
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations, pages 40–52
April 19 - 23, 2021. ©2021 Association for Computational Linguistics

40

AnswerQuest: A System for Generating Question-Answer Items from
Multi-Paragraph Documents

Melissa Roemmele† Deep Sidhpura3 Steve DeNeefe† Ling Tsou†

SDL Research, Los Angeles, CA, USA
†{mroemmele,sdeneefe,ltsou}@sdl.com

3deepsidhpura777@gmail.com

Abstract

One strategy for facilitating reading compre-
hension is to present information in a question-
and-answer format. We demo a system that in-
tegrates the tasks of question answering (QA)
and question generation (QG) in order to pro-
duce Q&A items that convey the content of
multi-paragraph documents. We report some
experiments for QA and QG that yield im-
provements on both tasks, and assess how they
interact to produce a list of Q&A items for a
text. The demo is accessible at qna.sdl.com.

1 Introduction

Automated reading comprehension is one of the
current frontiers in AI and NLP research, evi-
denced by the frequently changing state-of-the-art
among competing approaches on standard bench-
mark tasks (e.g. Wang et al., 2018). These systems
aim to reach the standard of human performance,
but they also have the potential to further enhance
human reading comprehension. For instance, many
demonstrations of reading comprehension involve
eliciting answers to questions about a text. Mean-
while, educational research and conventional writ-
ing advice indicate that structuring information in
a question-and-answer format can aid comprehen-
sion (Knight, 2010; Raphael, 1982). Accordingly,
systems that present content in this format by auto-
matically generating and answering relevant ques-
tions may help users better understand the content.

The two NLP tasks essential to this objective,
question answering (QA) and question generation
(QG), have received a lot of attention in recent
years. Recent work has started to explore the inter-
section of QA and QG for the purpose of enhanc-
ing performance on one or both tasks (Sachan and
Xing, 2018; Song et al., 2018; Tang et al., 2018;
Yuan et al., 2017). Among application interfaces

3Current affiliation: eBay Inc., San Jose, CA, USA

that demo these tasks, most have focused on either
one or the other (Kaisser, 2008; Kumar et al., 2019).
Krishna and Iyyer (2019) presented a system that
integrated these tasks to simulate a pedagogical ap-
proach to human reading comprehension. In our
work, we demo an end-to-end system that applies
QA and QG to multi-paragraph documents for the
purpose of user content understanding. The system
generates a catalog of Q&A items that convey a
document’s content. This paper first presents some
focused contributions to the individual tasks of QA
and QG. In particular, we examine the challenging
task of QA applied to multi-paragraph documents
and show the impact of incorporating a pre-trained
text encoding model into an existing approach. Ad-
ditionally, we report a new set of results for QA
that assesses generalizability between datasets that
are typically evaluated separately. For QG, we
demonstrate the benefit of data augmentation by
seeding a model with automatically generated ques-
tions, which produces more fluent and answerable
questions beyond a model that observes only the
original human-authored data. In combining the
two tasks into a single pipeline, we show that the
information given by the generated Q&A items is
relevant to the information humans target when
formulating questions about a text.

The demo is implemented as a web application
in which users can automatically generate Q&A
pairs for any text they provide. The web applica-
tion is available at qna.sdl.com, and our code is at
github.com/roemmele/answerquest.

2 Question Answering

2.1 Model Overview

Our demo implements extractive QA, where an-
swers to questions are extracted directly from some
given reference text. State-of-the-art systems have
utilized a classification objective to predict indices

https://qna.sdl.com/
https://qna.sdl.com/
https://github.com/roemmele/answerquest

41

of answer spans in the text. This approach has
achieved success when the reference text is lim-
ited to a single paragraph (Devlin et al., 2019).
However, QA for multi-paragraph documents has
proven to be more difficult. Our system addresses
this challenging document-level QA task by adapt-
ing an existing method to additionally leverage a
pre-trained text encoding model.

Existing work on document-level QA has pro-
posed a pipelined approach that first applies a re-
trieval module to select the most relevant para-
graphs from the document, and then a reader mod-
ule for extracting answers from the retrieved para-
graphs (Chen et al., 2017; Yang et al., 2019). Dur-
ing training, each of the retrieved paragraphs and
the corresponding questions are observed indepen-
dently. To predict answers, the model scores can-
didate answer spans within each of the paragraphs,
ultimately predicting the one with the highest score
across all paragraphs. One problem is that the can-
didate answer scores across paragraphs might not
be comparable, since each paragraph-question pair
is treated as an independent training instance. To
address this issue, Clark and Gardner (2018) sug-
gested a shared-normalization approach (which we
refer to here as BIDAF SHARED-NORM) where
paragraph-question pairs are still processed inde-
pendently, but answer probability scores are glob-
ally normalized across the document. In their work,
they selected the top-k most relevant paragraphs for
a given question using a TF-IDF heuristic. They
then encoded the question and these paragraphs
into a neural architecture consisting of GRU lay-
ers and a Bi-Directional Attention Flow (BiDAF)
mechanism (Seo et al., 2017). On top of this model
is a linear layer that predicts the start and end token
indices of the answer within a paragraph, using
an adapted softmax function with normalization
across all top-k paragraphs for the question.

Another document-level QA system, RE3QA
(Hu et al., 2019), incorporated the text encoding
model BERT (Devlin et al., 2019). BERT has
been successfully used for numerous reading com-
prehension tasks. In contrast to BIDAF SHARED-
NORM, RE3QA combined paragraph retrieval and
answer prediction into a single end-to-end training
process, applying BERT to both steps. Because it
obtained favorable results relative to the BIDAF
SHARED-NORM approach, we were curious to as-
sess the isolated impact of BERT specifically on
the answer prediction component of the pipeline.

Therefore we adapted Clark and Gardner’s shared-
normalization approach by replacing their GRU
BiDAF encoder with the BERT-BASE-UNCASED

encoder. Wang et al. (2019) used a similar approach
for open-domain QA, where answers are mined
from the entirety of Wikipedia. We instead evaluate
QA with reference to a single document, for which
the impact of BERT on the shared-normalization
approach has not yet been documented.

We refer to our model here as BERT SHARED-
NORM. To rank paragraph relevance to a ques-
tion, we rely on TF-IDF similarity. During training,
we retrieved the top k=4 paragraphs. The BERT
SHARED-NORM model consists of the BERT-
BASE-UNCASED pre-trained model, which en-
codes the paragraph and question in the same man-
ner as Devlin et al.’s paragraph-level QA model.
The rest of our model is the same as BIDAF
SHARED-NORM: the softmax output layer pre-
dicts the start and end answer tokens and the same
shared-normalization objective function is applied
during training. The model can predict that a ques-
tion is ‘unanswerable’ by observing an index of 0
for the end token. During inference, the highest-
scoring answer span across paragraphs is predicted
as the answer. See Appendix A.1 for more details.

2.2 Dataset

Our QA experiments utilized the SQUAD (Ra-
jpurkar et al., 2016) and NEWSQA (Trischler et al.,
2017) datasets. SQUAD is derived from Wikipedia
articles, while NEWSQA consists of CNN news
articles. Both datasets were developed through
crowdsourcing tasks where participants authored
questions and identified their answers, resulting in
text-question-answer items where each answer is
a span within the text. There are two versions of
SQUAD. SQUAD-1.1 contains 87,599 train and
10,570 test items. SQUAD-2.0 contains an addi-
tional 42,720 train and 1,303 test items (a total of
130,319 and 11,873, respectively), distinguished
from SQUAD-1.1 by including questions that do
not have answers in the text. NEWSQA contains
107,674 and 5,988 train and test items, respectively.
As with SQUAD-2.0, some of these questions are
unanswerable.1

1The SQUAD test items we use are actually the items from
their ‘dev’ (development) set: rajpurkar.github.io/SQuAD-
explorer. Their official test set is withheld. The other pub-
lished systems we compare against also report evaluations on
this dev set, so for simplicity we refer to it here as the test set.
Similarly, we use the dev NEWSQA items as our held-out test
set: github.com/Maluuba/newsqa.

https://rajpurkar.github.io/SQuAD-explorer/
https://rajpurkar.github.io/SQuAD-explorer/
https://github.com/Maluuba/newsqa

42

SQUAD questions pertain to a single paragraph.
Paragraphs are grouped by document and can be
concatenated for document-level QA. There are on
average 43 paragraphs per document. Paragraph
boundaries are not explicit in the NEWSQA texts,
so we treated each text as a multi-paragraph doc-
ument by splitting it into chunks of 300 tokens,
resulting in 2.55 average paragraphs per document.

2.3 Evaluation

2.3.1 Comparison with other Systems

We first evaluated our BERT SHARED-NORM

model on SQUAD-1.1 for comparison with the
BIDAF SHARED-NORM and RE3QA results re-
ported for this dataset. We used the official
SQUAD evaluation scripts provided by the web-
site. For direct comparison with BIDAF SHARED-
NORM, we replicated their setting of k=15 for para-
graph retrieval. Table 1 shows the results in terms
of the exact match (EM) and F1 accuracy of an-
swers. We improve upon the result for BIDAF
SHARED-NORM, demonstrating the beneficial im-
pact of incorporating BERT into this approach.
The BERT-based RE3QA still outperforms our
model, suggesting that its other components out-
side the BERT encoding for answer prediction ad-
ditionally contribute to its success.

Model EM F1
BIDAF SHARED-NORM 64.08 72.37
RE3QA 77.90 84.81
BERT SHARED-NORM 72.85 80.58

Table 1: QA results on SQuAD-1.1

2.3.2 Generalizability across Datasets

Our demo accepts any arbitrary text supplied by a
user, and we ultimately aim to produce informative
Q&A items for varying content domains. State-
of-the-art QA systems have matched human-level
performance on individual datasets like SQUAD,
but it is unclear how much this performance gener-
alizes across different datasets. As a narrow assess-
ment of this issue, we examined the generalizability
between SQUAD and NEWSQA by alternatively
training and evaluating BERT SHARED-NORM on
different combinations of these datasets.

Table 2 shows the results of this experi-
ment. We trained three different BERT SHARED-
NORM models on separate datasets: SQUAD-2.0,

NEWSQA, and SQUAD-2.0 + NEWSQA com-
bined (which we term MEGAQA). We then eval-
uated each of these models on the SQUAD-2.0
and NEWSQA test sets. Note that the experiments
in Section 2.3.1 were evaluated on SQUAD-1.1
for comparison with the other approaches. Here,
we only evaluate on SQUAD-2.0, which involves
additionally predicting when a question does not
have an answer span in the document. For these
evaluations, consistent with training, we retrieved
the top k=4 paragraphs from each document for
answer prediction.

Train Data
Test Data

SQUAD-2.0 NEWSQA
EM F1 EM F1

SQUAD-2.0 71.37 74.65 40.88 48.67
NEWSQA 45.85 49.88 52.68 61.26
MEGAQA 70.29 73.55 53.85 62.46

Table 2: Generalizability of BERT SHARED-NORM
across datasets

The results reveal a generalizability problem,
where the model trained on SQUAD-2.0 fails to
perform as well on NEWSQA and vice-versa, pre-
sumably due to their domain difference (Wikipedia
vs. Newswire). However, combining the datasets
with the MEGAQA model generalizes well to both.
Related to this, Talmor and Berant (2019) found
combining multiple datasets from different do-
mains to be advantageous for BERT-based reading
comprehension models. Based on these results,
the BERT SHARED-NORM MEGAQA model is
currently integrated into our demo.

3 Question Generation

3.1 Model Overview

We follow the same paradigm of much recent
work on QG, which has applied encoder-decoder
(i.e. sequence-to-sequence) models to text-question
pairs (Du et al., 2017; Duan et al., 2017; Scialom
et al., 2019; Song et al., 2018; Zhao et al., 2018).
Similar to Scialom et al., we utilize the Transformer
architecture for the encoder and decoder layers of
the model, and enhance the decoder with a copy
mechanism. The encoder input is a single sentence
and the decoder output is a question, where the
input sentence contains the answer to the question.
Following the standard procedure for sequence-to-
sequence model training, we used the cross-entropy

43

of the output question tokens as the loss function.
When generating questions, we use a beam size of
5. See Appendix A.2 for further details.

3.2 Dataset

We trained and evaluated the model on SQUAD
and NEWSQA concatenated, the same datasets
used for the QA experiments. Our QG model
aims to produce questions whose answers are
contained in their corresponding input texts, so
we only included SQUAD-1.1 items and an-
swerable NEWSQA items (this excluded 32,764
NEWSQA items from the train and test sets). For
each paragraph-question-answer item, we sentence-
segmented the paragraph, isolated the sentence
with the answer span, and inserted special tokens
into the sentence (<ANSWER> and</ANSWER>)
designating the start and end of the span. These
answer-annotated sentences were the model inputs
and the aligned questions were the target outputs.
We applied Byte-Pair-Encoding (BPE) tokeniza-
tion (Sennrich et al., 2016) to the inputs and targets
(see Appendix A.2). We used the same train-test
dataset splits as the QA experiments, allocating a
small subset of training items to a validation set for
hyperparameter tuning. Overall the train, valida-
tion, and test sets consisted of 160,876, 3,281, and
14,910 sentence-question pairs, respectively.

3.3 Data Augmentation Experiments

We examined three different versions of the model
described in 3.1, differentiated by their training in-
puts. The purpose of this experiment was to assess
using the output of a rule-based QG system as a
means of augmenting the training data. We specifi-
cally evaluated the three configurations below:

STANDARD: In this model, no data augmenta-
tion was applied. We trained the model directly on
the SQUAD/NEWSQA items described in 3.2.

RULEMIMIC: This model observed only the
automatically generated augmentation data, with-
out the original data. The source of the augmen-
tation data was the QG system by Heilman and
Smith (2010)2. This system applies linguistic rule-
based transformations (i.e. clause simplification,
verb decomposition, subject-auxiliary inversion,
and wh-movement) to convert a sentence into a
question answered by the sentence, then scores the
fluency of the question using a statistical model.
Du et al. (2017) found favorable results for a neu-

2Code at cs.cmu.edu/∼ark/mheilman/questions

ral sequence-to-sequence approach relative to this
rule-based system, but we were curious about its
use as a strategy for augmenting our training data.
We anticipated that a neural model could learn to
‘mimic’ the system’s generic transformation rules
by observing its inputs and outputs. Thus, we
applied the system to the raw paragraphs in the
SQUAD/NEWSQA training set, which resulted in
1,531,233 questions, each aligned with a sentence.
We then followed the same steps described in 3.2
to tokenize the sentence and mark the answer span.
The training set for this model consisted only of
these automatically generated questions (1,500,610
train items with 30,623 used for validation), with
no human-authored questions.

AUGMENTED: This model observed both the
original data seen by the STANDARD model and the
augmentation data seen by the RULEMIMIC model,
via a two-stage fine-tuning process. After training
the RULEMIMIC model, we used its parameters to
initialize another model, then fine-tuned this new
model on the STANDARD model dataset. The hy-
pothesis behind this approach is that it can simulate
linguistic rules underlying question formulation,
while also capturing the more abstractive features
of human questions that are harder to derive using
deterministic syntactic and lexical transformations.

3.4 Evaluation

Many QG systems are evaluated using BLEU or
similar metrics that reward overall token overlap
between generated and human-authored questions.
However, Nema and Khapra (2018) argue that these
metrics are ill-suited for QG. In particular, compar-
atively fluent questions with the same answer could
have few tokens in common. Moreover, certain to-
kens within a question have far more impact than
others on its perceived quality. They encourage al-
ternative metrics that focus instead on the ‘answer-
ability’ of questions. Guided by this, we conducted
both automated and human ratings-based evalua-
tions in order to assess the answerability of our QG
output. Because our demo performs extractive QA,
our evaluations focus on whether questions are an-
swerable relative to the input text from which the
question is generated.

3.4.1 Automated Evaluation
Some work has utilized automated QA as a scoring
metric for QG systems, based on the rationale that
a QA system’s ability to predict correct answers
to generated questions indicate how well the ques-

http://www.cs.cmu.edu/~ark/mheilman/questions

44

tions are formulated to elicit these answers (Duan
et al., 2017; Zhang and Bansal, 2019). Following
this idea, we generated questions for sentence in-
puts in the SQUAD/NEWSQA test set. As with
the training inputs, these inputs were derived by
annotating the answer span of the corresponding
human-authored question for the paragraph, and
isolating the sentence containing that span. We
then provided each generated question and corre-
sponding paragraph to the BERT SHARED-NORM

MEGAQA model described in Section 2. The re-
sults for each QG model in terms of answer F1
accuracy are shown in Table 3, compared along-
side the result for human-authored questions.

As shown, the questions generated by the
RULEMIMIC model are much better at elicit-
ing the designated answers than the STANDARD

model questions, indicating that observing the
rule-generated questions alone is impactful. Ad-
ditionally, the AUGMENTED model generates
more answerable questions than the RULEMIMIC

model, showing the usefulness of combining rule-
generated questions with human-authored ques-
tions as a data augmentation strategy.

Model F1
STANDARD 0.354
RULEMIMIC 0.503
AUGMENTED 0.551
HUMAN 0.718

Table 3: Accuracy of QA system on QG output

3.4.2 Human Evaluation

Model Rating
Answer
Present

STANDARD 2.813 0.225
RULEMIMIC 2.934 0.381
AUGMENTED 3.140 0.399
HUMAN 3.776 0.793

Table 4: Human assessment of QG output

We also elicited human judgments for a subset
of the same generated questions. Participants were
recruited from an internal team of linguists as well
as Amazon Mechanical Turk (AMT). We selected
questions corresponding to 175 inputs. Table 5
in the appendix shows examples of these items.
Participants read the input sentence in its paragraph

context, then observed all four questions associated
with the input (one generated by each of the three
models plus the corresponding human-authored
question). The presentation order of the questions
for a given paragraph was randomized. Participants
rated the fluency and answerability of questions on
a scale of 1-4 based on the following statements:

1: Question is completely ungrammatical. It’s
impossible to know what this question is asking.

2: Question is mostly grammatical, but it doesn’t
fully make sense. It’s not clear what this question
is asking.

3: Question is strangely worded, vague, or con-
tains errors. However, I can make a guess about
what the question is asking.

4: Question is clearly worded. I understand
what this question is asking.

If the participant indicated that the question was
answerable by rating it a 3 or 4, they were then
asked if the answer to the question was contained
in the paragraph. If they indicated ‘yes’, they were
asked to verify this by selecting all text spans in
the paragraph that qualified as correct answers to
the question. Based on this, we scored a question
as having an ‘answer present’ if it was marked
as being answerable and if at least one of the
participant-selected answer spans was the same
one the question was conditioned upon when gen-
erated (signifying that the question actually elicited
the answer the model observed in the input). 41
participants assessed a total of 1,560 paragraph-
question items, with each item being rated by at
least two participants (see Appendix A.3 for inter-
rater reliability statistics). We averaged the scores
for the same questions across participants. Ta-
ble 4 shows the mean ratings and answer pres-
ence for each set of generated questions includ-
ing the HUMAN questions. In terms of ratings,
the results follow the same pattern as the auto-
mated evaluation: the RULEMIMIC questions are
rated higher than the STANDARD questions, and
the AUGMENTED questions are rated higher than
the RULEMIMIC questions. All sets of generated
questions are rated much lower than the HUMAN

questions. The models are ordered the same in
terms of answer presence, though the difference
between the RULEMIMIC and AUGMENTED mod-
els is slight. Overall these results again show the
benefit of augmenting the training data with auto-
matically generated questions. Accordingly, our
demo currently runs the AUGMENTED model.

45

4 Generating Q&A Pairs

We combined our best-performing QG and QA
models into a system that takes a text as input and
returns a list of Q&A pairs. Our web demo illus-
trates this system (see Appendix A.4 for details).

For our evaluations in Section 3, the QG mod-
els observed annotated answer spans upon which
the generated questions were conditioned. How-
ever, these annotations are obviously not available
by default for any arbitrary text. Consequently,
after splitting the text into sentences, we automati-
cally identify syntactic chunks and named entities
as candidate answers to questions (see Appendix
A.5 for details). For each candidate answer in a
sentence, we produce an input consisting of that
sentence annotated with that span. We also include
sentences with no answer annotations as inputs,
since they are not formally required by the model.
We provide all inputs for a given sentence to the
AUGMENTED QG model to get a list of questions
that can be passed to the QA component. Note that
even though some of the questions are already as-
sociated with annotated answers, we still apply QA
as an additional means of verifying their answer-
ability, and defer to the QA-predicted answer. To
prepare the QA inputs, for each sentence-question
item, we extend the sentence to include the sen-
tences immediately preceding and following it, so
each question becomes aligned with a 3-sentence
passage. This enables the QA system to possi-
bly retrieve additional context beyond the sentence
that it may deem as part of the answer span. We
provide these passage-question pairs to the BERT
SHARED-NORM MEGAQA model, then retain out-
put items for which answers are found. We reduce
the redundancy of items by filtering those with du-
plicate questions or answers, as well as items where
the question and answer concatenated share 60%
or more of the same tokens. In these cases, we only
retain the item with the highest QG probability.

4.1 Human Evaluation

Figure 1: Human accuracy on target questions before
and after observing generated Q&A pairs

We used our system to generate Q&A pairs for
ten texts from the SQUAD test set. Appendix

Table 6 shows an example of a generated Q&A
list for one text. We conducted an evaluation of
the informativeness of these pairs with 38 AMT
participants. In the first stage of the evaluation,
participants were shown only the title of one text
(e.g. “Tesla”) and the human-authored SQUAD
questions (no answers) corresponding to the text.
Without referencing any material, they were asked
to answer these target questions or respond with
“X” for questions they couldn’t answer. Because no
generated Q&A pairs were shown to participants
during this stage, the accuracy of their answers indi-
cated their prior mental knowledge of the informa-
tion in the text. In the second stage, the generated
Q&A pairs for the same text were revealed to them
and they answered the same target questions again.
Participants never observed the original text itself.
The logic of this design is that the more questions
people could correctly answer in the second stage
relative to the first, the more informative the gener-
ated Q&A list could be deemed. The ratio of gener-
ated Q&A pairs to target questions per text varied
from 1 to 2.4 (e.g. ratio = 2 for a text with 30 gener-
ated pairs and 15 target questions). Figure 1 shows
the percentage of target questions participants an-
swered correctly before and after observing the
Q&A list, grouped by ratio. The overall difference
in these conditions (14.74% vs. 50.26%) shows
that the generated items were partially informative
for answering the target questions, signifying that
the system does highlight some of the same content
people ask questions about. However, accuracy
did not markedly improve as participants saw more
items (50.18% for the lower ratio vs. 50.38% for
the higher ratio), suggesting that the information
coverage of the items could be improved. See Ap-
pendix A.6 for more details about this evaluation.

5 Conclusion and Future Work

In this paper, we present a system that automati-
cally produces Q&A pairs for multi-paragraph doc-
uments. We report some novel experiments for
QA and QG that motivate techniques for improv-
ing these tasks. We show that combining these
components can produce informative Q&A items.
Our future work will focus on more advanced mod-
eling of information structure in documents. For
example, the ideal design of Q&A items varies by
domain (e.g. news stories vs. financial reports vs.
opinion editorials), and items should target the con-
tent readers find most substantial in each domain.

46

References
Danqi Chen, Adam Fisch, Jason Weston, and Antoine

Bordes. 2017. Reading Wikipedia to answer open-
domain questions. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1870–
1879, Vancouver, Canada. Association for Computa-
tional Linguistics.

Christopher Clark and Matt Gardner. 2018. Simple
and effective multi-paragraph reading comprehen-
sion. In Proceedings of the 56th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 845–855, Melbourne,
Australia. Association for Computational Linguis-
tics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Xinya Du, Junru Shao, and Claire Cardie. 2017. Learn-
ing to ask: Neural question generation for reading
comprehension. In Proceedings of the 55th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1342–1352,
Vancouver, Canada. Association for Computational
Linguistics.

Nan Duan, Duyu Tang, Peng Chen, and Ming Zhou.
2017. Question generation for question answering.
In Proceedings of the 2017 Conference on Empiri-
cal Methods in Natural Language Processing, pages
866–874, Copenhagen, Denmark. Association for
Computational Linguistics.

Michael Heilman and Noah A. Smith. 2010. Good
question! statistical ranking for question genera-
tion. In Human Language Technologies: The 2010
Annual Conference of the North American Chap-
ter of the Association for Computational Linguistics,
pages 609–617, Los Angeles, California. Associa-
tion for Computational Linguistics.

Minghao Hu, Yuxing Peng, Zhen Huang, and Dong-
sheng Li. 2019. Retrieve, read, rerank: Towards
end-to-end multi-document reading comprehension.
In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pages
2285–2295, Florence, Italy. Association for Compu-
tational Linguistics.

Michael Kaisser. 2008. The QuALiM question answer-
ing demo: Supplementing answers with paragraphs
drawn from Wikipedia. In Proceedings of the ACL-
08: HLT Demo Session, pages 32–35, Columbus,
Ohio. Association for Computational Linguistics.

Guillaume Klein, Yoon Kim, Yuntian Deng, Jean Senel-
lart, and Alexander M. Rush. 2017. OpenNMT:
Open-source toolkit for neural machine translation.
In Proc. ACL.

Chris Knight. 2010. Question & answer article tem-
plate.

Kalpesh Krishna and Mohit Iyyer. 2019. Generat-
ing question-answer hierarchies. In Association for
Computational Linguistics.

Vishwajeet Kumar, Sivaanandh Muneeswaran, Ganesh
Ramakrishnan, and Yuan-Fang Li. 2019. Paraqg: A
system for generating questions and answers from
paragraphs. In Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Process-
ing and the 9th International Joint Conference on
Natural Language Processing (EMNLP-IJCNLP):
System Demonstrations, pages 175–180.

Preksha Nema and Mitesh M Khapra. 2018. Towards a
better metric for evaluating question generation sys-
tems. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 3950–3959.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383–2392, Austin,
Texas. Association for Computational Linguistics.

Taffy E Raphael. 1982. Improving question-answering
performance through instruction. Reading educa-
tion report; no. 32.

Stephen Robertson, Hugo Zaragoza, et al. 2009. The
probabilistic relevance framework: Bm25 and be-
yond. Foundations and Trends R© in Information Re-
trieval, 3(4):333–389.

Mrinmaya Sachan and Eric Xing. 2018. Self-training
for jointly learning to ask and answer questions. In
Proceedings of the 2018 Conference of the North
American Chapter of the Association for Compu-
tational Linguistics: Human Language Technolo-
gies, Volume 1 (Long Papers), pages 629–640, New
Orleans, Louisiana. Association for Computational
Linguistics.

Thomas Scialom, Benjamin Piwowarski, and Jacopo
Staiano. 2019. Self-attention architectures for
answer-agnostic neural question generation. In Pro-
ceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 6027–
6032.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words
with subword units. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1715–
1725.

https://doi.org/10.18653/v1/P17-1171
https://doi.org/10.18653/v1/P17-1171
https://doi.org/10.18653/v1/P18-1078
https://doi.org/10.18653/v1/P18-1078
https://doi.org/10.18653/v1/P18-1078
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/P17-1123
https://doi.org/10.18653/v1/P17-1123
https://doi.org/10.18653/v1/P17-1123
https://doi.org/10.18653/v1/D17-1090
https://www.aclweb.org/anthology/N10-1086
https://www.aclweb.org/anthology/N10-1086
https://www.aclweb.org/anthology/N10-1086
https://doi.org/10.18653/v1/P19-1221
https://doi.org/10.18653/v1/P19-1221
https://www.aclweb.org/anthology/P08-4009
https://www.aclweb.org/anthology/P08-4009
https://www.aclweb.org/anthology/P08-4009
https://doi.org/10.18653/v1/P17-4012
https://doi.org/10.18653/v1/P17-4012
https://blog.ezinearticles.com/2010/05/question-answer-article-template.html
https://blog.ezinearticles.com/2010/05/question-answer-article-template.html
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/N18-1058
https://doi.org/10.18653/v1/N18-1058

47

Min Joon Seo, Aniruddha Kembhavi, Ali Farhadi, and
Hannaneh Hajishirzi. 2017. Bidirectional attention
flow for machine comprehension. In 5th Inter-
national Conference on Learning Representations,
ICLR 2017, Toulon, France, April 24-26, 2017, Con-
ference Track Proceedings.

Linfeng Song, Zhiguo Wang, Wael Hamza, Yue Zhang,
and Daniel Gildea. 2018. Leveraging context in-
formation for natural question generation. In Pro-
ceedings of the 2018 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, Vol-
ume 2 (Short Papers), pages 569–574, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

Alon Talmor and Jonathan Berant. 2019. MultiQA: An
empirical investigation of generalization and trans-
fer in reading comprehension. In Proceedings of the
57th Annual Meeting of the Association for Com-
putational Linguistics, pages 4911–4921, Florence,
Italy. Association for Computational Linguistics.

Duyu Tang, Nan Duan, Zhao Yan, Zhirui Zhang, Yibo
Sun, Shujie Liu, Yuanhua Lv, and Ming Zhou. 2018.
Learning to collaborate for question answering and
asking. In Proceedings of the 2018 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers), pages 1564–
1574, New Orleans, Louisiana. Association for Com-
putational Linguistics.

Adam Trischler, Tong Wang, Xingdi Yuan, Justin Har-
ris, Alessandro Sordoni, Philip Bachman, and Ka-
heer Suleman. 2017. NewsQA: A machine compre-
hension dataset. In Proceedings of the 2nd Work-
shop on Representation Learning for NLP, pages
191–200, Vancouver, Canada. Association for Com-
putational Linguistics.

Alex Wang, Amanpreet Singh, Julian Michael, Fe-
lix Hill, Omer Levy, and Samuel Bowman. 2018.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In Pro-
ceedings of the 2018 EMNLP Workshop Black-
boxNLP: Analyzing and Interpreting Neural Net-
works for NLP, pages 353–355, Brussels, Belgium.
Association for Computational Linguistics.

Zhiguo Wang, Patrick Ng, Xiaofei Ma, Ramesh Nal-
lapati, and Bing Xiang. 2019. Multi-passage
bert: A globally normalized bert model for open-
domain question answering. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 5881–5885.

Wei Yang, Yuqing Xie, Aileen Lin, Xingyu Li, Luchen
Tan, Kun Xiong, Ming Li, and Jimmy Lin. 2019.
End-to-end open-domain question answering with

BERTserini. In Proceedings of the 2019 Confer-
ence of the North American Chapter of the Asso-
ciation for Computational Linguistics (Demonstra-
tions), pages 72–77, Minneapolis, Minnesota. Asso-
ciation for Computational Linguistics.

Xingdi Yuan, Tong Wang, Caglar Gulcehre, Alessan-
dro Sordoni, Philip Bachman, Saizheng Zhang,
Sandeep Subramanian, and Adam Trischler. 2017.
Machine comprehension by text-to-text neural ques-
tion generation. In Proceedings of the 2nd Workshop
on Representation Learning for NLP, pages 15–25,
Vancouver, Canada. Association for Computational
Linguistics.

Shiyue Zhang and Mohit Bansal. 2019. Address-
ing semantic drift in question generation for semi-
supervised question answering. In Proceedings of
the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 2495–2509.

Yao Zhao, Xiaochuan Ni, Yuanyuan Ding, and Qifa
Ke. 2018. Paragraph-level neural question gener-
ation with maxout pointer and gated self-attention
networks. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Process-
ing, pages 3901–3910, Brussels, Belgium. Associa-
tion for Computational Linguistics.

https://openreview.net/forum?id=HJ0UKP9ge
https://openreview.net/forum?id=HJ0UKP9ge
https://doi.org/10.18653/v1/N18-2090
https://doi.org/10.18653/v1/N18-2090
https://doi.org/10.18653/v1/P19-1485
https://doi.org/10.18653/v1/P19-1485
https://doi.org/10.18653/v1/P19-1485
https://doi.org/10.18653/v1/N18-1141
https://doi.org/10.18653/v1/N18-1141
https://doi.org/10.18653/v1/W17-2623
https://doi.org/10.18653/v1/W17-2623
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/N19-4013
https://doi.org/10.18653/v1/N19-4013
https://doi.org/10.18653/v1/W17-2603
https://doi.org/10.18653/v1/W17-2603
https://doi.org/10.18653/v1/D18-1424
https://doi.org/10.18653/v1/D18-1424
https://doi.org/10.18653/v1/D18-1424

48

A Appendices

A.1 QA Model Details

The TF-IDF method for ranking paragraph rele-
vance to the question specifically uses the BM-25
ranker3 (Robertson et al., 2009). We implemented
the QA model in PyTorch using the HuggingFace
Transformers library4. As described in Section 2.1,
we use the pre-trained BERT-BASE-UNCASED

model, which has 12 layers, 768 nodes per layer,
12 heads per layer, and 110M parameters overall.
The maximum sequence length for BERT-BASE-
UNCASED is 384 tokens (including both paragraph
and question tokens combined), so we truncated
paragraphs when this total was exceeded. The out-
put layer consists of a 384 x 2 matrix whose di-
mensions correspond to token indices for the start
and end of the answer span. We trained the model
in parallel across 4 Nvidia Tesla V100 GPUs with
a paragraph-question batch size of 48 with gradi-
ent accumulation at step 1 (12 paragraph-question
pairs per GPU, which was the maximum size a sin-
gle V100 GPU could accommodate). Following
Devlin et al.’s BERT-based fine-tuning procedure
for paragraph-level QA, the model was trained for
3 epochs and a learning rate of 3e-5 using Adam
optimization.

A.2 QG Model Details

We used OpenNMT-py5 (Klein et al., 2017) for im-
plementation of the QG model. For BPE tokeniza-
tion, we use the OpenAI GPT-2 tokenizer imple-
mented by the HuggingFace transformers library
cited above. The vocabulary included all tokens
observed in the training data. The Transformer en-
coder and decoder each consist of 4 layers with
2048 nodes and 8 heads each. We include position
encodings on the token embeddings and a copy
attention layer in the decoder. We used a training
batch size of 4096 tokens, normalizing gradients
over tokens and computing gradients based on 4
batches. We trained for a maximum of 100,000
steps and validated every 200 steps, with early
stopping after one round of no improvement in
validation loss. We applied the other hyperparame-
ter settings recommended for training transformer
sequence-to-sequence models on the OpenNMT-py

3pypi.org/project/rank-bm25
4huggingface.co/transformers
5github.com/OpenNMT/OpenNMT-py

website6. This included Adam optimization with
β1 = 0.998, gradient re-normalization for norms ex-
ceeding 0, Glorot uniform parameter initialization,
0.1 dropout probability, noam decay, 8000 warmup
steps for decay, learning rate = 2, and label smooth-
ing ε = 0.

A.3 QG Evaluation Details
The sentence inputs for the evaluated questions
were randomly sampled after filtering for those
inside paragraphs longer than 500 characters, to
ensure participants could efficiently complete the
evaluation. AMT workers were paid $7 for their
participation in this evaluation, with the expected
time commitment of about 35 minutes.

The Cohen’s kappa inter-rater agreement on the
fluency/answerability ratings of 1-4 was 0.422, in-
dicating moderate agreement. The kappa for an-
swer presence in the paragraph was 0.465, also
indicating moderate agreement.

A.4 System Implementation Details
The system UI is implemented using React JS with
Bootstrap CSS for styling. Figure 2 shows a screen-
shot of the interface. The QA and QG functionali-
ties run as web services implemented using Flask.

As an additional feature of the UI, users have
the option to obtain answers to their own custom
questions. They supply the question via a text box.
The QA system receives the entire document text
as input along with the question. We enforce para-
graph boundaries by splitting the document into
non-overlapping paragraphs of 300 tokens, and
then apply the BERT SHARED-NORM MEGAQA
model with top k=4 for paragraph retrieval7. If the
model predicts the answer is not in the text, the
user sees a message indicating this.

A.5 Candidate Answers for QG
We use the spaCy8 library to extract all named
entities and noun chunks. Additionally, we ex-
tract all dependency parse subtrees whose head is
labeled as one of the following: clausal comple-
ment (xcomp), attribute (attr), prepositional modi-
fied (prep), object (obj), indirect object (iobj), flat
multiword expression (flat), fixed multiword ex-
pression (fixed), clausal subject (csubj), clausal

6opennmt.net/OpenNMT-py/FAQ.html#how-do-i-use-
the-transformer-model

7Section 2.3.1 reported the result for k=15, but k=4 per-
forms only slightly lower (71.21 EM and 78.89 F1 vs. 72.85
and 80.58, respectively) with significantly higher efficiency.

8spacy.io

https://pypi.org/project/rank-bm25/
https://huggingface.co/transformers/index.html
https://github.com/OpenNMT/OpenNMT-py
https://opennmt.net/OpenNMT-py/FAQ.html#how-do-i-use-the-transformer-model
https://opennmt.net/OpenNMT-py/FAQ.html#how-do-i-use-the-transformer-model
https://spacy.io/

49

complement (ccomp), adjectival clause (acl), and
conjunct (conj). All extracted chunks are annotated
as answer spans.

A.6 Q&A List Evaluation
We truncated each of the ten SQUAD documents
to its first three paragraphs. There were on average
334.5 tokens per truncated document. For each
document we selected all SQUAD questions corre-
sponding to the first three paragraphs as the list of
target questions participants were prompted to an-
swer. There were on average 16.2 target questions
per truncated document. We provided the truncated
document to the system to generate a list of Q&A
items. As described in Section 4.1, the ratio of
generated Q&A items per target questions varied
from 1 to 2.4 with an average of 1.66, resulting
in an overall average of 26.3 generated items per
document.

Each of the 38 AMT participants answered the
target questions for a single document, so approx-
imately four participants answered each unique
list of target questions. They were paid $8 for
their participation, with the expected time com-
mitment of around 30 minutes. The instructions
emphasized that they should not use any external
information to answer the questions other than the
reference Q&A list (which was only used when
participants answered the questions for the second
time). They were told their participation would
not be judged based on the number of questions
correctly answered. Participants were not informed
that the reference Q&A items were automatically
generated.

Because all answers were provided as free text
and there could be some token variation in correct
answers for the same question (e.g. “Parliament of
the United Kingdom” vs. “UK Parliament”), we
used a fuzzy metric for judging answers as correct.
We counted a participant answer as correct if it had
at least one token in common with the answer given
in the SQUAD dataset. This is a permissive thresh-
old that can yield false positives (e.g. “300 years”
vs. “500 years”), but because it was consistently
applied across both stages of the evaluation (i.e. be-
fore and after observing the Q&A list), we deemed
it sufficient for quantifying the relative impact of
the generated items in the ‘after’ condition.

50

Figure 2: Screenshot of UI with generated Q&A pairs for the displayed document

51

Input Sentence Model Output Question
By far the most famous work of
Norman art is the <ANSWER>
Bayeux Tapestry </ANSWER>,
which is not a tapestry but a work
of embroidery.

STANDARD What is the name of the work of Norman art?
RULEMIMIC What is not a tapestry but a work of embroi-

dery?
AUGMENTED What is the most famous work of Norman art?
HUMAN What is Norman art’s most well known piece?

Later in life, Tesla made claims
concerning a ”teleforce” weapon
after studying the <ANSWER>
Van de Graaff generator
</ANSWER>.

STANDARD What was the name of the weapon that studying
the Teslaforce?

RULEMIMIC What did Tesla make claims concerning a ”tele-
force” weapon after studying?

AUGMENTED What did Tesla study?
HUMAN What was he studying that gave him the tele-

force weapon idea?
The Super Bowl 50 Host
Committee has vowed to be “the
most giving Super Bowl ever”,
and will dedicate <ANSWER> 25
percent </ANSWER> of all
money it raises for philanthropic
causes in the Bay Area.

STANDARD How much of the Super Bowl raises?
RULEMIMIC What will the Super Bowl 50 Host Committee

dedicate it raises for philanthropic causes in the
Bay Area?

AUGMENTED What is the Super Bowl 50 Host Committee?
HUMAN How many will the host committee dedicate to

local charities?
In 1899, John Jacob Astor IV
invested $100,000 for Tesla to
further <ANSWER> develop and
produce a new lighting system
</ANSWER>.

STANDARD What did Jacob Astor IV do?
RULEMIMIC What did John Jacob Astor IV invest $100,000

for in 1899?
AUGMENTED Why did Jacob Astor IV invest $100,000?
HUMAN What did Astor expect the money be used for?

Most influential among these was
the definition of Turing machines
by Alan Turing in <ANSWER>
1936 </ANSWER>, which turned
out to be a very robust and flexible
simplification of a computer.

STANDARD When was the definition of the definition of
Turing?

RULEMIMIC When turned out to be a very robust and flexible
simplification of a computer?

AUGMENTED When did Alan Turing write machines?
HUMAN In what year was the Alan Turing’s definitional

model of a computing device received?
In addition to the <ANSWER>
Vince Lombardi </ANSWER>
Trophy that all Super Bowl
champions receive, the winner of
Super Bowl 50 will also receive a
large, 18-karat gold-plated “50”.

STANDARD What is the name of the Super Bowl?
RULEMIMIC Who will the winner of Super Bowl 50 also re-

ceive a large in addition to the Vince Lombardi
Trophy that all Super Bowl champions receive?

AUGMENTED Who wrote the Super Bowl 50?
HUMAN Who is the trophy given to the Super Bowl

champion named for?
In 1874, Tesla evaded being
drafted into the Austro-Hungarian
Army in Smiljan by running away
to <ANSWER> Tomingaj
</ANSWER>, near Gračac.

STANDARD What was the name of Tesla’s Army in 1874?
RULEMIMIC Who was near Gračac?
AUGMENTED Where did Tesla travel to?
HUMAN Where did Tesla run to avoid the army draft?

Table 5: Examples of questions produced by each evaluated QG model for the given input sentences

52

Q: What is separate from the combustion prod-
ucts?
A: working fluid

Q: Where was the water supply for driving wa-
terels?
A: factories

Q: What is solar power?
A: Non-combustion heat sources

Q: What did the mine provide?
A: water supply

Q: What is the ideal thermodynamic cycle used
for?
A: to analyze this process

Q: Where was it employed?
A: draining mine workings

Q: What is heated and transforms into steam?
A: water

Q: Where was the storage reservoir?
A: above the wheel

Q: Why is mechanical work done?
A: When expanded through pistons or turbines

Q: What was passed over the wheel?
A: Water

Q: What is then condensed and pumped back
into the boiler?
A: reduced-pressure steam

Q: When was the first railway journey?
A: 21 February 1804

Q: Who invented the first commercially true
engine?
A: Thomas Newcomen

Q: Where was the train?
A: along the tramway from the Pen-y-darren
ironworks, near Merthyr Tydfil to Abercynon in
south Wales

Q: What could generate power?
A: atmospheric engine

Q: What was built by Richard Trevithick?
A: The first full-scale working railway steam
locomotive

Q: Who proposed the piston pump?
A: Papin

Q: The design incorporated a number of what?
A: important innovations that included using
high-pressure steam which reduced the weight
of the engine and increased its efficiency

Q: What happened to Newcomen’s engine?
A: relatively inefficient

Q: What did England become the leading centre
for?
A: experimentation and development of steam
locomotives

Q: What was the engine used for?
A: pumping water

Q: Where was the railways colliery?
A: north-east England

Q: What was the vacuum worked by?
A: condensing steam under a piston within a
cylinder

Q: Who visited the Newcastle area in 1804?
A: Trevithick

Q: What was the reason for draining waterel-
swheels?
A: providing a reusable water supply

Table 6: Generated Q&A list for the first three paragraphs of the SQUAD document titled “Steam engine”

