for either the baseline model or GFST. Our findings
are slightly different from those of Escudé Font and
Costa-jussà (2019), who found some evidence for
improved gender translation accuracy when using
pre-trained hard-debiased embeddings on a differ-
ent test set. On the other hand, Gonen and Goldberg
(2019) have also shown that hard-debiasing metrics
may not meaningfully reduce gender bias. As such,
and based on our results in Table 4, we focus sub-
sequent experiments on the simpler GFST models
without hard-debiasing.

Human Accuracy Evaluations: Table 5 shows
the results for the human evaluations of gender
accuracy on WinoMT. For en-de12 and en-it, we
see a large increase in gender translation accuracy
for our proposed GFST model compared to the
baseline, while for en-ru, there is no significant
difference between the baseline and our proposed
model. These scores corroborate the automatic
WinoMT accuracy results in Table 4, with larger
differences in automatic scores corresponding to
larger differences in human evaluation scores.

Unlike standard WinoMT evaluations, we addi-
tionally allowed annotators to mark output genders
as inconsistent (which we mapped to incorrect) and
ambiguous (mapped to correct). Up to 19% of the
sentences in a given test set were marked as incon-
sistent, with baseline systems having slightly more
inconsistent translations on average than GFST sys-
tems (12.8% vs. 8.5%). Up to 11% of the sentences
in a given test set were marked as ambiguous –
cases where the gender of the given entity is not
specified in the translation. Here, we saw some
divergence from the WinoMT metric13; Table 7
shows one such case. In the source sentence, the
pronoun he in the context indicates that the guard
is male. In the translation, the only gendered word
that refers to the guard is la guardia, which, while
grammatically feminine, can refer to men. Thus,
the translation is ambiguous regarding the gender

12For en-de we had two annotators, so we average their
scores. Inter-annotator agreement was 78% for the baseline
and 97% for GFST.

13In fact, for the en-it GFST model, 67% of the ambiugous
outputs were marked as incorrect by the automatic evaluation.
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en-de en-fr en-he en-it en-ru
Model Acc ∆G ∆R Acc ∆G ∆R Acc ∆G ∆R Acc ∆G ∆R Acc ∆G ∆R Avg Acc
Baseline 75.5 0.4 18.8 66.2 -0.2 13.3 47.5 13.8 30.9 38.8 31.5 50.9 34.1 32.7 46.6 52.4
+HD 75.4 0.4 19.2 66.1 0.2 15.3 47.7 12.5 28.3 39.1 32.4 52.3 34.3 31.7 45.7 52.5

RANDST 78.7 -1.6 13.0 65.0 0.6 15.0 46.9 14.8 31.9 39.4 34.7 55.9 33.3 32.2 45.0 52.7
GFST 85.4 -4.4 -0.3 71.0 -1.3 10.2 48.6 13.8 31.6 50.0 18.0 41.3 39.0 30.3 47.8 58.8
+HD 85.3 -4.4 -0.2 68.8 0.8 16.8 49.3 13.5 31.3 52.4 14.7 37.2 39.4 30.3 47.8 59.0

Table 4: Performance of all systems on WinoMT using Accuracy (Acc), ∆G, and our proposed ∆R. Comparison to
other published results is difficult due to the different experimental settings. As a reference, Stanovsky et al. (2019)
report maximum accuracies of 74% (en-de), 63% (en-fr), 53% (en-he), 42% (en-it), and 39% (en-ru) using various
commercial MT systems. Saunders and Byrne (2020) report results of up to 81% (en-de) and 65% (en-he) for
models not degrading generic quality, after fine-tuning on a handcrafted professions set and using lattice rescoring.

Model en-de en-it en-ru
Baseline 79% 50% 80%
GFST 93% 65% 79%

Table 5: Accuracy scores as evaluated by humans on
a balanced subset of the WinoMT dataset. Scores for
en-de are averaged over two annotators.

of the guard, although it is marked as feminine and
thus incorrect by the automatic WinoMT evalua-
tions (because the source unambiguously indicates
that the guard is masculine).

Automatic MuST-SHE Accuracy: In Table 6,
we report accuracy, as well as ∆Acc between cor-
rect and gender-swapped references, using cate-
gory 2 data from MuST-SHE for en-it and en-fr.
For en-it, GFST increases both accuracy and ∆Acc
for feminine and masculine data. For the high-
resource pair en-fr, there is an increase in accuracy
and ∆Acc for feminine data, but a (smaller) de-
crease in both metrics for masculine data.

5.2 Generic Quality

Automatic Translation Quality: Table 8 reports
case-sensitive de-tokenized BLEU14 for all lan-
guage pairs on the generic (WMT or IWSLT) test
sets. The results confirm that our proposed GFST
method does not come at a trade-off in generic
translation quality, compared to a baseline that does
not use the gender-filtered data. We also observe
a general trend of small improvements from self-
training, irrespective of data selection method.

Human Quality Evaluations: To better under-
stand how GFST affects overall translation quality,
we perform human quality evaluations on a bal-
anced, 300-sentence subset of WinoMT. For each
language pair, baseline vs. GFST quality is evalu-
ated on a six-point Likert scale by two professional

14SacreBLEU (Post, 2018) signature: BLEU+case.mixed
+numrefs.1+smooth.exp+tok.13a+version.1.4.10.

translators. The scores, averaged between annota-
tors, are shown in Table 9. For en-de, en-he, and
en-it, GFST significantly improves overall quality.
For en-fr and en-ru, there is no significant differ-
ence in overall quality between the two models.

6 Analysis

6.1 Retraining vs. Fine-Tuning

The main experiments (section 5) used the data gen-
erated by the GFST method to train the final models
from scratch. In this section, we further explore the
utility of GFST by fine-tuning the existing models
that were used for forward translation, instead of
retraining them. We fine-tune these models using
the feminine and masculine samples, and addition-
ally mix in an equal number of sentences from the
original training corpus to avoid catastrophic for-
getting (following the mixed fine-tuning approach
of Chu et al., 2017; Freitag and Al-Onaizan, 2016).

BLEU scores for baselines, retrained GFST mod-
els, and fine-tuned GFST models are shown in Ta-
ble 10. For four of the five language pairs, there is
no significant drop in quality between the baseline
and the fine-tuned models; en-ru loses 1.1 BLEU.
Table 11 shows WinoMT accuracy and ∆R results
for the three models. On average, retraining on
GFST data outperforms fine-tuning. However, fine-
tuning on GFST data consistently improves gender
accuracy over the baseline, making fine-tuning a
viable low-cost alternative to retraining.

6.2 Single-Gender Data Augmentation

Although our original motivation (see Table 1) was
to address gender imbalance in the training data,
the proposed GFST models use gender-balanced
augmented data, i.e. the same amount of feminine-
specific and masculine-specific sentences in the
pseudo-parallel data. In this section we investigate
the relative contribution of each corpus using:
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en-it en-fr
Fem Msc Fem Msc

Model Acc ∆Acc Acc ∆Acc Acc ∆Acc Acc ∆Acc
Baseline 32.5 2.5 58.8 48.8 57.5 46.0 68.0 60.7
GFST 41.9 21.9 61.6 54.3 60.9 52.8 66.8 59.7

Table 6: MuST-SHE performance measured in Accuracy (Acc) and ∆Accuracy (∆Acc).

Src The guard saved the editor from the criminals
because he was on duty.

Trg La guardia ha salvato l’editore dai criminali per-
ché era in dovere.

Table 7: Sentence and its ambiguous output that was
marked incorrect by the WinoMT automatic metric.

Model en-de en-fr en-he en-it en-ru
Baseline 41.7 40.5 23.4 34.5 25.7

+HD 41.8 40.7 23.5 34.4 25.5
RANDST 42.4 40.8 23.9 34.4 26.9
GFST 41.8 40.2 23.8 34.6 26.6

+HD 42.0 40.4 23.8 34.6 26.5

Table 8: BLEU on generic test sets for the baselines
and GFST models. The test sets are from WMT (en-de,
en-fr, en-ru) and IWSLT (en-it, en-he), corresponding
to the training data for each language pair.

• GFSTFem: models trained on the original
bitext Dpar + feminine sentence pairs Dfem

par .
• GFSTMsc: models trained on Dpar + down-

sampled masculine sentence pairs Dmsc
par .

In overall translation quality, all models perform
similarly (see Appendix C). In Table 12, we com-
pare feminine-only, masculine-only, and joint self-
training models to the baseline on the WinoMT
benchmark using accuracy and ∆R. As expected,
GFSTFem reduces the gap between recall for fem-
inine and masculine inputs, lowering ∆R by up
to 19.8 points with respect to the baseline. At the
same time, GFSTMsc increases ∆R overall, sug-
gesting that GFST works as hypothesized and can
be used to balance the training data distribution
between masculine and feminine genders.

On gender accuracy, GFSTFem outperforms the
baseline for all five language pairs and yields sim-
ilar accuracy to the original GFST model. On
the other hand, GFSTMsc performs very closely
to the baseline. This result highlights the under-
representation of feminine samples in the exist-
ing training corpora. The original GFST model,
which is trained on both masculine and feminine
additional data, outperforms GFSTFem in accu-
racy but underperforms it in ∆R. This is not sur-
prising since the GFSTFem training data is more
gender-balanced than the original GFST training

Model en-de en-fr en-he en-it en-ru
Baseline 4.52 4.55 2.84 3.50 3.86
GFST 4.70 4.47 3.05 3.59 3.96

Table 9: Human quality scores (average of two anno-
tators) on a balanced subset of WinoMT. Differences
outside the 95% confidence interval are shown in bold.

Model en-de en-fr en-he en-it en-ru
Baseline 41.7 40.5 23.4 34.5 25.7
GFST-RT 41.8 40.2 23.8 34.6 26.6
GFST-FT 41.8 41.1 23.6 34.3 24.6

Table 10: BLEU scores on the generic test data for the
baseline model and the GFST models: retrained (GFST-
RT) and fine-tuned (GFST-FT).

data (which contains additional masculine data).

6.3 Forward Translation vs. Back-Translation
So far, our experiments have used forward transla-
tion (FT) to generate gender-balanced data through
self-training. Here, we extend the approach to back-
translation (BT) on a monolingual target-language
corpus (Sennrich et al., 2016a). Back-translation
is potentially preferable because the automatically
translated data is on the source side rather than the
target. Thus, BT is less likely to damage generic
translation quality (although our evaluations in Sec-
tion 5.2 indicate that FT does not damage generic
quality either).

The BT model is created by running FILTERTRG

on target monolingual data, using a target→source
system for translation, and applying FILTERSRC

on the resulting source-language output15. We use
German News Crawl 2015, 2016, and 2017 (Bo-
jar et al., 2018) as the monolingual data for back-
translation.

In Table 13, we compare BT and FT for en-de.
We use the same amount of pseudo-parallel data
for both (although the data itself is not the same, as
it comes from different languages).

The results highlight the flexibility of GFST, in
that it can be applied to both source and target

15We use the additional target filtering criterion that the
sentence must have at least one third-person gendered pronoun
in order to increase the likelihood that the sentence contains
natural gender and not just grammatical gender.
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en-de en-fr en-he en-it en-ru
Model Acc ∆R Acc ∆R Acc ∆R Acc ∆R Acc ∆R Avg Acc
Baseline 75.5 18.8 66.2 13.3 47.5 30.9 38.8 50.9 34.1 46.6 52.4
GFST-RT 85.4 -0.3 71.0 10.2 48.6 31.6 50.0 41.3 39.0 47.8 58.8
GFST-FT 83.2 3.5 72.2 4.8 47.2 31.3 40.9 51.8 36.1 47.6 55.9

Table 11: Accuracy and ∆R scores on the WinoMT test data for the baseline model and the GFST models: retrained
(GFST-RT) and fine-tuned (GFST-FT).

en-de en-fr en-he en-it en-ru
Model Acc ∆R Acc ∆R Acc ∆R Acc ∆R Acc ∆R Avg Acc
Baseline 75.5 18.8 66.2 13.3 47.5 30.9 38.8 50.9 34.1 46.6 52.4
GFST 85.4 -0.3 71.0 10.2 48.6 31.6 50.0 41.3 39.0 47.8 58.8
GFSTFem 84.0 -1.0 69.3 5.6 48.2 25.1 48.0 24.6 37.1 43.0 57.3
GFSTMsc 75.5 22.0 64.8 25.0 48.8 34.7 40.1 65.0 34.8 50.9 52.8

Table 12: Accuracy and ∆R scores on WinoMT for the baseline model, the original GFST model, and models that
use only feminine-specific additional data (GFSTFem) and masculine-specific additional data (GFSTMsc).

Model Acc ∆G ∆R
Baseline 75.5 0.4 18.8
Forward Translation 85.4 -4.4 -0.3
Back-Translation 87.7 -4.6 2.3

Table 13: WinoMT performance for en-de for the base-
line and forward- and back-translated GFST models.

monolingual data. Back-translation shows better
gender translation accuracy than forward transla-
tion, whereas forward translation is more conve-
nient: a much larger corpus was required in order
to obtain the same amount of filtered data for BT as
for FT (90M vs. 26M sentences). Additionally, for-
ward translation allowed the use of the same filtered
source monolingual data for all our experiments.

7 Related Work

Gender Translation Accuracy in MT: A large
body of work has addressed bias in natural lan-
guage processing (NLP) and MT, surveyed in Blod-
gett et al. (2020); Costa-jussà et al. (2019, 2020);
Savoldi et al. (2021); Sun et al. (2019); and oth-
ers. In MT, several papers address the topic of
gender in the context of ambiguous input (Cho
et al., 2019) and propose methods to control for
gender or augment data with gender (Elaraby et al.,
2018; Moryossef et al., 2019; Prates et al., 2018;
Saunders et al., 2020; Stafanovičs et al., 2020; Van-
massenhove et al., 2018). By contrast, in this paper
we instead address the problem of gender accuracy
for unambiguous inputs through gender balancing
techniques.

Work addressing the gender data imbalance is-
sue in NLP (Zhao et al., 2018) is closely related
to our proposal, as the GFST method for creating
gender-specific data is motivated by data imbal-

ance. In MT, Saunders and Byrne (2020) show that
gender translation accuracy for unambiguous in-
puts can be improved through fine-tuning on small
gender-balanced counterfactual data. Specifically,
they extract a subset of source sentences contain-
ing gender-specific words (e.g. woman, she) and
swap the gender of these words (e.g. man, he).
The subsequent translations are used to create a
dataset for fine-tuning the original model. Tomalin
et al. (2021) take a similar approach of fine-tuning
a trained model on a small, constructed, counterfac-
tual dataset, while Costa-jussà and de Jorge (2020)
fine-tune a model on a small parallel Wikipedia
corpus. Unlike counterfactual data augmentation,
GFST does not alter the source data or generate ar-
tificial source data according to specific patterns. It
instead uses naturally occurring, diverse data that is
filtered for gender phenomena. Additionally, GFST
requires only monolingual data, which increases
its flexibility. In particular, we can generate rela-
tively large pseudo-parallel corpora, which can be
used for fine-tuning (as in prior work) as well as
for train-time data augmentation.

Another popular approach to reducing gender
bias in NLP is to use embedding debiasing tech-
niques (Bolukbasi et al., 2016). In NMT, Es-
cudé Font and Costa-jussà (2019) use pre-trained
debiased word embeddings and show that hard-
debiased embeddings improve gender accuracy.
This approach is orthogonal to GFST; in Section 5,
we showed experiments combining both methods.

Self-Training for MT: Monolingual data has
been exploited via self-training to enhance statis-
tical (Schwenk, 2008; Ueffing, 2006) and neural
MT (Wu et al., 2019) through forward translation of
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source data (Imamura and Sumita, 2018; Zhang and
Zong, 2016) or back-translation of target data (Sen-
nrich et al., 2016a). Additionally, unfiltered for-
ward translation has been effective in NMT for
model compression (Kim and Rush, 2016), non-
autoregressive translation (Zhou et al., 2020), and
domain adaptation (Currey et al., 2020). Here, we
experiment with forward and back-translation, and
add filtering to reduce error propagation.

8 Conclusion

This paper addresses gender translation accuracy
for unambiguously gendered inputs. The proposed
gender-filtered self-training approach creates ad-
ditional gender-specific training data by filtering
source monolingual data by gender, translating the
data, and filtering the translations to remove gen-
der errors. Using this additional data, the mod-
els achieve large gains in gender accuracy without
damaging overall translation quality.

In the future, we plan to extend GFST to other
genders and language pairs. This will not be trivial:
the self-training aspect of GFST assumes that the
initial model is good enough at gender translation,
which may not be the case for other genders and
languages. In particular, the use of morphological
analysis for FILTERTRG might limit GFST’s ap-
plicability to other genders or very low-resource
target languages. Thus, we will explore alternative
approaches to self-training (e.g. synthetic data gen-
eration) and filtering (e.g. using round-trip transla-
tion (Moon et al., 2020)).

Acknowledgments

We would like to thank Margo Lynch, Tanya
Badeka, Sony Trenous, and Felix Hieber for their
help in evaluations. We would also like to thank
the anonymous reviewers for their feedback.

9 Broader Impact

This paper has presented an approach for reducing
the gap in accuracy between masculine-referring
and feminine-referring inputs. This work addresses
potential representational harms that can come
from bias affecting feminine gender. We use only
gender-marked words, with gender being marked
either lexically (English) or morphologically (Ger-
man, French, Hebrew, Italian, and Russian), as
the basis for our definitions of feminine- and
masculine-referring inputs. Thus, we do not use hu-

man subjects, ascribe gender to any specific person,
or use gender as a variable in our work.

This work has shown improvements in gender
translation accuracy for translation from English
into several relatively diverse languages. In ad-
dition, improvements on translation accuracy for
feminine inputs do not harm overall translation
quality or gender translation accuracy for mascu-
line inputs. The approach can be generalized to
other source languages with only lexical gender
(e.g. Chinese) and to other target languages with
grammatical gender (e.g. Hindi), using a gendered
wordlist in the former case and a morphological an-
alyzer in the latter case. While our technique does
not completely close the gap in accuracy between
masculine and feminine inputs, it does significantly
improve over the baselines and as such it is a step
in the right direction.

Relying exclusively on the WinoMT benchmark
may give practitioners and users false confidence
about the level of gender bias in their machine
translation systems. While the method proposed
uses a generic monolingual corpus as the basis for
the gender-specific data, our evaluation is limited
to the available benchmarks: WinoMT and MuST-
SHE. In order to mitigate the risk of overfitting to a
specific benchmark, we have included human eval-
uations of accuracy and quality in addition to the
standard automatic evaluations. However, given the
availability of evaluation data for this task, we are
not able to thoroughly test if the method proposed
introduces other biases with respect to gender or
other protected groups. For future work, we plan to
expand existing evaluation benchmarks and use any
additional benchmarks that may become available
to the community.

This paper has only considered two genders
(masculine and feminine). The proposed self-
training approach relies on the baseline model be-
ing able to correctly translate the under-represented
gender (in this case, feminine) for at least some in-
puts. This assumption is unlikely to hold for other
under-represented genders, at least for the com-
monly used machine translation training corpora.
Additionally, the filtering step relies on a morpho-
logical analyzer to detect grammatical gender of the
target words, which may not be straightforward for
non-binary genders. Finally, although the WinoMT
dataset used for evaluation covers neutral gender,
it does not cover non-binary gender, making this
difficult to evaluate. In the future, we plan to ex-
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pand our work towards covering other genders by
creating additional evaluation benchmarks.
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A Data, Preprocessing, and
Hyperparameters

Parallel Data: We train en-fr on the WMT14
news task (Bojar et al., 2014), en-it on the
IWSLT13 task (Cettolo et al., 2013), en-ru
on WMT16 (Bojar et al., 2016),16 en-he on
IWSLT14 (Cettolo et al., 2014), and en-de on
WMT18 (Bojar et al., 2018).17 For each language
pair, we use the standard validation and test sets
from the corresponding shared task.

Monolingual Data: We use English News Crawl
2017 as the monolingual source data for all five
language pairs. To balance the larger en-fr parallel
corpus, we also obtain feminine samples from En-
glish News Crawl 2015 and 2016 for that language
pair.

For FILTERTRG, we use the spaCy morphologi-
cal analyzer18 for FR and IT, pymorphy2 (Korobov,
2015) for RU, German-morph-dictionary based on
DeMorphy (Altinok, 2018) for DE and character-
based rules following Stanovsky et al. (2019) for
HE.

Preprocessing: For all language pairs, we follow
Edunov et al. (2018) by removing sentences with
more than 250 words or with a source/target length
ratio higher than 1.5. We tokenize the data using
the Moses tokenizer (Koehn et al., 2007). We learn
shared BPE vocabularies (Sennrich et al., 2016b)
with 32k types for DE and IT and 40k types for
FR. For RU and HE, we learn separate BPEs for
source and target, source with 32k types for both
and target with 2k types for HE and 32k types for
RU.

We use all the extracted feminine sentence pairs,
and an equal number of masculine sentence pairs,
during self-training for all languages except IT,
where due to the small parallel data size we pick

16We only use the Common Crawl, News Commentary v11
and Wiki Headlines corpora for training, as we were not able
to download the Yandex Corpus.

17Consistent with Edunov et al. (2018), we exclude the
ParaCrawl corpus.

18https://spacy.io/

30k random pairs. Similarly, due to the large size of
the en-fr parallel corpus, we up-sample the gender-
specific pseudo-parallel data twenty times for that
language pair.

Training: We adopt training hyperparameters
from Edunov et al. (2018); Ott et al. (2018), and
use the transformer_wmt_en_de_big architec-
ture with dropout rate (Srivastava et al., 2014)
of 0.3 for en-de/he/it/ru, and dropout rate of 0.1
for en-fr. We use the Adam optimizer (Kingma
and Ba, 2014) with β1=0.9, β2=0.92 and ε=1e-8
(learning rate scheduler proposed by Vaswani et al.,
2017), label smoothing (ε=0.1) with uniform prior,
and learning rate warm-up for the first 4000 steps
when training models. We use learning rate of
1e-3 for training en-de models and for all other lan-
guage pairs we use learning rate of 5e-4. Baseline
en-de and en-fr models are trained for 30K and
180K19 synchronous updates respectively. During
self-training, we increase the number of updates
in proportion to the number of new samples added.
For the other three language pairs, with relatively
smaller training data sizes, we stop training when
validation perplexity does not improve for 5 con-
secutive epochs. All models are trained on Nvidia
V100 GPUs with 16-bit floating point precision,
with parameter update frequency adjusted to simu-
late training on 64 GPUs for en-de/fr and 8 GPUs
for the other three language pairs. Final models are
obtained through stochastic averaging of the last
10 checkpoints.

B Full WinoMT Results

Table 14 shows additional metrics on the WinoMT
test set that were not shown in Section 5. Specif-
ically, we show the F1 scores on masculine and
feminine inputs, as well as ∆S. We examine the
gender-specific F1 scores to ensure that gains from
our proposed GFST model do not harm any specific
gender, and indeed we see that our GFST model
achieves higher F1 than both baselines for all lan-
guage pairs and both genders studied. Our models
do not specifically address stereotypicalness, and
∆S scores of our models are comparable to those
of the baselines, indicating that our models do not
exacerbate stereotype-related bias issues. This is
an encouraging initial result, given that GFST’s em-
phasis on using naturally occurring gendered data

19The number of updates are enough for all models to reach
convergence in terms of validation perplexity.

https://openreview.net/forum?id=BygFVAEKDH
https://openreview.net/forum?id=BygFVAEKDH
https://spacy.io/
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en-de en-fr en-he en-it en-ru
Model Fem Msc ∆S Fem Msc ∆S Fem Msc ∆S Fem Msc ∆S Fem Msc ∆S
Baseline 78.0 78.4 4.1 70.9 70.7 16.9 41.0 54.8 27.0 23.3 54.8 13.9 19.5 52.2 1.5
RANDST 82.5 80.9 4.5 68.9 69.5 15.2 42.0 54.5 26.2 21.2 55.9 11.0 19.2 51.4 -1.2
GFST 90.8 86.4 4.5 76.7 75.4 9.3 42.1 55.9 23.6 45.8 63.8 12.1 26.4 56.7 1.2

Table 14: Additional WinoMT metrics not shown in Table 4 for the baseline, RANDST baseline, and our GFST
model. We show F1 score on feminine inputs (Fem) and masculine inputs (Msc), as well as ∆S score.

Model en-de en-fr en-he en-it en-ru
Baseline 41.7 40.5 23.4 34.5 25.7
GFST 41.8 40.2 23.8 34.6 26.6
GFSTFem 41.7 40.3 24.0 34.3 25.8
GFSTMsc 41.7 40.4 23.2 34.3 26.5

Table 15: BLEU scores on the generic test sets for
the baseline model and GFST models. GFSTFem uses
only the feminine-specific data for augmentation, while
GFSTMsc uses only the masculine-specific data.

could potentially have exacerbated gender stereo-
types even while improving gender translation ac-
curacy.

C Results on Generic Test Sets for
Single-Gender Models

In this section, we show BLEU scores on the
generic test sets for the single-gender models in-
troduced in Section 6.2. Table 15 shows that the
single-gender (feminine-only or masculine-only)
data augmentation performs similarly to the base-
line and to the model augmented with both femi-
nine and masculine data in terms of BLEU score
on generic test sets.

D Target Morphological Filtering

In this section, we analyze the quality of the tar-
get morphological filtering step FILTERTRG. In
order to reduce error propagation from GFST, this
step automatically removes the forward transla-
tions that do not correctly reflect the gender of
the source. This is done using a morphological tag-
ger and removing all sentences from the feminine-
specific corpus that contain a grammatically mas-
culine word (and similarly for the masculine cor-
pus).20

Note that this approach conflates grammatical
gender and natural gender, which means that sen-
tences with grammatical gender marked on unre-
lated nouns might be filtered unnecessarily. Ta-
ble 16 shows two such examples, where the fem-
inine sentence is removed because the translation

20For languages with a neuter gender (DE, RU), we do not
filter sentences based on the presence of a neuter gender word.

contains the masculine noun Anteil (share), and
the masculine sentence is removed because of the
feminine noun Arbeit (job). However, with this
approach, sentences with incorrectly gendered
translations are unlikely to be included in the fi-
nal pseudo-parallel corpus. Indeed, as shown in
Table 3, after FILTERTRG we keep only 2-25% of
sentences that were present in the source-filtered
data. We consider this to be an acceptable trade-off
for the purposes of our work: we prefer to keep
high-confidence sentences at the cost of filtering
valid sentences so as to minimize error propagation.

We ran a small corpus analysis to estimate the
trade-offs of our morphological filtering method.
We selected a random 100-sentence sample of the
forward-translated en-de data and annotated each
sentence for whether the gender was preserved in
the translation.21 We then compared this to the
outcome of the filtering in order to estimate the rate
of false positives and false negatives coming from
this method. These results are shown in Table 17.

As desired, we do not see any false positives
coming from morphological target filtering, mean-
ing that errors in gendered translation due to the
self-training procedure are unlikely to be propa-
gated. On the other hand, this does come at a
trade-off, as most of the sentences in the sample
were valid but filtered unnecessarily. It is also im-
portant to highlight that this analysis was done on
the language pair with the highest baseline gender
translation accuracy (en-de), meaning that the vast
majority of the translations correctly reflected the
gender of the source. Despite that, the true negative
rate on feminine samples (8%) is twice the rate on
masculine samples (4%).

To further analyze the importance of the FIL-
TERTRG step, we train a new GFSTSrc model,
which directly uses forward-translated source-
filtered samples (without any filtering on the target
side). For head-to-head comparison with the stan-
dard GFST model (with target filtering), we sam-

21The annotations were done by the authors of the paper,
not by language experts.
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Incorrectly target-filtered sentences
fem She had her share of sorrows that money could not comfort.

Sie hatte ihren Anteil an den Sorgen, die das Geld nicht trösten konnte.

msc He said: ‘I would give him a job for life, but this is football.
Er sagte: “Ich würde ihm eine lebenslange Arbeit geben, aber das ist Fußball.

Table 16: Example sentences incorrectly removed from the en-de self-training corpus during FILTERTRG (false
negatives). The sentences are removed because there is a word in the target with the undesired grammatical gender
(which is underlined along with its aligned source word), even though in both cases this word is an inanimate noun.
Note that the source sentences passed the FILTERSRC step due to the gendered words in bold.

Subset TP TN FP FN
feminine 6% 8% 0% 86%
masculine 4% 4% 0% 92%

Table 17: Percent of true positives and negatives (TP
and TN) as well as false positives and negatives (FP and
FN) resulting from target morphological filtering on a
subset of the en-de pseudo-parallel data.

Model Acc ∆G ∆R

Baseline 75.5 0.4 18.8
GFST 85.4 -4.4 -0.3
GFSTSrc 78.7 -1.3 11.8

Table 18: WinoMT scores on en-de without target filter-
ing (GFSTSrc), compared to the baseline and the GFST
model with target filtering.

ple 428K feminine and masculine samples from
the source-filtered EN candidate sentences. As
shown in Table 18, GFSTSrc improves the gender
translation accuracy when compared to the base-
line model, obtaining 3.2% higher accuracy and 7
points lower ∆R. However, the margin of improve-
ment is significantly lower than for the standard
GFST model. These results empirically indicate
the usefulness of performing target-side filtering
with a morphological analysis tool. We hypothesize
that even a lower percentage of gender translation
errors during self-training can hamper the model.
In addition, for our lower-resource language pairs,
we believe this aggressive filtering will be even
more beneficial than for en-de.


