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Abstract

We revisit the classic problem of document-
level role-filler entity extraction (REE) for tem-
plate filling. We argue that sentence-level ap-
proaches are ill-suited to the task and intro-
duce a generative transformer-based encoder-
decoder framework (GRIT) that is designed
to model context at the document level: it
can make extraction decisions across sentence
boundaries; is implicitly aware of noun phrase
coreference structure, and has the capacity to
respect cross-role dependencies in the tem-
plate structure. We evaluate our approach on
the MUC-4 dataset, and show that our model
performs substantially better than prior work.
We also show that our modeling choices con-
tribute to model performance, e.g., by implic-
itly capturing linguistic knowledge such as rec-
ognizing coreferent entity mentions.

1 Introduction

Document-level template filling (Sundheim, 1991,
1993; Grishman and Sundheim, 1996) is a clas-
sic problem in information extraction (IE) and
NLP (Jurafsky and Martin, 2014). It is of great
importance for automating many real-world tasks,
such as event extraction from newswire (Sundheim,
1991). The complete task is generally tackled in
two steps. The first step detects events in the article
and assigns templates to each of them (template
recognition); the second step performs role-filler
entity extraction (REE) for filling in the templates.
In this work we focus on the role-filler entity ex-
traction (REE) sub-task of template filling (Fig-
ure 1).1 The input text describes a bombing event;
the goal is to identify the entities that fill any of the
roles associated with the event (e.g., the perpetra-
tor, their organization, the weapon) by extracting

1In this work, we assume there is one generic template for
the entire document (Huang and Riloff, 2011, 2012).

Role Role-filler Entities

Perpetrator 
Individual

two men, 
two men wearing sports clothes,
Shining Path members

Perpetrator 
Organization Shining Path

Physical 
Target

water pipes,
water pipes

Pilmai telephone company building, 
telephone company building, 
telephone company offices

public telephone booth

Weapon 125 to 150 grams of TnT

Victim -

Gold extractions:

Input document:
…
A bomb exploded in a Pilmai alley destroying some 
[water pipes].

According to unofficial reports, the bomb contained [125 
to 150 grams of TnT] and was placed in the back of the 
[Pilmai [telephone company building]].

The explosion occurred at 2350 on 16 January, causing 
panic but no casualties.

The explosion caused damages to the [telephone company 
offices].  It also destroyed a [public telephone booth] and 
[water pipes].

Witnesses reported that the bomb was planted by [[two
men] wearing sports clothes], who escaped into the night.  
…
They were later identified as [[Shining Path] members].

Figure 1: Role-filler entity extraction (REE). The first
mention of each role-filler entity is bold in the table and
document. The arrows denote coreferent mentions.

a descriptive “mention” of it – a string from the
document.

In contrast to sentence-level event extraction
(see, e.g., the ACE evaluation (Linguistic Data Con-
sortium, 2005)), document-level REE introduces
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several complications. First, role-filler entities
must be extracted even if they never appear in
the same sentence as an event trigger. In Fig-
ure 1, for example, the WEAPON and the first men-
tion of the telephone company building (TARGET)
appear in a sentence that does not explicitly men-
tion the explosion of the bomb. In addition, REE
is ultimately an entity-based task — exactly one
descriptive mention for each role-filler should be
extracted even when the entity is referenced mul-
tiple times in connection with the event. The final
output for the bombing example should, therefore,
include just one of the “water pipes” references,
and one of the three alternative descriptions of the
PERPIND and the second TARGET, the telephone
company building. As a result of these complica-
tions, end-to-end sentence-level event extraction
models (Chen et al., 2015; Lample et al., 2016),
which dominate the literature, are ill-suited for the
REE task, which calls for models that encode infor-
mation and track entities across a longer context.

Fortunately, neural models for event extraction
that have the ability to model longer contexts have
been developed. Du and Cardie (2020), for ex-
ample, extend standard contextualized representa-
tions (Devlin et al., 2019) to produce a document-
level sequence tagging model for event argument
extraction. Both approaches show improvements in
performance over sentence-level models on event
extraction. Regrettably, these approaches (as well
as most sentence-level methods) handle each can-
didate role-filler prediction in isolation. Conse-
quently, they cannot easily model the coreference
structure required to limit spurious role-filler
mention extractions. Nor can they easily exploit
semantic dependencies between closely related
roles like the PERPIND and the PERPORG, which
can share a portion of the same entity span. “Shin-
ing Path members”, for instance, describes the
PERPIND in Figure 1, and its sub-phrase, “Shining
Path”, describes the associated PERPORG.

Contributions In this work we revisit the classic
but recently under-studied problem of document-
level role-filler entity extraction problem and in-
troduce a novel end-to-end generative transformer
model — the “Generative Role-filler Transformer”
(GRIT) (Figure 2).

• Designed to model context at the document level,
GRIT (1) has the ability to make extraction deci-
sions across sentence boundaries; (2) is implic-
itly aware of noun phrase coreference structure;

and (3) has the capacity to respect cross-role
dependencies. More specifically, GRIT is built
upon the pre-trained transformer model (BERT):
we add a pointer selection module in the decoder
to permit access to the entire input document,
and a generative head to model document-level
extraction decisions. In spite of the added extrac-
tion capability, GRIT requires no additional pa-
rameters beyond those in the pre-trained BERT.

• To measure the model’s ability to both extract
entities for each role, and implicitly recognize
coreferent relations between entity mentions, we
design a metric (CEAF-REE) based on a maxi-
mum bipartite matching algorithm, drawing in-
sights from the CEAF (Luo, 2005) coreference
resolution measure.

• We evaluate GRIT on the MUC-4 (1992) REE
task (Section 3). Empirically, our model outper-
forms substantially strong baseline models. We
also demonstrate that GRIT is better than exist-
ing document-level event extraction approaches
at capturing linguistic properties critical for the
task, including coreference between entity men-
tions and cross-role extraction dependencies.2

2 Related Work

Sentence-level Event Extraction Most work in
event extraction has focused on the ACE sentence-
level event task (Walker et al., 2006), which re-
quires the detection of an event trigger and extrac-
tion of its arguments from within a single sentence.
Previous state-of-the-art methods include Li et al.
(2013) and Li et al. (2015), which explored a vari-
ety of hand-designed features. More recently, neu-
ral network based models such as recurrent neural
networks (Nguyen et al., 2016; Feng et al., 2018),
convolutional neural networks (Nguyen and Grish-
man, 2015; Chen et al., 2015) and attention mecha-
nisms (Liu et al., 2017, 2018) have also been shown
to help improve performance. Beyond the task-
specific features learned by the deep neural models,
Zhang et al. (2019) and Wadden et al. (2019) also
utilize pre-trained contextualized representations.

Only a few models have gone beyond individ-
ual sentences to make decisions. Ji and Grish-
man (2008) and Liao and Grishman (2010) uti-
lize event type co-occurrence patterns to propagate

2Our code for the evaluation script and models
is at https://github.com/xinyadu/grit_doc_
event_entity for reproduction purposes.

https://github.com/xinyadu/grit_doc_event_entity
https://github.com/xinyadu/grit_doc_event_entity
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event classification decisions. Yang and Mitchell
(2016) propose to learn within-event (sentence)
structures for jointly extracting events and enti-
ties within a document context. Similarly, from a
methodological perspective, our GRIT model also
learns structured information, but it learns the de-
pendencies between role-filler entity mentions and
between different roles. Duan et al. (2017) and
Zhao et al. (2018) leverage document embeddings
as additional features to aid event detection. Al-
though the approaches above make decisions with
cross-sentence information, their extractions are
still done the sentence level.

Document-level IE Document-level event role-
filler mention extraction has been explored in recent
work, using hand-designed features for both lo-
cal and additional context (Patwardhan and Riloff,
2009; Huang and Riloff, 2011, 2012), and with
end-to-end sequence tagging based models with
contextualized pre-trained representations (Du and
Cardie, 2020). These efforts are the most related
to our work. The key difference is that our work
focuses on a more challenging, and more realistic,
setting: extracting role-filler entities rather than
lists of role-filler mentions that are not grouped ac-
cording to their associated entity. Also on a related
note, Chambers and Jurafsky (2011), Chambers
(2013), and Liu et al. (2019) work on unsupervised
event schema induction and open-domain event
extraction from documents. The main idea is to
group entities corresponding to the same role into
an event template.

Recently, there has also been increasing inter-
est in cross-sentence/document-level relation ex-
traction (RE). In the scientific domain, Peng et al.
(2017); Wang and Poon (2018); Jia et al. (2019)
study N -ary cross-sentence RE using distant super-
vision annotations. Luan et al. (2018) introduce
SciERC dataset and their model rely on multi-task
learning to share representations between entity
span extraction and relations. Yao et al. (2019) con-
struct an RE dataset of cross-sentence relations on
Wikipedia paragraphs. Ebner et al. (2020) intro-
duce RAMS dataset for multi-sentence argument
mention linking, while we focus on entity-level ex-
traction in our work. Different from work on joint
modeling (Miwa and Bansal, 2016) and multi-task
learning (Luan et al., 2019) setting for extracting
entities and relations, through the generative mod-
eling setup, our GRIT model implicitly captures
(non-)coreference relations between noun phrases,

without relying on the cross-sentence coreference
and relation annotations during training.

Neural Generative Models with a Shared Mod-
ule for Encoder and Decoder Our GRIT model
uses one shared transformer module for both the
encoder and decoder, which is simple and effec-
tive. For the machine translation task, He et al.
(2018) propose a model which shares the parame-
ters of each layer between the encoder and decoder
to regularize and coordinate the learning. Dong
et al. (2019) presents a new unified pre-trained lan-
guage model that can be fine-tuned for both NLU
and NLG tasks. Similar to our work, they also in-
troduce different masking strategies for different
kinds of tasks (see Section5).

3 The Role-filler Entity Extraction Task
and Evaluation Metric

We base the REE task on the original MUC3 for-
mulation (Sundheim, 1991), but simplify it as done
in prior research (Huang and Riloff, 2012; Du and
Cardie, 2020). In particular, we assume that one
generic template should be produced for each doc-
ument: for documents that recount more than one
event, the extracted role-filler entities for each are
merged into a single event template. Second, we fo-
cus on entity-based roles with string-based fillers4.

• Each event consists of the set of roles that de-
scribe it (shown in Figure 1). The MUC-4 dataset
that we use consists of ∼1k terrorism events.

• Each role is filled with one or more entities.
There are five such roles for MUC-4: perpetra-
tor individuals (PERPIND), perpetrator organiza-
tions (PERPORG), physical targets (TARGET),
victims (VICTIM) and weapons (WEAPON).
These event roles represent the agents, pa-
tients, and instruments associated with terrorism
events (Huang and Riloff, 2012).

• Each role-filler entity is denoted by a single de-
scriptive mention, a span of text from the input
document. Because multiple such mentions for
each entity may appear in the input, the gold-
standard template lists all alternatives (shown in
Figure 1), but systems are required to produce
just one.
3The Message Understanding Conferences were a series

of U.S. government-organized IE evaluations.
4Other types of role fillers include normalized dates and

times, and categorical “set" fills. We do not attempt to handle
these in the current work.
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Evaluation Metric The metric for past work on
document-level role-filler mentions extraction (Pat-
wardhan and Riloff, 2009; Huang and Riloff, 2011;
Du and Cardie, 2020) calculates mention-level pre-
cision across all alternative mentions for each role-
filler entity. Thus it is not suited for our prob-
lem setting, where entity-level precision is needed,
where spurious entity extractions will get punished
(e.g., recognizing “telephone company building”
and “telephone company offices” as two entities
will result in lower precision).

Drawing insights from the entity-based CEAF
metric (Luo, 2005) from the coreference resolution
literature, we design a metric (CEAF-REE) for
measuring models’ performance on this document-
level role-filler entity extraction task. It is based
on maximum bipartite matching algorithm (Kuhn,
1955; Munkres, 1957). The general idea is that,
for each role, the metric is computed by aligning
gold and predicted entities with the constraint that
a predicted (gold) entity is aligned with at most
one gold (predicted) entity. Thus, the system that
does not recognize the coreferent mentions and
use them for separate entities will be penalized
in precision score. For the example in Figure 1,
if the system extracts “Pilmai telephone company
building” and “telephone company offices” as two
distinct TARGETs, the precision will drop. We
include more details for our CEAF-TF metric in
the appendix.

4 REE as Sequence Generation

We treat document-level REE as a sequence-to-
sequence task (Sutskever et al., 2014) in order to
better model the cross-role dependencies and cross-
sentence noun phrase coreference structure. We
first transform the task definition into a source and
target sequence.

As shown in Figure 2, the source sequence sim-
ply consists of the tokens of the original document
prepended with a “classification” token (i.e., [CLS]
in BERT), and appended with a separator token
(i.e., [SEP] in BERT). The target sequence is the
concatenation of target extractions for each role,
separated by the separator token. For each role,
the target extraction consists of the first mention’s

beginning (b) and end (e) tokens:

<S> e(1)1b
, e

(1)
1e
, ... [SEP]

e
(2)
1b
, e

(2)
1e
, ... [SEP]

e
(3)
1b
, e

(3)
1e
, e

(3)
2b
, e

(3)
2e
, ... [SEP]

...

Note that we list the roles in a fixed order for all
examples. So for the example used in Figure 2,
e
(1)
1b

, e(1)1e
would be “two” and “men” respectively;

and e
(3)
1b

, e(3)1e
would be “water” and “pipes” re-

spectively. Henceforth, we denote the resulting
sequence of source tokens as x0, x1, ..., xm and the
sequence of target tokens as y0, y1, ..., yn.

5 Model: Generative Role-filler
Transformer (GRIT)

Our model is shown in Figure 2. It consists of two
parts: the encoder (left) for the source tokens; and
the decoder (right) for the target tokens. Instead
of using a sequence-to-sequence learning architec-
ture with separate modules (Sutskever et al., 2014;
Bahdanau et al., 2015), we use a single pretrained
transformer model (Devlin et al., 2019) for both
parts, and introduce no additional fine-tuned pa-
rameters.

Pointer Embeddings The first change to the
model is to ensure that the decoder is aware of
where its previous predictions come from in the
source document, an approach we call “pointer
embeddings”. Similar to BERT, the input to the
model consists of the sum of token, position and
segment embeddings. However, for the position
we use the corresponding source token’s position.
For example, for the word “two”, the target tokens
would have the identical position embedding of the
word “two” in the source document. Interestingly,
we do not use any explicit target position embed-
dings, but instead separate each role with a [SEP]
token. Empirically, we find that the model is able
to use these separators to learn which role to fill
and which mentions have filled previous roles.

Our encoder’s embedding layer uses standard
BERT embedding layer, which applied to the
source document tokens. To denote boundary be-
tween source and target tokens, we use sequence A
(first sequence) segment embeddings for the source
tokens, we use sequence B (second sequence) seg-
ment embeddings for the target tokens.



638

BERT

Target tokens + Pointer embeddings

Model

[CLS] … A bomb exploded … destroying some [water pipes]. … 
the bomb … was placed in the back of the [Pilmai [telephone
company building]]. … The explosion caused damages to the 
[telephone company offices]. It also destroyed a [public telephone 
booth] and [water pipes] … the bomb was planted by [[two men] 
wearing sports clothes], escaped.  … later identified as [[Shining 
Path] members]… [SEP]

Pointer Selection

Source tokens

two men [SEP] Shining Path [SEP] water pipes Pilmai build-
ing public

<S> two men [SEP] Shining Path [SEP] water pipes Pilmai build-
ing

causal masking

1st role (PerpInd) 2nd role (PerpOrg) 3rd role (Target)

…

…

Figure 2: GRIT: generative transformer model for document-level event role-filler entity extraction. (Noun phrase
bracketing and bold in the source tokens are provided for readability purposes and are not part of the source
sequence.)

…

sou
rce

tok
ens … … tar

get

source

tokens

…

...

target

tok
ens …

tokens

…

not attending

Attention masks:

Figure 3: Partially causal masking strategy (M).
(White cell: unmasked; Grey cell: masked).

We pass the source document tokens through
the encoder’s embedding layer, to obtain their em-
beddings x0,x1, ...,xm. We pass the target to-
kens y0, y1, ..., yn through the decoder’s embed-
ding layer, to obtain y0,y1, ...,yn.

BERT as Encoder / Decoder We utilize one
BERT model as both the source and target em-
beddings. To distinguish the encoder / decoder
representations, we provide a partial causal atten-
tion mask on the decoder side.

In Figure 3, we provide an illustration for the
attention masks – 2-dimensional matrix denoted

as m. For the source tokens, the mask allows full
source self-attention, but mask out all target tokens.
For i ∈ {0, 1, ...,m},

Mi,j =

{
1, if 0 ≤ j ≤ m
0, otherwise

For the target tokens, to guarantee that the de-
coder is autoregressive (the current token should
not attend to future tokens), we use a causal mask-
ing strategy. Assuming we concatenate the target
to the source tokens (the joint sequence mentioned
below), for i ∈ {m+ 1, ..., n},

Mi,j =


1, if 0 ≤ j ≤ m
1, if j > m and j ≤ i
0, otherwise

The joint sequence of source tokens’ embed-
dings (x0,x1, ...,xm) and target tokens’ embed-
dings (y0,y1, ...,yn) are passed through BERT to
obtain their contextualized representations,

x̂0, x̂1, ..., x̂m, ŷ0..., ŷn

= BERT(x0,x1, ...,xm,y0, ...,yn)

Pointer Decoding For the final layer, we replace
word prediction with a simple pointer selection
mechanism. For target time step t (0 ≤ t ≤ n),
we first calculate the dot-product between ŷt and
x̂0, x̂1, ..., x̂m,

z0, z1, ..., zm = ŷt · x̂0, ŷt · x̂1, ..., ŷt · x̂m



639

Then we apply softmax to z0, z1, ..., zm to obtain
the probabilities of pointing to each source token,

p0, p1, ..., pm = softmax(z0, z1, ..., zm)

Test prediction is done with greedy decoding.
At each time step t, argmax is applied to find the
source token which has the highest probability. The
predicted token is added to the target sequence for
the next time step t+ 1 with its pointer embedding.
We stop decoding when the fifth [SEP] token is
predicted, which represents the end of extractions
for the last role.

In addition, we add the following decoding con-
straints,

• Tune probability of generating [SEP]. By doing
this, we encourage the model to point to other
source tokens and thus extract more entities for
each role, which will help increase the recall.
(We set the hyperparameter of downweigh to
0.01, i.e., for the [SEP] token p = 0.01 ∗ p.)

• Ensure that the token position increase from start
token to end token. When decoding tokens for
each role, we know that mention spans should
obey this property. Thus we eliminate those in-
valid choices during decoding.

6 Experimental Setup

We conduct evaluations on the MUC-4
dataset (1992), and compare to recent com-
petitive end-to-end models (Wadden et al., 2019;
Du and Cardie, 2020) in IE (Section 7). Besides
the normal evaluation, we are also interested in
how well our GRIT model captures coreference
linguistic knowledge, and comparison with the
prior models. In Section 8, we present relevant
evaluations on the subset of test documents.

Dataset and Evaluation Metric The MUC-4
dataset consists of 1,700 documents with associated
templates. Similar to (Huang and Riloff, 2012; Du
and Cardie, 2020), we use the 1300 documents for
training, 200 documents (TST1+TST2) as the de-
velopment set and 200 documents (TST3+TST4)
as the test set. Each document in the dataset con-
tains on average 403.27 tokens, 7.12 paragraphs.
In Table 1, we include descriptions for each role in
the template.

We use the first appearing mention of the role-
filler entity as the training signal (thus do not use
the other alternative mentions during training).

Roles Descriptions

PERPIND A person responsible for the incident.
PERPORG An organization responsible for the incident.
TARGET A thing (inanimate object) that was attacked.
VICTIM The name of a person who was the obvious

or apparent target of the attack
or who became a victim of the attack.

WEAPON A device used by the perpetrator(s) in carrying.

Table 1: Natural Language Descriptions for Each Role.

We use CEAF-REE which is covered in Sec-
tion 3 as the evaluation metric. The results are re-
ported as Precision (P), Recall (R) and F-measure
(F1) score for the micro-average for all the event
roles (Table 4). We also report the per-role results
to have a fine-grained understanding of the num-
bers (Table 2).

Baselines We compare to recent strong models
for (document-level) information/event extraction.
CohesionExtract (Huang and Riloff, 2012) is a
bottom-up approach for event extraction that first
aggressively identifies candidate role-fillers, and
prune the candidates located in event-irrelevant
sentences.5 Du and Cardie (2020) propose neu-
ral sequence tagging (NST) models with contex-
tualized representations for document-level role
filler mentions extraction. We train this model
with BIO tagging scheme to identify the first
mention for each role-filler entity and its type
(i.e., B-PerpInd, I-PerpInd for perpetrator individ-
ual). DYGIE++ (Wadden et al., 2019) is a span-
enumeration based extraction model for entity, re-
lation, and event extraction. The model (1) enu-
merates all the possible spans in the document;
(2) concatenates the representations of the span’s
beginning & end token and use it as its represen-
tation, and pass it through a classifier layer to pre-
dict whether the span represents certain role-filler
entity and what the role is. Both the NST and DY-
GIE++ are end-to-end and fine-tuned BERT (De-
vlin et al., 2019) contextualized representations
with task-specific data. We train them to identify
the first mention for each role-filler entity (to en-
sure fair comparison with our proposed model).
Unsupervised event schema induction based ap-
proaches (Chambers and Jurafsky, 2011; Cham-
bers, 2013; Cheung et al., 2013) are also able

5Instead of using feature-engineering based sentence classi-
fication to identify event-relevant sentences, we re-implement
the sentence classifier with BiLSTM-based neural sequence
model.
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PERPIND PERPORG TARGET VICTIM WEAPON

NST
(Du and Cardie, 2020)

48.39 / 32.61 / 38.96 60.00 / 43.90 / 50.70 54.96 / 52.94 / 53.93 62.50 / 63.16 / 62.83 61.67 / 61.67 / 61.67

DYGIE++
(Wadden et al., 2019)

59.49 / 34.06 / 43.32 56.00 / 34.15 / 42.42 53.49 / 50.74 / 52.08 60.00 / 66.32 / 63.00 57.14 / 53.33 / 55.17

GRIT 65.48 / 39.86 / 49.55 66.04 / 42.68 / 51.85 55.05 / 44.12 / 48.98 76.32 / 61.05 / 67.84 61.82 / 56.67 / 59.13

Table 2: Per-role performance scored by CEAF-REE (reported as P/R/F1, highest F1 for each role are boldfaced).

k = 1 1 < k ≤ 1.25 1.25 < k ≤ 1.5 1.5 < k ≤ 1.75 k > 1.75

NST
(Du and Cardie, 2020)

63.83 / 51.72 / 57.14 57.45 / 38.57 / 46.15 60.32 / 49.03 / 54.09 64.81 / 50.00 / 56.45 66.67 / 51.90 / 58.36

DYGIE++
(Wadden et al., 2019)

72.50 / 50.00 / 59.18 70.00 / 40.00 / 50.91 60.48 / 48.39 / 53.76 52.94 / 38.57 / 44.63 66.96 / 48.73 / 56.41

GRIT 65.85 / 46.55 / 54.55 74.42 / 45.71 / 56.64 73.20 / 45.81 / 56.35 67.44 / 41.43 / 51.33 69.75 / 52.53 / 59.93

Table 3: Evaluations on the subsets of documents with increasing number of mentions per role-filler entity. k
denotes the average # mentions per role-filler entity. Results for each column are reported as Precision / Recall /
F1. The highest precisions are boldfaced for each bucket.

to model the coreference relations and entities at
document-level, but have been proved to perform
substantially worse than supervised models (Pat-
wardhan and Riloff, 2009; Huang and Riloff, 2012).
Thus we do not compare with them. We also exper-
imented with a variant of our GRIT model – instead
of always pointing to the same [SEP] in the source
tokens to finish extracting the role-filler entities for
a role, we use five different [SEP] tokens. During
decoding, the model points to the corresponding
[SEP] as the end of extraction for that role. This
variant does not improve over the current best re-
sults and we omit reporting its performance.

7 Results

In Table 4, we report the micro-average perfor-
mance on the test set. We observe that our GRIT
model substantially outperforms the baseline ex-
traction models in precision and F1, with an over
5% improvement in precision over DYGIE++.

Table 2 compares the models’ performance
scores on each role (PERPIND, PERPORG, TAR-
GET, VICTIM, WEAPON). We see that, (1) our
model achieves the best precision across the roles;
(2) for the roles that come with entities containing
more human names (e.g., PERPIND and VICTIM),
our model substantially outperforms the baselines;
(3) for the role PERPORG, our model scores bet-
ter precision but lower recall than neural sequence
tagging, which results in a slightly better F1 score;
(4) for the roles TARGET and WEAPON, our model
is more conservative (lower recall) and achieves
lower F1. One possibility is that for role like TAR-

Models P R F1

CohesionExtract
(Huang and Riloff, 2012)

58.38 39.53 47.14

NST
(Du and Cardie, 2020)

56.82 48.92 52.58

DYGIE++
(Wadden et al., 2019)

57.04 46.77 51.40

GRIT 64.19∗∗ 47.36 54.50∗

Table 4: Micro-average results (the highest number of
each column is boldfaced). Significance is indicated with
∗∗(p < 0.01),∗(p < 0.1) – all tests are computed using the
paired bootstrap procedure (Berg-Kirkpatrick et al., 2012).

GET, on average there are more entities (though
with only one mention each), and it’s harder for our
model to decode as many TARGET entities correct
in a generative way.

8 Discussion

How well do the models capture coreference re-
lations between mentions? We also conduct tar-
geted evaluations on subsets of test documents
whose gold extractions come with coreferent men-
tions. From left to right in Table 3, we report re-
sults on the subsets of documents with increasing
number (k) of possible (coreferent) mentions per
role-filler entity. We find that: (1) On the sub-
set of documents with only one mention for each
role-filler entity (k = 1), our model has no signifi-
cant advantage over DYGIE++ and the sequence
tagging based model; (2) But as k increases, the ad-
vantage of our GRIT substantially increases – with
an over 10% gap in precision when 1 < k ≤ 1.5,
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and a near 5% gap in precision when k > 1.5.
From the qualitative example (document excerpt

and the extractions in Figure 4), we also observe
our model recognizes the coreference relation be-
tween candidate role-filler entity mentions, while
the baselines do not, which shows that our model is
better at capturing the (non-)coreference relations
between role-filler entity mentions. It also proves
the advantage of a generative model in this setting.

1 Discussion

How well do the models capture coreference
relations between mentions we also see our
model recognizes the coreference relation between
candidate role-filler entities, while the baselines
don’t. This demonstrates that our model is better at
capturing the (non)-coreference relation between
role-filler entities. It also proves the advantage of
generative modeling (over modeling one candidate
role-filler entity’s role in isolation).

[P1]... a bomb exploded at the front door of the
[home of a peruvian army general], causing dam-
ages but no casualties. ... [P2] The terrorist attack
was ..., by ... who hurled a bomb at the [home of
general enrique franco], in the San ... [P3] The
bomb seriously damaged the [general’s [vehicle]],
... and those of [neighboring [houses]].

TARGET

Gold Role-
filler Entities

• home of peruvian army general,
home of general enrique franco
• vehicle, general’s vehicle
• houses, neighboring houses

NST • home of peruvian army general
• home of general enrique franco

DYGIE++
• home of peruvian army general
• home of general enrique franco
• houses

GRIT • home of peruvian army general
• houses

How well do the models capture dependencies
between different roles

...[[[guerrillas] of the [FARC] and the [popular
liberation army]] (EPL)] attacked four towns in
northern Colombia, leaving 17 guerrillas and 2
soldiers dead and 3 bridges partially destroyed. ...

PERPIND PERPORG

Gold Role-
filler Entities

• guerrillas,
guerrillas of FARC
and popular
liberation army (EPL)

• EPL, popular
liberation army
• FARC

NST & DYGIE++ • guerrillas -

GRIT • guerrillas
• FARC
• popular
liberation army

Our model correctly extracts the two role-filler en-
tities for PERPORG: “FARC” and “popular libera-
tion army”, which are closely related to the PER-
PIND entity “guerrilla”. While the DYGIE++ and
NST both miss the entities for PERPORG.

Figure 4: Our model implicitly captures coreference
relations between mentions.

How well do models capture dependencies
between different roles? To study this phe-
nomenon, we consider nested role-filler entity men-
tions in the documents. In the example of Figure 1,
“shining path” is a role-filler entity mention for
PERPORG nested in “two shining path members”
(a role-filler entity mention for PERPIND). The
nesting happens more often between more related
roles (e.g., PERPIND and PERPORG) – we find that
33 out of the 200 test documents’ gold extractions
contain nested role-filler entity mentions between
the two roles.

In Table 5, we present the CEAF-REE scores
for role PERPORG on the subset of documents
with nested roles. As we hypothesized beforehand,
GRIT is able to learn the dependency between dif-
ferent roles and can learn to avoid missing rele-
vant role-filler entities for later roles. The results
provide empirical evidence: by learning the depen-
dency between PERPIND and PERPORG, GRIT

PERPORG (all docs) PERPORG (33/200)

P / R / F1 P / R / F1

NST 56.00 / 34.15 / 42.42 80.00 / 44.44 / 57.14
DYGIE++ 60.00 / 43.90 / 50.70 61.54 / 35.56 / 45.07

GRIT 66.04 / 42.68 / 51.85 80.77 / 46.67 / 59.15

Table 5: Evaluation on the subset of documents that
have nested role-filler entity mentions between role
PERPIND and PERPORG (highest recalls boldfaced).

1 Discussion

How well do the models capture coreference
relations between mentions we also see our
model recognizes the coreference relation between
candidate role-filler entities, while the baselines
don’t. This demonstrates that our model is better at
capturing the (non)-coreference relation between
role-filler entities. It also proves the advantage of
generative modeling (over modeling one candidate
role-filler entity’s role in isolation).

[P1]... a bomb exploded at the front door of the
[home of a peruvian army general], causing dam-
ages but no casualties. ... [P2] The terrorist attack
was ..., by ... who hurled a bomb at the [home of
general enrique franco], in the San ... [P3] The
bomb seriously damaged the [general’s [vehicle]],
... and those of [neighboring [houses]].

TARGET

Gold Role-
filler Entities

• home of peruvian army general,
home of general enrique franco
• vehicle, general’s vehicle
• houses, neighboring houses

NST • home of peruvian army general
• home of general enrique franco

DYGIE++
• home of peruvian army general
• home of general enrique franco
• houses

GRIT • home of peruvian army general
• houses

How well do the models capture dependencies
between different roles

...[[[guerrillas] of the [FARC] and the [popular
liberation army]] (EPL)] attacked four towns in
northern Colombia, leaving 17 guerrillas and 2
soldiers dead and 3 bridges partially destroyed. ...

PERPIND PERPORG

Gold Role-
filler Entities

• guerrillas,
guerrillas of FARC
and popular
liberation army (EPL)

• EPL, popular
liberation army
• FARC

NST & DYGIE++ • guerrillas -

GRIT • guerrillas
• FARC
• popular
liberation army

Our model correctly extracts the two role-filler en-
tities for PERPORG: “FARC” and “popular libera-
tion army”, which are closely related to the PER-
PIND entity “guerrilla”. While the DYGIE++ and
NST both miss the entities for PERPORG.

Figure 5: Our model captures dependencies between
different roles.

improves the relative recall score on the subset of
documents as compared to DYGIE++. On all the
200 test documents, our model is ∼ 2% below DY-
GIE++ in recall; while on the 33 docs, our model
scores much higher than DYGIE++ in recall.

For the document in the example of Figure 5, our
model correctly extracts the two role-filler entities
for PERPORG: “FARC” and “popular liberation
army”, which are closely related to the PERPIND

entity “guerrilla”. While DYGIE++ and NST both
miss the entities for PERPORG.

Decoding Ablation Study In the table below,
we present ablation results based on the decod-
ing constraints. These illustrate the influence of
the decoding constraints on the our model’s perfor-
mance. The two constraints both significantly im-
prove model predictions. Without downweighing
the probability of pointing to [SEP], the precision
increases but recall and F1 significantly drops.

P R F1 ∆ (F1)

GRIT 64.19 47.36 54.50
− [SEP] downweigh 67.43 40.12 50.31 -4.19
− constraint on pointer offset 62.90 45.79 53.00 -1.50

Table 6: Decoding Ablation Study
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Additional Parameters and Training Cost Fi-
nally we consider additional parameters and train-
ing time of the models: As we introduced previ-
ously, the baseline models DYGIE++ and NST
both require an additional classifier layer on top of
BERT’s hidden state (of sizeH) for making the pre-
dictions. While our GRIT model does not require
adding any new parameters. As for the training
time, training the DYGIE++ model takes over 10
times longer time than NST and our model. This
time comes from the DYGIE++ model require-
ment of enumerating all possible spans (to a certain
length constraint) in the document and calculating
the loss with their labels.

additional params training cost

DYGIE++ 2H(#roles + 1) ∼20h
NST H(2#roles + 1) ∼1h

GRIT 0 <40min

Table 7: Additional Parameters and Training Cost.

9 Conclusion

We revisit the classic and challenging problem of
document-level role-filler entity extraction (REE),
and find that there is still room for improvement.
We introduce an effective end-to-end transformer
based generative model, which learns the docu-
ment representation and encodes the dependency
between role-filler entities and between event roles.
It outperforms the baselines on the task and better
captures the coreference linguistic phenomena. In
the future, it would be interesting to investigate how
to enable the model to also do template recognition.
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A Appendices

A.1 CEAF-REE metric
Notations First we provide the necessary nota-
tions. Let reference (gold) role-filler entities of one
role in a document d be:

R(d) = {Ri : i = 1, 2, ..., |R(d)|}

and predicted role-filler entities be:

S(d) = {Si : i = 1, 2, ..., |S(d)|}

Let m be the smaller one of |R(d)| and |S(d)|,
i.e., m = min(|R(d)|, |S(d)|). Let Rm ⊂ R
and Sm ⊂ S be any subsets with m entities. Let
G(Rm, Sm) be the set of one-to-one entity maps
from Rm to Sm, and Gm be the set of all possible
one-to-one maps (of size-m) between subsets of R
and S. Obviously, we have G(Rm, Sm) ∈ Gm.

The similarity function φ(r, s) measures the
“similarity” between two entities. It takes non-
negative values: zero-value means role-filler entity
r is not subset of s.

φ(r, s) =

{
1, if s ⊆ r
0, otherwise

Calculating CEAF-REE score Next we present
how to calculate the CEAF-REE score. Given the
document d, for a certain event role (e.g., TAR-
GET), with its gold entities R and system predicted
entities S, we first find the best alignment g∗ by
maximizing the total similarity Φ (maximum bi-
partite matching algorithm is applied in this step):

g∗ = arg max
g∈Gm

Φ(g) = arg max
g∈Gm

∑
r∈Rm

φ(r, g(r))

Let R∗m and S∗m = g∗(R∗m) denote the gold
and predicted role-filler entity subset (respectively),
where best matching g∗ is obtained. Then the max-
imum total similarity is,

Φ(g∗) =
∑
r∈R∗

m

φ(r, g∗(r))

We can also calculate the entity self-similarity
with φ. Finally, we calculate the precision, recall
and F-measure for CEAF-REE as follows:

prec =
Φ(g∗)∑
i φ(Si, Si)

recall =
Φ(g∗)∑

i φ(Ri, Ri)

F =
2 ∗ prec ∗ recall
prec+ recall

Example 1
Case 1:

Predictions Gold
Pilmai telephone 
company building

entity 1: water pipes entity 1: telephone 
company building
telephone 
company offices

entity 2: Pilmai telephone 
company building entity 2: water pipes

entity 3: public telephone 
booth entity 3: public telephone 

booth

entity 4: telephone 
company offices

Example 2
Case 2:

Predictions Gold
Pilmai telephone 
company building

entity 1: Pilmai telephone 
company building entity 1: telephone 

company building
telephone 
company offices

entity 2: water pipes entity 2: water pipes

entity 3: public telephone 
booth entity 3: public telephone 

booth

Example 3
Case 3:

Predictions Gold
Pilmai telephone 
company building

entity 1: Pilmai telephone 
company building entity 1: telephone 

company building
telephone 
company offices

entity 2: water pipes

entity 2: public telephone 
booth entity 3: public telephone 

booth

Figure 6: Test cases for the CEAF-REE metric
(The lines between entities denote the best align-
ment/matching).

Precision Recall F1

case 1 0.75 1.00 0.86
case 2 1.00 1.00 1.00
case 3 1.00 0.67 0.80

Table 8: CEAF-REE scores for case-{1, 2, 3}.

We list several cases (Figure 6) and their CEAF-
REE scores (Table 8) to facilitate understanding.

For more details, readers can refer to Section 2



of Luo (2005).

A.2 Others
Code and Computing We use the NVIDIA
TITAN Xp GPU for our computing infrastructure.
We build our model based on the Hugging-face
NER models’ implementation https://github.

com/huggingface/transformers/tree/

3ee431dd4c720e67e35a449b453d3dc2b15ccfff/

examples/ner. The hyperparameters can also be
obtained from the default values in the repo.

Link to Corpus The raw corpus and preprocess-
ing script can be found at: https://github.com/
brendano/muc4_proc

Dependencies

• Python 3.6.10

• Transformers: transformers 2.4.1 installed
from source.

• Pytorch-Struct: Install from Github.

• Pytorch-Lightning==0.7.1

• Pytorch==1.4.0

https://github.com/huggingface/transformers/tree/3ee431dd4c720e67e35a449b453d3dc2b15ccfff/examples/ner
https://github.com/huggingface/transformers/tree/3ee431dd4c720e67e35a449b453d3dc2b15ccfff/examples/ner
https://github.com/huggingface/transformers/tree/3ee431dd4c720e67e35a449b453d3dc2b15ccfff/examples/ner
https://github.com/huggingface/transformers/tree/3ee431dd4c720e67e35a449b453d3dc2b15ccfff/examples/ner
https://github.com/brendano/muc4_proc
https://github.com/brendano/muc4_proc

