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University of Mannheim

Data and Web Science Group
goran@informatik.uni-mannheim.de

Ivan Vulić
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Abstract

Traditional NLP has long held (supervised)
syntactic parsing necessary for successful
higher-level semantic language understanding
(LU). The recent advent of end-to-end neural
models, self-supervised via language model-
ing (LM), and their success on a wide range
of LU tasks, however, questions this belief.
In this work, we empirically investigate the
usefulness of supervised parsing for seman-
tic LU in the context of LM-pretrained trans-
former networks. Relying on the established
fine-tuning paradigm, we first couple a pre-
trained transformer with a biaffine parsing
head, aiming to infuse explicit syntactic knowl-
edge from Universal Dependencies treebanks
into the transformer. We then fine-tune the
model for LU tasks and measure the effect
of the intermediate parsing training (IPT) on
downstream LU task performance. Results
from both monolingual English and zero-shot
language transfer experiments (with intermedi-
ate target-language parsing) show that explicit
formalized syntax, injected into transformers
through IPT, has very limited and inconsistent
effect on downstream LU performance. Our
results, coupled with our analysis of transform-
ers’ representation spaces before and after in-
termediate parsing, make a significant step to-
wards providing answers to an essential ques-
tion: how (un)availing is supervised parsing
for high-level semantic natural language un-
derstanding in the era of large neural models?

1 Introduction

Structural analysis of sentences, based on a vari-
ety of syntactic formalisms (Charniak, 1996; Tay-
lor et al., 2003; De Marneffe et al., 2006; Hock-
enmaier and Steedman, 2007; Nivre et al., 2016,
2020, inter alia), has been the beating heart of NLP
pipelines for decades (Klein and Manning, 2003;
Chen and Manning, 2014; Dozat and Manning,
2017; Kondratyuk and Straka, 2019), establishing

rather strong common belief that high-level seman-
tic language understanding (LU) crucially depends
on explicit syntax. The unprecedented success of
neural language learning models based on trans-
former networks (Vaswani et al., 2017), trained
on unlabeled corpora via language modeling (LM)
objectives (Devlin et al., 2019; Liu et al., 2019b;
Clark et al., 2020, inter alia) on a wide variety of
LU tasks (Wang et al., 2018; Hu et al., 2020), how-
ever, questions this widely accepted assumption.

The question of necessity of supervised parsing
for LU and NLP in general has been raised before.
More than a decade ago, Bod (2007) questioned the
superiority of supervised parsing over unsupervised
induction of syntactic structures in the context of
statistical machine translation. Nonetheless, the
NLP community has since still managed to find
sufficient evidence for the usefulness of explicit
syntax in higher-level LU tasks (Levy and Gold-
berg, 2014; Cheng and Kartsaklis, 2015; Bastings
et al., 2017; Kasai et al., 2019; Zhang et al., 2019a,
inter alia). However, we believe that the massive
improvements brought about by the LM-pretrained
transformers – unexposed to any explicit syntactic
signal – warrant a renewed scrutiny of the utility
of supervised parsing for high-level language un-
derstanding.1,2 The research question we address
in this work can be summarized as follows:

1Disclaimer 1: In this work, we make a clear distinction
between Computational Linguistics (CL), i.e., the area of
linguistics leveraging computational methods for analyses of
human languages and NLP, the area of artificial intelligence
tackling human language in order to perform intelligent tasks.
This work scrutinizes the usefulness of supervised parsing and
explicit syntax only for the latter. We find the usefulness of
explicit syntax in CL to be self-evident.

2Disclaimer 2: The purpose of this work is definitely not
to invalidate the admirable efforts on syntactic annotation
and modeling, but rather to make an empirically driven step
towards a deeper understanding of the relationship between
LU and formalised syntactic knowledge, and the extent of its
impact to modern semantic LU and applications.
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(RQ) Is explicit structural language information,
provided in the form of a widely adopted syntactic
formalism (Universal Dependencies, UD) (Nivre
et al., 2016) and injected in a supervised man-
ner into LM-pretrained transformers beneficial for
transformers’ downstream LU performance?

While existing body of work (Lin et al., 2019; Ten-
ney et al., 2019; Liu et al., 2019a; Kulmizev et al.,
2020; Chi et al., 2020) probes transformers for
structural phenomena, our work is more pragmat-
ically motivated. We directly evaluate the effect
of infusing structural language information from
UD treebanks, via intermediate dependency pars-
ing (DP) training, on transformers’ performance
in downstream LU. To this end, we couple a pre-
trained transformer with a biaffine parser simi-
lar to Dozat and Manning (2017), and train the
model (i.e., fine-tune the transformer) for DP. Our
parser on top of RoBERTa (Liu et al., 2019b) and
XLM-R (Conneau et al., 2020) produces DP re-
sults which are comparable to state of the art. We
then fine-tune the syntactically-informed transform-
ers for three downstream LU tasks: natural lan-
guage inference (NLI) (Williams et al., 2018; Con-
neau et al., 2018), paraphrase identification (Zhang
et al., 2019b; Yang et al., 2019), and causal com-
monsense reasoning (Sap et al., 2019; Ponti et al.,
2020). We quantify the contribution of explicit
syntax by comparing LU performance of the trans-
former exposed to intermediate parsing training
(IPT) and its counterpart directly fine-tuned for
the downstream task. We investigate the effects
of IPT (1) monolingually, by fine-tuning English
transformers, BERT and RoBERTa, on an English
UD treebank and for (2) downstream zero-shot lan-
guage transfer, by fine-tuning massively multilin-
gual transformers (MMTs) – mBERT and XLM-R
(Conneau et al., 2020) – on treebanks of down-
stream target languages, before the downstream
fine-tuning on source language (English) data.

While intermediate parsing training is obviously
not the only way of bringing syntactic knowl-
edge to downstream tasks (Kuncoro et al., 2019;
Swayamdipta et al., 2019; Kuncoro et al., 2020),
it is arguably the most straightforward way of in-
jecting syntactic signal in the context of the pre-
dominant pretraining-fine-tuning paradigm that has,
nonetheless, not been investigated up to this point.
Other methods of bringing syntactic signal to down-
stream tasks such as knowledge distillation (Kun-
coro et al., 2020) and pre-training on shallow trees

instead of sequences (Swayamdipta et al., 2019)
have failed to demonstrate significant gains on
higher-level LU tasks.

Our results also render supervised UD parsing
largely inconsequential to LU. We observe lim-
ited and inconsistent gains only in zero-shot down-
stream language transfer: further analyses reveal
that (1) intermediate LM training yields compara-
ble gains and (2) IPT only marginally changes rep-
resentation spaces of transformers exposed to suffi-
cient amount of language data in LM-pretraining.
We hope that these empirical findings will shed new
light on the relationship between supervised pars-
ing (and manually labeled treebanks) and LU with
transformer networks, and guide further similar in-
vestigations in future work, in order to fully under-
stand the impact of formal syntactic knowledge on
LU performance with modern neural architectures.

2 Related Work

Bringing Explicit Syntax to LMs. Previous work
has attempted to enrich language models with ex-
plicit syntactic knowledge in ways other than in-
termediate parsing training. Swayamdipta et al.
(2019) modify the pretraining objective of ELMo
(Peters et al., 2018) to learn from shallowly parsed
(i.e., chunked) corpora. They, however, report no
notable improvements on downstream tasks. Kun-
coro et al. (2019) propose to distil the knowledge
from a Recurrent NN Grammar (RNNG) teacher
trained on a small syntactically annotated corpus
(by modeling the joint probability of surface se-
quence and phrase structure tree) into an LSTM-
based student pretrained on a much larger corpus.
They show that distillation helps the student in
structured prediction tasks, but their downstream
evaluation does not involve LU tasks. Their sub-
sequent work (Kuncoro et al., 2020) replaces the
RNN student with BERT (Devlin et al., 2019): syn-
tactic distillation again helps structured prediction,
but hurts (slightly) the performance on LU tasks
from the GLUE benchmark (Wang et al., 2018).

Transformer-Based Dependency Parsing. Build-
ing on the success of preceding neural parsers
(Chen and Manning, 2014; Kiperwasser and Gold-
berg, 2016), Dozat and Manning (2017) proposed a
biaffine parsing head on top of a Bi-LSTM encoder:
contextualized word vectors are fed to two feed-
forward networks, producing dependent- and head-
specific token representations, respectively. Arc
and relation scores are produced via biaffine prod-
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ucts between these dependent- and head-specific
representation matrices. Finally, the Edmonds al-
gorithm induces the optimal tree from pairwise arc
predictions. Most recent DP work (Kondratyuk
and Straka, 2019; Üstün et al., 2020) replaces the
Bi-LSTM encoder with multilingual BERT’s trans-
former, reporting state-of-the-art parsing perfor-
mance. Kondratyuk and Straka (2019) fine-tune
mBERTs parameters on the concatenation of all
UD treebanks, whereas Üstün et al. (2020) freeze
the original transformer’s parameters and inject
adapters (Houlsby et al., 2019) for parsing.

We propose and work with a simpler transformer-
based biaffine parser: we apply biaffine attention
directly on representations from transformer’s out-
put layer, eliminating the head- and dependendant-
based feed-forward mapping. Despite this simpli-
fication, our biaffine parser produces DP results
comparable to current state-of-the-art parsers.

Syntactic BERTology. The substantial body of
syntactic probing work shows that BERT (Devlin
et al., 2019) (a) encodes text in a hierarchical man-
ner (i.e., it encodes some implicit underlying syn-
tax) (Lin et al., 2019); and (b) captures specific
shallow syntactic information (parts-of-speech and
syntactic chunks) (Tenney et al., 2019; Liu et al.,
2019a). Hewitt and Manning (2019) find that lin-
ear transformations, when applied on BERT’s con-
textualized word vectors, reflect distances in de-
pendency trees. This suggests that BERT encodes
sufficient structural information to reconstruct de-
pendency trees (though without arc directionality
and relations). Chi et al. (2020) extend the analysis
to multilingual BERT, finding that its representa-
tion subspaces may recover trees also for other lan-
guages. They also provide evidence that clusters of
head–dependency pairs roughly correspond to UD
relations. Similarly, Kulmizev et al. (2020) show
that BERT’s latent syntax corresponds more to UD
trees than to shallower SUD (Gerdes et al., 2018)
structures. Despite the evident similarity between
BERT’s latent syntax and formalisms such as UD,
there is ample evidence that BERT insufficiently
leverages syntax in downstream tasks: it often pro-
duces similar predictions for syntactically valid as
well as for structurally corrupt sentences (e.g., with
random word order) (Wallace et al., 2019; Ettinger,
2020; Zhao et al., 2020).

Intermediate Training. Sometimes called Sup-
plementary Training on Intermediate Labeled-data
Tasks (STILT) (Phang et al., 2018), intermediate

Transformer 
(BERT / RoBERTa)

[CLS]  The  quick  br  ##own  fox  jump  ##s  ...  [SEP]
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Figure 1: Architecture of our transformer-based bi-
affine dependency parser.

training is a transfer learning setup in which one
trains an LM-pretrained transformer on one or more
supervised tasks (ideally with large training sets)
before final fine-tuning for the target task. Phang
et al. (2018) show that intermediate NLI train-
ing of BERT on the Multi-NLI dataset (Williams
et al., 2018) benefits several language understand-
ing tasks. Subsequent work (Wang et al., 2019;
Pruksachatkun et al., 2020) investigated many com-
binations of intermediate and target LU tasks, fail-
ing to identify any universally beneficial intermedi-
ate task. In this work we use DP as an intermediate
training task (IPT) for LM-pretrained transformers.

3 Methodology

Biaffine Parser. Our parsing model, illustrated in
Figure 1, consists of a biaffine attention layer ap-
plied directly on the transformer’s output (BERT,
RoBERTa, mBERT, or XLM-R). We first obtain
word-level vectors by averaging transformed repre-
sentations of their constituent subwords, produced
by the transformer. Let X ∈ RN×H denote the
encoding of a sentence with N word-level tokens,
consisting of N H-dimensional vectors (where H
is the transformer’s hidden size). We use the trans-
formed representation of the sentence start token
(e.g., [CLS] for BERT), xCLS ∈ RH , as the repre-
sentation for the root node of the parse tree, and
prepend it to X, X′ = [xCLS ;X] ∈ R(N+1)×H .
We then use X as the representation of syntactic
dependants and X′ as the representation of depen-
dency heads. We then directly compute the arc and
relation scores as biaffine products of X and X′:

Yarc = XWarcX
′> +Barc ; Yrel = XWrelX

′> +Brel
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where Warc ∈ RH×H and Wrel ∈ RH×H×R de-
note, respectively, the arc classification matrix and
relation classification tensor (with R as the num-
ber of relations); Barc and Brel denote the corre-
sponding bias parameters. We greedily select the
dependency head for each word by finding the max-
imal score in each row of Yarc: while this is not
guaranteed to produce a tree, Zhang et al. (2017)
show that in most cases it does.3 Our arc prediction
loss is the cross-entropy loss with sentence words
(plus the root node) as categorical labels: this
implies a different number of labels for different
sentences. We compute the relation prediction loss
as a cross-entropy loss over gold arcs. Our final
loss is the sum of the arc loss and relation loss.

Note that, in comparison with the original bi-
affine parser (Dozat and Manning, 2017) and its
other transformer-based variants (Kondratyuk and
Straka, 2019; Üstün et al., 2020), we feed word-
level representations derived from the transformer’s
output directly to biaffine products, omitting the
dependent- and head-specific MLP transformations.
Deep task-specific architectures go against the fine-
tuning idea: deep transformers have plenty of their
own parameters that can be tuned for DP. We
want to propagate as much of the explicit syn-
tactic knowledge as possible into the transformer:
a deep(er) DP-specific architecture on top of the
transformer would impede the propagation of this
knowledge to the transformer’s parameters.

Downstream Models. After IPT, we fine-tune
transformers for two types of LU tasks: (1) se-
quence classification (SEQC) tasks, where a se-
quence of text needs to be assigned a discrete la-
bel; and (2) multiple choice classification (MCC)
tasks where we need to select the correct an-
swer between two or more options for a given
a premise and/or question. For SEQC, we sim-
ply apply a softmax classifier on the transformed
representation of the sequence start token: y =
softmax (xCLSWsc + bsc) (with Wsc ∈ RH×C

and bsc ∈ RC as classifier’s parameters and C as
the number of task’s labels).

For MCC tasks, we first concatenate each of
the offered answer choices (independently of each
other) to the premise and/or question, and encode
it with the transformer. Since some of these tasks,
e.g., COPA (Roemmele et al., 2011; Ponti et al.,

3They also show the performance of greedy decoding to
match that of decoding algorithms that produce optimal trees.

2020), have very small training sets, we would
like to support model transfer between different
MCC tasks. Different multiple-choice classifica-
tion tasks, however, may differ in the number of
choices: a classifier with the number of parameters
depending on the number of labels is thus not a
good fit; instead, we follow Sap et al. (2019) and
Ponti et al. (2020), and couple the transformer with
a feed-forward network outputting a single scalar
for each answer. Let xi

CLS ∈ RH be the represen-
tation of the sequence start token (i.e., [CLS] or
<s>) for the concatenation of the premise/question
and the i-th answer. We obtain the score for the
i-th answer as follows:

yi = Wo
mcc tanh

(
Wh

mccx
i
CLS + bh

mcc

)
with Wh

mcc ∈ RH×H , bh
mcc ∈ RH and Wo

mcc ∈
R1×H as parameters. We then apply a softmax
function on the concatenation of yi scores of all
answers: y = softmax([y1, . . . , yK ]), with K as
the number of answers (i.e., labels) in the task.
Finally, we compute the cross-entropy loss on y.

4 Experimental Setup

We now detail experimental setup, where LU fine-
tuning follows Intermediate Parsing Training (IPT).

4.1 Sequential Fine-Tuning

Our primary goal is to identify if injection of ex-
plicit syntax into transformers via supervised pars-
ing training improves their downstream LU perfor-
mance – this translates into sequential fine-tuning:
(1) we first attach a biaffine parser from §3 on the
transformer and train the whole model on a UD tree-
bank; (2) we then couple the syntactically-informed
transformer with the corresponding downstream
classification head and perform final fine-tuning.
We then compare the downstream performance of
transformers with and without the IPT step.

Mono- vs. Cross-Lingual IPT Experiments. In
the monolingual setup, we work with English (EN )
transformers, BERT and RoBERTa, pretrained on
EN corpora. In the zero-shot language transfer
setup, where we work with multilingual models,
mBERT and XLM-R (Conneau et al., 2020), we
first train transformers via IPT on the UD tree-
bank of the target language (i.e., a language with
no downstream training data) before fine-tuning it
on the EN training set of the LU task. We exper-
iment with four target languages: German (DE ),
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French (FR ), Turkish (TR ), and Chinese (ZH ).4

Standard vs. Adapter-Based Fine-Tuning. Stan-
dard fine-tuning updates all transformer’s parame-
ters, which, for tasks with large training sets may
have some drawbacks: (i) fine-tuning may last
long and (ii) task-specific information may over-
write the useful distributional knowledge obtained
during LM-pretraining. Adapter-based fine-tuning
(Houlsby et al., 2019; Pfeiffer et al., 2020) remedies
for these potential issues by keeping the original
transformer’s parameters frozen and inserting new
adapter parameters in transformer layers. In fine-
tuning, both sets of parameters are used to make
predictions, but we only update adapters based on
loss gradients. As the number of adapter param-
eters is only a fraction of the number of original
parameters (3-8%), fine-tuning is also much faster.

Therefore, to account for the possibility of for-
getting distributional knowledge in standard IPT
fine-tuning, we also carry out adapter-based IPT.
We follow Houlsby et al. (2019) and inject two bot-
tleneck adapters into each transformer layer: first
after the multi-head attention sublayer and another
after the feed-forward sublayer. In downstream
LU tasks, however, we unfreeze the original trans-
former parameters and fine-tune them together with
adapters (now containing syntactic knowledge).

4.2 Language Understanding Tasks

We now outline the downstream LU tasks. For
brevity, we report all the technical training and
optimization details in the Supplementary Material.

NLI is a ternary sentence-pair classification task.
We predict if the hypothesis is entailed by the
premise, contradicts it, or neither. For monolingual
EN experiments, we use Multi-NLI (Williams et al.,
2018). In zero-shot transfer experiments, we train
on EN Multi-NLI and evaluate on target language
(DE , FR , TR , ZH ) test portions of the multilin-
gual XNLI dataset (Conneau et al., 2018). Models
trained on the Multi-NLI datasets have been shown,
however, to capture certain heuristics (e.g., lexical
overlap) useful for many training instances rather
than more complex and generalizable language in-
ference (McCoy et al., 2020). Because of this, we
additionally evaluate on the HANS dataset (McCoy

4Selected languages vary in typological and etymological
proximity to EN as the source language: DE is in the same
(Germanic) branch of Indo-European languages, FR is from
the different branch of the same family, whereas TR (Turkic)
and ZH (Sino-Tibetan) belong to different language families.

et al., 2020), consisting of adversarial examples on
which models that capture such heuristics fail.

Paraphrase Identification is a binary classifica-
tion task where we predict if two sentences are
mutual paraphrases. For EN, we train, validate, and
test on respective portions of the PAWS dataset
(Zhang et al., 2019b). In zero-shot language trans-
fer, we evaluate on the test DE , FR , and ZH portions
of the PAWS-X dataset (Yang et al., 2019).

Commonsense Reasoning. We evaluate on two
multiple-choice classification (MCC) datasets. In
monolingual evaluation, we use the SocialIQA
(SIQA) dataset (Sap et al., 2019), testing models’
ability to reason about social interactions. Each
SIQA instance consists of a premise, a question,
and three possible answers. For zero-shot language
transfer experiments, we resort to the recently pub-
lished XCOPA dataset (Ponti et al., 2020), obtained
by translating test portions of the EN COPA (Choice
of Plausible Alternatives) dataset (Roemmele et al.,
2011) to 11 languages. As mentioned, (X)COPA
is an MCC task, with each instance containing a
premise, a question,5 and two possible answers.
Due to the very limited size of the EN COPA train-
ing set (mere 400 instances), we follow Ponti et al.
(2020) and evaluate the models fine-tuned on SIQA
(EN ) on the XCOPA test portions (in TR and ZH).

4.3 Training and Optimization Details

All the transformer models with which we ex-
periment – EN BERT, mBERT, EN RoBERTa, and
XLM-R have L = 12 layers and hidden represen-
tations of size H = 768. We apply a dropout
(p = 0.1) on the transformer outputs before for-
warding them to the task-specific classification
heads (i.e., biaffine parsing head in intermediate
parsing training, and MCC or SEQC heads in down-
stream fine-tuning). We optimize the parameters
using the Adam algorithm (Kingma and Ba, 2015):
we found the initial learning rate of 10−5 to offer
stable convergence in both intermediate parsing
training and downstream fine-tuning for all LU
tasks. We train for at most 30 epochs over the
respective training set, with early stopping based
on the development loss.6 On UD treebanks and

5While SIQA has unconstrained questions, (X)COPA has
only two question types: a) What is the CAUSE of this
(premise)? and b) What is the RESULT of this (premise)?

6We measure the development loss every U update steps
and stop the training if the loss does not decrease over 10
consecutive measurements. We set U = 500 in NLI training
and U = 250 in all other training procedures.
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EN (EWT) DE (GSD) FR (GSD) TR (IMST) ZH (GSD)

Transformer Fine-tune UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS

BERT Standard 91.9 89.3 – – – – – – – –
Adapter 90.1 87.3 – – – – – – – –

RoBERTa Standard 93.0 90.5 – – – – – – – –
Adapter 91.5 88.7 – – – – – – – –

mBERT Standard 91.5 88.9 76.3 72.0 94.1 91.3 75.5 67.5 87.0 83.8
Adapter 89.6 86.8 75.1 70.1 92.8 89.7 66.4 57.8 81.0 77.4

XLM-R Standard 93.1 90.5 89.4 85.0 94.3 91.7 77.9 70.0 79.0 75.6
Adapter 91.4 88.6 88.3 83.8 93.1 90.3 72.1 64.1 73.8 70.3

Baseline: UDify (mBERT, Standard) 91.0 88.5 87.8 83.6 93.6 91.5 74.6 67.4 87.9 83.8

Table 1: Dependency parsing performance of our transformer-based biaffine parsers.

Transf. Parsing FT NLI HANS PAWS SIQA

BERT
None 84.1 53.3 92.4 60.7
Standard 84.4 56.7 91.9 58.8
Adapter 84.1 53.3 92.4 58.3

RoBERTa
None 88.4 67.4 94.7 67.2
Standard 87.7 64.5 94.9 66.5
Adapter 87.9 66.3 94.7 67.3

Table 2: Downstream LU performance of monolingual
EN transformers (BERT and RoBERTa). None: no IPT;
Standard: IPT via standard fine-tuning; Adapter: IPT
via adapter-based fine-tuning.

SIQA we train in batches of size 8, whereas on
Multi-NLI and PAWS we train in batches of size
32. In Adapter-based IPT, we set the adapter size to
64 and use GELU (Hendrycks and Gimpel, 2016)
as the activation function in adapter layers.

5 Evaluation

We first discuss parsing performance of our novel
biaffine parser (see §3). We then show transformers’
downstream LU performance after IPT, both in
monolingual EN setting and in zero-shot transfer.

5.1 Results and Discussion

Parsing Performance. In order to judge the ben-
efits of IPT in downstream LU, we must first ver-
ify parsing performance of our biaffine parser, i.e.,
that we successfully fine-tune transformers for DP.
Table 1 shows that our biaffine parser gives state-
of-the-art performance for all five languages in our
study. Our (m)BERT-based parser outperforms
UDify (Kondratyuk and Straka, 2019), also based
on mBERT, for EN , FR , and TR , and performs
comparably for ZH .7 Our parser based on XLM-R
additionally yields an improvement over UDify for
DE as well. It is worth noting that UDify trains the
mBERT-based parser (1) on the concatenation of all

7Our mBERT-based parser performs poorly for DE : the
cause of it is unclear and this requires further investigation.

UD treebanks and that it (2) additionally exploits
gold UPOS and lemma annotations. We train our
parsers only on the training portion of the respec-
tive treebank without using any additional morpho-
syntactic information.8 Our mBERT-based parser
outperforms our XLM-R-based parser only for ZH :
this is likely due to a tokenization mismatch be-
tween XLM-R’s subword tokenization for ZH and
gold tokenization in the ZH -GSD treebank.9

Monolingual EN Results. Table 2 quantifies the
effects of applying IPT with the EN -EWT UD tree-
bank to BERT and RoBERTa. We report down-
stream LU performance on NLI, PAWS, and SIQA.
The reported results do not favor supervised pars-
ing (i.e., explicit syntax): compared to original
transformers that have not been exposed to any ex-
plicit syntactic supervision, variants exposed to UD
syntax via IPT (Standard, Adapter) fail to produce
any significant gains for any of the downstream LU
tasks. One cannot argue that the cause of this might
be forgetting (i.e., overwriting) of the distributional
knowledge obtained in LM pretraining during IPT:
Adapter IPT variants, in which all distributional
knowledge is preserved by design, also fail to yield
any significant LU gains. IPT yields the largest gain
(+3.4%) for BERT on HANS – the NLI dataset con-
sisting of adversarial examples for which syntax
deliberately affects the sentence meaning more di-
rectly. The same effect, however, is not there for
RoBERTa, suggesting that the additional syntactic
knowledge that BERT gets through IPT, RoBERTa
seems to obtain through larger-scale pretraining.

Zero-Shot Language Transfer. We show the re-
sults obtained for zero-shot downstream language

8Also, since absolute parsing performance is not the pri-
mary objective of this work, we did not perform extensive
language-specific hyperparameter tuning. One could likely
obtain better parsing scores than what we report in Table 1
with careful language-specific model selection.

9We explain this mismatch in the Appendix.



3096

XNLI PAWS-X XCOPA

Transformer Parse FT DE FR TR ZH DE FR ZH TR ZH

mBERT
None 71.0 73.7 63.0 70.3 85.1 86.3 76.4 52.0 61.2
Standard 71.4 72.9 61.5 70.4 85.4 86.9 79.8 57.4 65.4
Adapter 71.7 74.8 62.5 70.2 85.8 87.1 78.7 50.4 61.6

XLM-R
None 77.1 78.1 73.4 73.8 88.3 89.3 81.4 61.2 66.4
Standard 76.1 77.2 73.1 73.8 86.4 89.2 81.1 59.2 67.4
Adapter 77.8 76.4 73.9 74.7 86.7 88.7 80.7 57.4 65.6

Table 3: Performance of multilingual transformers, mBERT and XLM-R, in zero-shot language transfer for down-
stream LU tasks, with and without prior intermediate dependency parsing training on target language treebanks.

transfer setup, for both mBERT and XLM-R, in
Table 3. Again, these results do not particularly
favor the intermediate injection of explicit syntac-
tic information in general. However, in few cases
we do observe gains from the intermediate target-
language parsing training: e.g., 3% gain on PAWS-
X for ZH as well as 4% and 5% gains on XCOPA
for ZH and TR , respectively. Interestingly, all sub-
stantial improvements are obtained for mBERT;
for XLM-R, the improvements are less consistent
and less pronounced. This might be due to XLM-
R’s larger capacity which makes it less suscep-
tible to the “curse of multilinguality” (Conneau
et al., 2020): with the subword vocabulary twice
as large as mBERT’s, XLM-R is able to store more
language-specific information. Also, XLM-R has
seen substantially more target language data in LM-
pretraining than mBERT for each language. This
might mean that the larger IPT gains for mBERT
come from mere exposure to additional target lan-
guage text rather than from injection of explicit
syntactic UD signal (see further analyses in §5.2).

5.2 Further Analysis and Discussion

We first compare the impact of IPT with the effect
of additional LM training on the same raw data.
We then quantify the topological modification that
IPT makes in transformers’ representation spaces.

Explicit Syntax or Just More Language Data?
We scrutinize the IPT gains that we observe in
some zero-shot language transfer experiments. We
hypothesize that these gains may, at least in part,
be credited to transformer simply seeing more tar-
get language data. To investigate this, we replace
IPT with intermediate (masked) language modeling
training (ILMT) on the same data (i.e., sentences
from the respective treebank used in IPT) before
final downstream LU fine-tuning. Because MLM
is a self-supervised objective, we can credit all dif-
ferences in downstream LU performance between
ILMT and IPT variants of the same pretrained trans-

PAWS-X, FR PAWS-X, ZH XCOPA, TR XCOPA, ZH
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Figure 2: Comparison of IPT and ILMT in zero-shot
language transfer experiments with mBERT on PAWS-
X (FR and ZH ) and XCOPA (TR and ZH ). None: no
intermediate training; Parsing: intermediate parsing
training; MLM: intermediate masked LM training.

former to supervised parsing, i.e., to the injection
of explicit UD knowledge.

ILMT Details. We mask 15% of subword tokens
in each sentence and predict them with a linear
classifier applied on transformed representations
of [MASK] tokens. We compute the cross-entropy
loss and use the same hyperparameter configuration
as described in §4.3. The development set, used
for early stopping, is subdued to fixed masking,
whereas we mask the training sentences dynami-
cally, before feeding them to the transformer.

Results. We run this analysis for setups in which
we observe substantial gains from IPT: PAWS-X
for mBERT (Adapter fine-tuning, for FR and ZH )
and XCOPA for mBERT (Standard fine-tuning,
TR and ZH ). The comparison between IPT and
ILMT for these setups is provided in Figure 2. Like
IPT, ILMT on mBERT generates downstream gains
over direct downstream fine-tuning (i.e., no inter-
mediate training) in all four setups. The gains from
ILMT (with the exception of XCOPA for ZH ) are
almost as large as gains from IPT. This suggests
that most of the gain with IPT comes from seeing
more target language text, and prevents us from
concluding that the explicit syntactic annotation is
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BERT (EN) RoBERTa

Figure 3: Topological similarity (l-CKA) for pairs of BERT and RoBERTa variants, before and after different fine-
tuning steps (B, M, P, AP, and N). Rows: transformer layers; Columns: pairs of transformer variants in comparison.

responsible for the LU improvements in zero-shot
downstream transfer. This interpretation is corrob-
orated by the fact that IPT gains roughly correlate
with the amount of language-specific data seen in
LM-pretraining: the gains are more prominent for
mBERT than for XLM-R and for TR and ZH than
for FR and DE (see Table 3).

Changes in Representation Spaces. Finally, we
analyze how fine-tuning transformers on different
tasks modifies the topology of their representation
spaces. We encode the set of sentences S from the
test portions of treebanks used in IPT10 with differ-
ent variants: (a) Base (B): original LM-pretrained
transformer, no further training; (b) MLM (M):
after ILMT; (c) Parsing (P): after Standard IPT;
and (d) Adapter-Parsing (AP): after Adapter-based
IPT; for monolingual transformers (BERT and
RoBERTa), also with (e) NLI (N): after NLI fine-
tuning (without any intermediate training). We an-
alyze the representations in each transformer layer
separately: we represent each sentence s ∈ S with
the average of subword vectors from that layer
(excluding sequence start and end tokens). Let
X1 and X2 ∈ R|S|×H contain corresponding rep-
resentations of sentences from S from the i-th layer
of two transformer variants (e.g., B and P). We mea-
sure the topological similarity of the i-th layers of
the two transformers with the linear centered kernel
alignment (l-CKA) (Kornblith et al., 2019):11

l-CKA(X1,X2) =

∥∥X>
2 X1

∥∥2

F(∥∥X>
1 X1

∥∥
F

) (∥∥X>
2 X2

∥∥
F

) .
Although not invariant to all linear transformations,
l-CKA is invariant to orthogonal projection and
isotropic scaling, which suffices for our purposes.
We base our analysis on the following assumption:

10IPT itself only consumes train and development portions
of UD treebanks. We can thus safely use sentences from test
portions in this analysis, without risking information leakage.

11X1 and X2 must first be column-wise mean-centered.

the extent of change in transformers’ representa-
tion space topology (reflected by l-CKA), is pro-
portional to the novelty of knowledge injected in
fine-tuning. Put differently, injection of new (i.e.,
missing) knowledge should substantially change
the topology of the space (low l-CKA score).

Figure 3 shows the heatmap of l-CKA scores for
pairs of BERT and RoBERTa variants, for layers
L8-L12.12 Comparing B-P and B-N reveals that
IPT changes the topology of BERT’s higher layers
roughly as much as NLI fine-tuning does, implying
that both the English UD treebank (EN -EWT) and
Multi-NLI data contain a non-negligible amount of
novel knowledge for BERT. However, the direct N-
P comparison shows that IPT and NLI enrich BERT
(also RoBERTa) with different type of knowledge,
i.e., they change the representation spaces of its
layers in different ways. This suggests that the
transformers cannot acquire the missing knowledge
needed for NLI from IPT (i.e., from EN -EWT), and
explains why IPT is not effective for NLI.

IPT (comparison B-P) injects more new informa-
tion than ILMT (comparison B-M), and this is more
pronounced for BERT than for RoBERTa. IPT and
ILMT change RoBERTa’s parameters much less
than BERT’s (see B-M and B-P l-CKA scores for
L11/L12), which we interpret as additional evi-
dence, besides RoBERTa consistently outscoring
BERT, that RoBERTa encodes richer language rep-
resentations, due to its larger-scale and longer train-
ing. It also agrees with suggestions that BERT is
“undertrained” for its capacity (Liu et al., 2019b).

Very high B-P (and B-AP) l-CKA scores in lower
layers suggest that the explicit syntactic knowledge
from human-curated treebanks is redundant w.r.t.
the structural language knowledge transformers ob-
tain through LM pretraining. This is consistent
with concurrent observations (Chi et al., 2020; Kul-

12Most l-CKA scores in layers L1-L7 are very high (≥ 0.9)
and provide little insight. See the Supplementary Material.



3098

MBERT, DE MBERT, TR XLM-R, DE XLM-R, TR

Figure 4: Analysis of topological similarity (l-CKA) for variants of mBERT and XLM-R before and after IPT and
ILMT (B, M, P, AP) in zero-shot transfer experiments. Results shown for intermediate parsing on DE and TR data.

mizev et al., 2020) showing (some) correspondence
between structural knowledge of (m)BERT and UD
syntax. Finally, we observe highest l-CKA scores
in the P-AP column, suggesting that Standard and
Adapter IPT inject roughly the same syntactic infor-
mation, despite different fine-tuning mechanisms.

Figure 4 illustrates the results of the same anal-
ysis for language transfer experiments, for DE and
TR (scores for FR and ZH are in the Appendix). The
effects of ILMT and IPT (B-M, B-P/B-AP) for
DE and TR with mBERT and XLM-R resemble
those for EN with BERT and RoBERTa: ILMT
changes transformers less than IPT. The amount
of new syntactic knowledge IPT injects is larger
(l-CKA scores are lower) than for EN , especially
for XLM-R (vs. RoBERTa for EN ). We believe that
it reflects the relative under-representation of the
target language in the model’s multilingual pretrain-
ing corpus (e.g., for TR): this leads to poorer repre-
sentations of target language structure by mBERT
and XLM-R compared to BERT’s and RoBERTa’s
representation of EN structure. This gives us two
seemingly conflicting empirical findings: (a) IPT
appears to inject a fair amount of target-language
UD syntax, but (b) this translates to (mostly) in-
significant and inconsistent gains in language trans-
fer in LU tasks (especially so for XLM-R, cf. Table
3). A plausible reconciling hypothesis is that there
is a substantial mismatch between the type of struc-
tural information we obtain through supervised
(UD) parsing and the type of structural knowledge
beneficial for LU tasks. If true, this hypothesis
would render supervised parsing rather unavailing
for high-level language understanding, at least in
the context of LM-pretrained transformers, the cur-
rent state of the art in NLP. This warrants further
investigation, and we hope that our work will in-
spire further discussion and additional studies.

6 Conclusion

We thoroughly examined the effects of leveraging
formalized syntactic structures (UD) in state-of-the-
art neural language models (e.g., RoBERTa, XLM-
R) for downstream language understanding (LU)
tasks, both in monolingual and language transfer
settings. The key results, obtained through interme-
diate parsing training (IPT) based on a state-of-the-
art-level dependency parser, indicate that explicit
syntax, at least in our extensive experiments, pro-
vides negligible impact on LU tasks.

Besides offering extensive empirical evidence
of the mismatch between explicit syntax and im-
proved LU performance with state-of-the-art trans-
formers, this study sheds new light on some funda-
mental questions such as the one in the title. Similar
to word embeddings (Mikolov et al., 2013) remov-
ing sparse lexical features from the NLP horizon,
will transformers make supervised parsing obsolete
for LU applications or not? More dramatically, in
the words of Rens Bod (2007): “Is the end of su-
pervised parsing in sight” for semantic LU tasks?13
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A Reproducibility

We first provide details on where to obtain datasets
and code used in this work.

A.1 Datasets

Table 5 lists the sizes (in number of sentences) of
Universal Dependencies treebanks that we use for
our intermediate parsing training and evaluation
of our biaffine dependency parsers. The UD tree-
banks v.2.5, which we used in this work, are avail-
able at: http://hdl.handle.net/11234/
1-3105. In Table 6 we provide links to language
understanding datasets used in our study.

A.2 Code and Dependencies

We make our code available at: https:
//github.com/codogogo/parse_stilt.
Our code is built on top of the HuggingFace
Transformers framework: https://github.
com/huggingface/transformers (v. 2.7).
Table 4 details the LM-pretrained transformer
models from this framework which we exploited
in this work. Besides the Transformers library, our
code only relies on standard Python’s scientific
computing libraries (e.g., numpy).

B ZH Tokenization: XLM-R vs. GSD

A word-level token from the parse tree normally
corresponds to one or more transformer’s subword
tokens: we thus average subword vectors to obtain
word vectors for biaffine parsing. For XLM-R and
the ZH GSD treebank, however, a single XLM-R’s
subword token often corresponds to two treebank
tokens. E.g., the sequence “只是二選一做決擇”
with treebank tokenization [‘只’, ‘是’, ‘二’, ‘選’,
‘一’, ‘做’, ‘決擇’] is tokenized as [‘只是’, ‘二’,
‘選’, ‘一’, ‘做’, ‘決’, ‘擇’] by XLM-R. Two tree-
bank tokens, ‘只’ and ‘是’, are captured with a sin-
gle XLM-R “subword” token, ‘只是’. To ensure
that each XLM-R subword token corresponds to ex-
actly one treebank token, we inject spaces between
treebank tokens before XLM-R tokenization: we
then obtain the subword tokenization [‘只’, ‘是’,
‘二’, ‘選’, ‘一’, ‘做’, ‘決, ‘擇’]. However, this is
suboptimal for XLM-R: its representations of to-
kens ’只’ and ’是’ are probably less reliable than
that of the ’只是’ token. We believe this is why
mBERT (without tokenization mismatches for ZH )
outperforms XLM-R in ZH parsing.

C Complete Topology Analysis Results

Finally, we show the complete results (for all layers,
all transformers, and all languages covered in our
experiments) of our topological analysis of trans-
formers’ representations before and after different
fine-tuning steps. Figure 5 shows the analysis re-
sults for monolingual EN transformers, BERT and
RoBERTa. Figure 6 and Figure 7 show the results
for multilingual transformers, mBERT and XLM-R,
respectively, for all four target languages included
in our experiments: DE , FR , TR , and ZH .

http://hdl.handle.net/11234/1-3105
http://hdl.handle.net/11234/1-3105
https://github.com/codogogo/parse_stilt
https://github.com/codogogo/parse_stilt
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
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Name Lang Vocab Params URL

BERT EN 29K 110M https://huggingface.co/bert-base-cased
RoBERTa EN 50K 110M https://huggingface.co/roberta-base
mBERT Multiling. 119K 125M https://huggingface.co/bert-base-multilingual-cased
XLM-R Multiling. 250K 125M https://huggingface.co/xlm-roberta-base

Table 4: LM-pretrained transformer models used in our study.

Lang Treebank Train Dev Test
EN EWT 12,538 2,002 2,077
DE GSD 13,810 799 977
FR GSD 14,440 1,475 416
TR IMST 3,664 988 983
ZH GSD 3,996 500 500

Table 5: Universal Dependencies treebanks used in our study. We display sizes of train, development, and test
portions in terms of number of sentences.

Task Dataset URL

Natural Language Inference Multi-NLI https://cims.nyu.edu/˜sbowman/multinli
Natural Language Inference XNLI https://github.com/facebookresearch/XNLI
Paraphrase identification PAWS(-X) https://github.com/google-research-datasets/paws
Commonsense social reasoning SIQA https://maartensap.github.io/social-iqa
Commonsense causal reasoning COPA https://people.ict.usc.edu/˜gordon/copa.html
Commonsense causal reasoning XCOPA https://github.com/cambridgeltl/xcopa

Table 6: Links to downstream language understanding datasets used in our work.

BERT (EN) RoBERTa

Figure 5: Full results of the topological similarity analysis (l-CKA) for pairs of BERT and RoBERTa variants,
before and after different fine-tuning steps (B, M, P, AP, and N). Rows: transformer layers; Columns: pairs of
transformer variants in comparison.

MBERT, DE MBERT, FR MBERT, TR MBERT, ZH 

Figure 6: Full results of the topological similarity analysis (l-CKA) for variants of mBERT before and after IPT
and ILMT (B, M, P, AP) for the following target languages (left to right): DE , FR , TR , and ZH .

https://huggingface.co/bert-base-cased
https://huggingface.co/roberta-base
https://huggingface.co/bert-base-multilingual-cased
https://huggingface.co/xlm-roberta-base
https://cims.nyu.edu/~sbowman/multinli
https://github.com/facebookresearch/XNLI
https://github.com/google-research-datasets/paws
https://maartensap.github.io/social-iqa
https://people.ict.usc.edu/~gordon/copa.html
https://github.com/cambridgeltl/xcopa
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XLM-R, DE XLM-R, FR XLM-R, TR XLM-R, ZH 

Figure 7: Full results of the topological similarity analysis (l-CKA) for variants of XLM-R before and after IPT
and ILMT (B, M, P, AP) for the following target languages (left to right): DE , FR , TR , and ZH .


