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Abstract
Recent progress in pretraining language mod-
els on large corpora has resulted in large per-
formance gains on many NLP tasks. These
large models acquire linguistic knowledge dur-
ing pretraining, which helps to improve per-
formance on downstream tasks via fine-tuning.
To assess what kind of knowledge is acquired,
language models are commonly probed by
querying them with ‘fill in the blank’ style
cloze questions. Existing probing datasets
mainly focus on knowledge about relations
between words and entities. We introduce
WDLMPro (Word Definition Language Model
Probing) to evaluate word understanding di-
rectly using dictionary definitions of words. In
our experiments, three popular pretrained lan-
guage models struggle to match words and
their definitions. This indicates that they un-
derstand many words poorly and that our new
probing task is a difficult challenge that could
help guide research on LMs in the future.

1 Introduction

Natural language processing (NLP) has advanced
drastically in the last decade with the design of
larger and more sophisticated models, availabil-
ity of larger corpora and increasing computational
power. Pretrained word embeddings (Mikolov
et al., 2013; Pennington et al., 2014) popularized
the use of distributed word representations, which
became a fundamental building block for NLP
systems. Peters et al. (2018a) introduced LSTM-
based deep contextual representations and obtained
large performance gains by fine-tuning on tasks af-
ter unsupervised pretraining (Radford et al., 2018;
Howard and Ruder, 2018). More recently, the at-
tention based transformer architecture was shown
to use context more effectively (Vaswani et al.,
2017) and several subsequent models achieved state
of the art results in many NLP tasks by combin-
ing the transformer architecture with unsupervised

pretraining and task specific fine-tuning (Devlin
et al., 2019; Liu et al., 2019). Radford et al. (2019)
showed that language models can be applied to a
variety of tasks without task specific fine tuning.
This is demonstrated on a much larger scale by
Brown et al. (2020).

Deep models improve performance. However,
what they actually learn about language and word
meaning is still to a large extent unclear due to
their uninterpretable nature. For static word embed-
dings, researchers used word similarity (Hill et al.,
2015) and word analogy (Gladkova et al., 2016)
tests to shed light on what information is captured
in these dense vector spaces. For language models,
a great amount of linguistic knowledge is stored
in the model parameters (Peters et al., 2018b).
Several studies proposed using ‘fill in the blank’
type cloze statements to test knowledge learned
by these models during unsupervised pretraining.
Petroni et al. (2019) proposed the LAMA (LAn-
guage Model Analysis) probe to test the factual
and common sense knowledge stored in language
models. Similarly, Schick and Schütze (2020) in-
troduced WNLaMPro (WordNet Language Model
Probing) to assess the ability of language models to
understand words based on their frequency. In WN-
LaMPro, cloze style questions are generated based
on antonym, hypernym and cohyponym relations
among words extracted from WordNet.

The existing probing datasets mainly focus on in-
vestigating the knowledge about relations between
words or entities. However, a more direct way of
testing whether a language model understands the
meaning of a word is to use its dictionary definition.
If a pretrained language model truly understands
the meaning of a word, then it should be able to
match it with its dictionary definition. Based on
this motivation, we introduce the Word Definition
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synset definition
a cappella singing.n.01 singing without instrumental accompaniment
caroling.n.01 singing joyful religious songs (especially at Christmas)
crooning.n.01 singing in a soft low tone
singalong.n.01 informal group singing of popular songs
bel canto.n.01 a style of operatic singing

Table 1: Five candidates from G(t) for t= a cappella singing.n.01 and their definitions

Noun Verb
# of Synset Groups 51260 8487
Average # of Candidates 50.2 47.7
min / max # of Candidates 5 / 404 5 / 593

Table 2: WDLMPro statistics

Language Model Probing (WDLMPro) dataset;1 it
is a challenging benchmark for testing NLP models
for their ability to understand words. WDLMPro
is essentially a set of thousands of synset groups;
each synset group consists of a target word (with
its definition) and its taxonomic sisters (with their
definitions). Using taxonomic sisters, rather than
random word groups, makes the task more chal-
lenging for statistical models that are based on the
distributional hypothesis since these words have
similar distributional characteristics (Lenci, 2008).
We evaluate two masked language models, BERT
and RoBERTa, and the auto-regressive model GPT-
2 on WDLMPro using two different probing tests:
(i) match definition to word (D2W) (ii) match word
to definition (W2D). We also provide a baseline
using static fastText embeddings (Mikolov et al.,
2018). We find that all three language models per-
form clearly better than the baseline. Nevertheless,
they have great difficulty matching words and their
definitions, implying a poor understanding of word
meaning. This is an important result that could
help guide research on LMs in the future.

2 WDLMPro

In this section, we introduce WDLMPro (Word
Definition Language Model Probing), a dataset to
test how well NLP models can match nouns and
verbs with their definitions. We view this as a test
of how well the models understand lexical mean-
ing.

2.1 Dataset
WordNet (Miller, 1995) is the basis for construct-
ing WDLMPro. A WordNet synset contains a set

1WDLAMPro and evaluation scripts are available at
https://www.cis.lmu.de/definition benchmark/WDLAMPro.zip

of synonyms along with a short definition of the
synset. Different senses of polysemous words are
represented in different synsets providing disam-
biguation. WordNet connects synsets with each
other via semantic relations.

Based on a target synset t and the semantic rela-
tion hyponymy <, we construct a synset group G
for the target as follows.

G(t) = {x|∃y : t < y ∧ x < y}

that is, G contains all synsets that are “sister hy-
ponyms” to t with respect to a hypernym of t. G(t),
along with the definitions of the synsets in G(t),
will be used to set up the WDLMPro tasks that
require matching of words and definitions. We
discard groups G(t) that have a size of less than 5.

In this study, we focus on nouns and verbs,
i.e., we create synset groups G for the nouns and
verbs in WordNet. Table 1 displays five mem-
bers from G(t) and their definitions for the target
a cappella singing.n.01 (see appx. for the target
beckon.v.01.) Table 2 shows statistics of the dataset.

2.2 Probing Tests
We define two probing tests that are converses of
each other:

• Match definition to word (D2W). Given a
definition and a set of words, the task is to
find the word that the definition defines.

• Match word to definition (W2D). Given a
word and a set of definitions, the task is to
find the definition that defines the word.

Each synset group G(t) gives rise to one instance
of D2W by providing the definition of t, and all
words in G(t). The word from G(t) that matches
the definition has then to be identified. (Note that
t is a member of G(t).) Similarly, each synset
group G(t) gives rise to one instance of W2D by
providing t and the definitions of all words in G(t).
The correct definition of t has then to be identified
among all definition candidates. Note that WordNet
definitions by construction do not contain the word

https://www.cis.lmu.de/definition_benchmark/WDLAMPro.zip
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Masked Language Model (MLM)

Noun
is <DEF>
means <DEF>
is defined as <DEF>

Verb definition of is to <DEF>
to <DEF> is the definition of

Autoregressive Language Model (ALM)
Noun <DEF> is the definition of
Verb to <DEF> is the definition of

Table 3: Patterns used for querying language models
for nouns and verbs. <DEF> refers to the definition,
is the mask or missing word that the language model
has to predict.

to be defined. So there are no instances where the
two tasks are trivial.

2.2.1 Application to language models
In principle, any NLP model can be tested on D2W
and W2D. In this paper, we are particularly in-
terested in testing language models. To this end,
we convert the data to a format that is suitable for
language models, i.e., to cloze-style questions as
shown in Table 3. The basic quantity that allows
us to assess the compatibility of a word t and a
definition is the probability of t being generated for
“ ” when the definition is substituted for <DEF>.

More precisely, we compute the probability that
the string representation of t is being generated.
We will denote the string representation of synset t
by t. We obtain the string representation by remov-
ing the word type and sense information from the
name of the synset and replacing underscores with
white space. For example, synset warm up.v.04 is
represented by the string “warm up”.

Table 3 shows that we define different templates
for masked and autoregressive language models.
For the masked language models, we average the
prediction scores across patterns before ranking the
candidates.

2.3 Baselines
For a masked language model (MLM) M , the prob-
ability of a candidate c ∈ G(t) on W2D is calcu-
lated as:

PW2D
M (c|t) =

|t|∏
i=1

P (ti|Q(c, |t|))

where t = [t1, t2, ..., t|t|] is the tokenization pro-
duced by M . Q(c, |t|) is the input query created

from one of the patterns (Table 3) with replaced
with |t| consecutive mask tokens. For an autore-
gressive language model (ALM) A, we decompose
P (ti|Q(c), t) in the standard way:

PW2D
A =

|t|∏
i=1

P (ti|Q(c), t1, ..., ti−1)

For D2W, we need to compare, given a definition,
the probabilities of different candidate words that
are generally of different lengths. To ensure a fair
comparison, we follow Xiong et al. (2020). For
MLMs, we match the number of mask tokens in an
input query to the token count of each candidate.
The final score is the average log-probability of the
masked tokens:

P D2W
M (c|t) = 1

|c|

|c|∑
i=1

logP (ci|Q(t, |c|))

For ALMs, we use the probability of the first token:

P D2W
A (c|t) = P (c1|Q(t))

Considering further tokens does not make sense
since they are often easily predictable from the first
token.

We apply our probing test to two different pre-
trained MLMs (BERT and RoBERTa) and one
ALM (GPT-2). To investigate the effect of model
size on the performance, we experiment with both
base and large versions of BERT and RoBERTa
along with all four sizes of GPT-2 (small, medium,
large, xl). For RoBERTa, we capitalize the
first letter of the candidate noun since pretrained
RoBERTa models are case sensitive and expect a
capital letter at the beginning of a sentence.2

In addition to the deep contextual language mod-
els, we also provide fastText static word embed-
dings3 (Mikolov et al., 2018) as a baseline.4 For
fastText embeddings, we tokenize the candidates
and their definitions using the NLTK tokenizer and
represent them with their average vector. We rank
candidates based on their cosine similarity to the
target embedding.

2Not using capitalization resulted in poor performance for
single token target words for D2W.

3We use the crawl-300d-2M-subword model from
https://fasttext.cc/docs/en/english-vectors.html

4A reviewer suggests that it would also be interesting to
investigate the performance of supervised approaches, e.g.,
ranking models. Our main focus here is the lexical knowledge
acquired in pretraining, so we leave this for future work.
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2.4 Measures
We use two measures: precision at 1 (P@1) and
a rank score (RS), both based on a ranked results
list, either of words or of definitions. P@1 is the
percentage of top-ranked items that is correct. We
define RS as follows:

RS(L, k) =
L− k

L− 1

where L = |G(t)| is the number of candidates and
k is the rank of the correct item, 1 ≤ k ≤ L. Table
2 shows that the size of G(t) is highly variable; in
contrast to P@1, RS is less affected by this and the
random baseline (cf. Tables 4 and 5) is always 0.5.

3 Results

Tables 4 and 5 present W2D and D2W results for
BERT, RoBERTa and GPT-2 along with fastText
and random baselines. Language models perform
clearly better than both baselines. Larger mod-
els perform generally better than smaller ones and
RoBERTa consistently outperforms BERT. This
might be an indication for the correlation between
performance on WDLAMPro and downstream per-
formance. However, further investigation is neces-
sary to show the correlation more clearly. For W2D,
best performance is achieved by GPT-2xl for nouns
(47.3 P@1, 0.81 RS) and by RoBERTa large for
verbs (50.8 P@1, 0.84 RS). Performance on D2W
is much lower than for W2D for all models. For
nouns, RoBERTa large and GPT-2xl perform simi-
larly (28.8 and 29.8 P@1, 0.70 and 0.73 RS) while
RoBERTa large achieves the best results for verbs
(38.6 P@1, 0.80 RS). Poor performance on D2W
compared to W2D might be due to language mod-
els’ ability to distinguish different definitions better
than individual words since definitions are more
informative than individual words. Overall GPT-2
models perform better than masked language mod-
els (with the exception of Roberta large for verbs),
despite using a single pattern as opposed to the
multiple patterns used by masked language models.
This might indicate that the ALM objective is better
at learning word meaning than the MLM objective.

To investigate the effect of frequency, we strat-
ify words into rare (fewer than 10 occurrences),
medium (10 to 99 occurrences) and frequent (100 or
more occurrences), based on occurrences in WWC5

(Westbury Wikipedia Corpus, Shaoul (2010)),
5Targets that have more than 3 tokens (based on NLTK

tokenization) are taken as rare without counting.

Model Noun Verb
P@1 RS P@1 RS

Bertb 35.2 0.74 35.3 0.74
Bertl 35.1 0.73 33.6 0.73
Robertab 37.1 0.75 42.7 0.79
Robertal 42.1 0.78 50.8 0.84
GPT-2s 38.7 0.76 45.0 0.80
GPT-2m 41.8 0.77 43.6 0.80
GPT-2l 45.7 0.80 48.4 0.83
GPT-2xl 47.3 0.81 48.6 0.83
fastText 22.5 0.66 29.1 0.69
Random 7.6 0.50 7.8 0.50

Table 4: P@1 and rank score (RS) on W2D

Model Noun Verb
P@1 RS P@1 RS

Bertb 23.7 0.65 19.3 0.65
Bertl 25.4 0.65 19.3 0.65
Robertab 25.7 0.67 32.6 0.74
Robertal 28.8 0.70 38.6 0.80
GPT-2s 23.2 0.68 29.2 0.71
GPT-2m 25.3 0.70 27.8 0.72
GPT-2l 28.4 0.72 31.5 0.74
GPT-2xl 29.8 0.73 32.8 0.76
fastText 16.5 0.63 20.3 0.69
Random 7.6 0.50 8.0 0.50

Table 5: P@1 and rank score (RS) on D2W

where we use WWC frequency as a substitute for
the models’ training corpora. We focus on nouns
since most verbs in our dataset are relatively fre-
quent. Table 7 shows that, for W2D, all models
have a poor understanding of the meaning of rare
and medium words. (See appx. for D2W results.)
Even for frequent words, P@1 is never above 55.

We additionally break down the results based
on the depth of the synsets in the WordNet hierar-
chy. Specifically, we investigate the performance
of the GPT-2xl model on W2D for WordNet nouns,
where we take the depth of a synset group as the
length of the shortest path from the target synset
to the root synset (i.e., entity.n.01). Table 6 shows
that performance drops steadily as we go deeper in
the hierarchy. Lower levels of the WordNet hier-
archy contain many scientific terms and names of
(sub)species such as types of cattle (e.g., cattalo,
hereford, galloway). These results suggest that
even very large LMs lack the knowledge necessary
to distinguish these terms.
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Depth # synsets # cand. RS P@1
3–5 2106 110 0.94 62.9
6–8 25,232 53 0.83 49.0
9–11 18,521 45 0.81 46.6
12–14 4473 19 0.74 37.4
15–19 928 13 0.67 31.5

Table 6: RS and P@1 results for GPT-2xl on W2D for
nouns from different depths of the WordNet hierarchy.
# of candidates, RS and P@1 are given as the average
across all synsets within the given depth range.

Model rare medium frequent all
Bertb 26.0 31.1 40.7 35.2
Bertl 23.6 29.8 42.0 35.1
Robertab 30.8 34.7 40.7 37.1
Robertal 33.2 38.7 47.2 42.1
GPT-2s 32.9 35.2 42.6 38.7
GPT-2m 34.4 37.4 46.7 41.8
GPT-2l 37.0 41.4 51.1 45.7
GPT-2xl 37.7 42.7 53.3 47.3
Random 6.6 7.0 8.2 7.6

Table 7: P@1 scores on W2D for nouns of different
frequency ranges

Analysis. The correct definition of the medium
frequency verb ‘beckon’ is ‘signal with the hands
or nod’. GPT-2xl predicts ‘signal by winking’. The
correct definition of the frequent noun ‘roleplaying’
is ‘acting a particular role (as in psychotherapy)’
GPT-2xl predicts ‘acting the part of a character on
stage’. So GPT-2xl understands that beckoning is
signaling and that roleplaying is acting, but it has
not learned to distinguish between different types
of signaling and acting. This points to an important
future goal for LMs: they should be developed to
gain an understanding of words that goes beyond
the current superficial state of the art.

Human performance on WDLAMPro. It is
beyond the scope of this paper to evaluate human
performance on the entirety of WDLAMPro. How-
ever, we provide a comparison with human perfor-
mance on a small subset to provide an intuition
about the difficulty of the task. For each of the
two tasks, 20 synset groups that have a maximum
of 10 candidates are randomly sampled from WD-
LAMPro. Then two native English speakers are
asked to rank the candidates. Table 8 displays the
average performance of the human participants and
the language models on this subset. For both tasks,
performance of the best model is comparable to the

Model W2D D2W
P@1 RS P@1 RS

Bertb 60.0 0.84 35.0 0.64
Bertl 65.0 0.74 35.0 0.69
Robertab 50.0 0.78 60.0 0.81
Robertal 55.0 0.80 45.0 0.69
GPT-2s 35.0 0.69 45.0 0.71
GPT-2m 50.0 0.80 50.0 0.73
GPT-2l 60.0 0.84 45.0 0.75
GPT-2xl 50.0 0.76 45.0 0.79
Human 62.5 0.88 57.5 0.77

Table 8: LM and human performance on 20 random
samples of WDLAMPro.

average human performance.
Human performance is the upper bound for many

NLP tasks. We believe that this is not the case for
WDLAMPro: arguably, we should aim for models
with an excellent understanding of the meanings
of words even if it is better than average human
understanding. Knowledge based tasks are an anal-
ogous case: we should strive for models that know
as many facts as possible even if that performance
is above average human performance.

4 Conclusion

We introduced WDLMPro, a probing test that helps
analyze how well a model understands word mean-
ing. WDLMPro is complementary to existing prob-
ing tests that are about relations between words
or entities. We evaluated three popular pretrained
language models on the W2D (word to definition)
and D2W (definition to word) tasks. Our findings
show that, despite their remarkable performance
on many downstream tasks, these models struggle
to match a word and its true definition, suggest-
ing an insufficient understanding of word mean-
ing. Relatively poor performance of these powerful
models on WDLMPro can be seen as evidence
for the limitations of purely distributional systems
and the need for incorporating external knowledge.
WDLMPro provides an important evaluation bench-
mark, encouraging design and training of models
with precise word understanding.
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A Appendix

synset definition
beckon.v.01 signal with the hands or nod
applaud.v.01 clap one’s hands or shout after performances to indicate approval
bow.v.01 bend one’s knee or body, or lower one’s head
shrug.v.01 raise one’s shoulders to indicate indifference or resignation
exsert.v.01 thrust or extend out
wink.v.01 signal by winking
nod.v.01 express or signify by nodding

Table 9: Seven candidates of G(t) for t= beckon.v.01
and their definitions

Model rare medium frequent all
Bertb 14.7 20.6 28.7 23.7
Bertl 12.0 20.1 33.1 25.4
Robertab 17.7 24.2 29.5 25.7
Robertal 17.9 25.8 34.5 28.8
GPT-2s 17.3 20.7 26.7 23.2
GPT-2m 17.0 21.1 30.6 25.3
GPT-2l 19.2 24.3 33.9 28.4
GPT-2xl 19.3 24.8 36.3 29.8
Random 6.7 7.1 8.3 7.6

Table 10: P@1 scores on D2W for nouns based on tar-
get word frequency.


