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Abstract

Existing parse methods use varying ap-
proaches to identify explicit discourse con-
nectives, but their performance has not been
consistently evaluated in comparison to each
other, nor have they been evaluated consis-
tently on text other than newspaper articles.
We here assess the performance on explicit
connective identification of four parse meth-
ods (PDTB e2e, Lin et al., 2014; the winner
of CONLL2015, Wang and Lan, 2015; Dis-
Sent, Nie et al., 2019; and Discopy, Knaebel
and Stede, 2020), along with a simple heuris-
tic. We also examine how well these systems
generalize to different datasets, namely news-
paper text (PDTB), scientific text (BioDRB),
prepared spoken text (TED-MDB) and spon-
taneous spoken text (Disco-SPICE). The re-
sults show that Discopy outperforms the other
parse methods in all datasets, with the excep-
tion of DiscoSPICE. Moreover, performance
drops significantly from the PDTB to all other
datasets. We provide a more fine-grained anal-
ysis of domain differences and connectives
that prove difficult to parse, in order to high-
light the areas where gains can be made.

1 Introduction

Understanding the discourse relations that hold be-
tween segments in natural language text is crucial
to many NLP applications, such as text generation,
dialogue understanding, and question-answering
systems. Shallow discourse parsers are used to
uncover such relations by identifying connectives,
extracting their arguments, and predicting the sense
of the discourse relation. The current contribution
focuses on the first step in the pipeline: finding
explicit connectives in natural language. This step
is not only interesting from the perspective of dis-
course relation classification, it can also be valuable
for downstream applications, as accurate connec-
tive identification is crucial to mitigate the effect of
cascaded errors downstream (Lin et al., 2014).

Connective identification is not a trivial task, as
some connectives are ambiguous and may not con-
sistently function as discourse connectives. A sim-
ple dictionary lookup would therefore not be able
to distinguish between the discourse connective-
usage of yet in Example (1), compared to the non-
connective usage in (2) and (3).

(1) Julie wants to buy a house. Yet she has not
found the right one.

(2) Julie wants to buy a house. She has yet to find
the right one.

(3) Julie wants to buy a luxurious, yet affordable
house.

In (1), yet expresses an adversative relation
(equivalent to nevertheless). In (2), it functions as
an adverb expressing a temporal meaning (i.e. up
until this time). Finally, in (3), yet does not func-
tion in a relation with two complete discourse ar-
guments, and would therefore not be annotated as
a connective. An accurate parser would need to
be able to distinguish between these fine-grained
differences in the usage of connective candidates.

Further, connective usage diverges between do-
mains. For example, but and so are often used as
discourse structuring markers in spoken language,
rather than discourse connectives. Existing parsers,
however, have mainly been evaluated on newspaper
text, since the largest discourse-annotated corpus
available comes from this domain (PDTB, Prasad
et al., 2008). Performance of existing discourse
connective identification parsers on domains other
than the written one is currently not well known.

Finally, we note that there is a lack of informa-
tion on which connectives remain difficult to iden-
tify, even in state-of-the-art parsers. This is due to
the tendency of studies reporting only the general
accuracy, without providing detail on the accuracy
on specific connectives. However, such informa-
tion can provide the field with more information on
what to focus on.
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In sum, performance of different parsing meth-
ods have not been consistently evaluated in com-
parison to each other, nor have they been evaluated
consistently on text other than newspaper articles.
In addition, previous work tends to report only over-
all accuracy, whereas a more fine-grained analysis
of connectives might prove to be valuable for future
efforts. The current contribution fills these gaps in
the literature.

Specifically, we evaluate the performance on ex-
plicit connective identification of four parse meth-
ods (PDTB e2e, Lin et al., 2014; the winner of
CONLL2015, Wang and Lan, 2015; DisSent, Nie
et al., 2019; and Discopy, Knaebel and Stede,
2020), along with a simple heuristic as a baseline.
The heuristic will identify all connectives in the
data, without being able to distinguish discourse
versus non-discourse usages of connectives. We
include this “parse method” to provide insight into
how discourse usage of connectives affects the per-
formance of such a heuristic.

We also evaluate how well these systems general-
ize to different datasets from new domains, namely
scientific text (BioDRB, Prasad et al., 2011), pre-
pared spoken text (TED-MDB, Zeyrek et al., 2019)
and spontaneous spoken text (DiscoSPICE, Re-
hbein et al., 2016).

2 Related work

Connective identification In recent years, shal-
low discourse parsing has received notable atten-
tion in the field. Much of this work has focused on
the automatic labeling of implicit connectives, as
performance there is significantly lacking (the cur-
rent state-of-the-art achieves an F1 around 64% on
a four-way classification, e.g. Ji et al., 2016; Lan
et al., 2017; Shi and Demberg, 2019). Explicit rela-
tion identification has received less attention since
prior work has reported high accuracy on explicit
connectives in news articles. An open question is
how these parsers perform on out-of-domain data.

Pitler and Nenkova (2009)’s work on explicit
connective identification formed the basis for much
subsequent research efforts in this direction. They
show that syntactic features provide highly useful
information for predicting whether a connective
candidate functions as a discourse connective (an
accuracy of 94.2% F1 on PDTB2 with a 10-fold
cross validation on Sec. 02–22). Lin et al. (2014)
built on this work to develop the PDTB end-to-end
(PDTB e2e) discourse parser. Their parser per-

forms at 95.4% F1 on the PDTB with a 10-fold
cross validation on Sec. 02–22. In the context of
the CONLL2015 shared task, Wang and Lan (2015)
built on both of these approaches and presented the
top-ranked system, which achieved an F1 score of
94.2% on connective identification in the PDTB2
section 23 test set and 91.9% in the CONLL 2015
blind test set. All three models rely heavily on vari-
ous combinations of syntactic and lexical features
extracted from texts.

More recent models have taken different ap-
proaches. DisSent uses dependency parsing and
sentence embeddings to annotate discourse rela-
tions (Nie et al., 2019). They report an accuracy
of 87.9% F1 on PDTB relations in determining
whether a connective is present. Notably, they
used sentences extracted from books as training
data, rather than PDTB. This might make their
approach more stable across domains. Finally,
Knaebel and Stede (2020) use a neural approach
that integrates contextualized word embeddings
and predicts whether a connective candidate is part
of a discourse relation or not. They achieve an F1
score of 97% on the PDTB2 section 23 test set.

2.1 Domain differences
In the current paper we focus on comparing the
parsers’ performance on two written corpora with
the performance on two spoken corpora. Spoken
data differs from written in a number of ways, in-
cluding shorter sentence length on average and a
higher rate of elliptical structures and omissions.
Moreover, discourse connectives are used differ-
ently across domains. For example, compared to
written data, spoken data tends to have a higher rate
of explicit connectives, fewer connective types, and
more non-discourse connective usage of connec-
tives (see, e.g. Crible and Cuenca, 2017; Rehbein
et al., 2016). It is also not uncommon for relations
in spoken data to have an incomplete or even im-
plicit sentence argument, as in Example (4), or to
have connectives function as a discourse marker
rather than connective, as in Example (5) (exam-
ples taken from DiscoSPICE):

(4) And uhm, bring cos uh unfortunately just
she’s been up in Belfast this week.

(5) And his face got really red. So I thought oh
God. So yesterday when he he came back he
said what were you saying to me about John.

In Example (4), the second argument (Arg2) for
the connective and is not fully uttered; instead, the
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speaker cut off her utterance after the verb bring
and switched to a different discourse relation. In
Example (5), the speaker uses so in a non-discourse
connective usage (the utterance cannot be para-
phrased as “I thought oh God and as a result he
asked me...”). It is unclear how parsers developed
for the written domain would handle such cases
that are more typical of the spoken domain.

Even within the written domain, differences in
connective usage can occur between various types
of written text. For example, Roman et al. (2016)
found a higher rate of discourse connectives used
in science textbooks compared to social studies
textbooks. Moreover, specific connectives can oc-
cur more in one domain than another; for exam-
ple, in summary occurs more commonly in bio-
medical abstracts than in the general written do-
main (Gopalan and Devi, 2016).

3 Method

3.1 Parse methods

Heuristic The heuristic is based on the list of 100
connectives from the PDTB2. This method simply
extracts all connective candidates from the PDTB
connective list, without distinguishing between us-
ages. The heuristic will function as the baseline
model.

PDTB end-to-end The PDTB end-to-end model
is trained using the PDTB dataset sections 02-21,
evaluated using sec 22, and tested on sec 23. To
distinguish a discourse connective from its non-
connective usage, Lin et al. (2014) extract a set of
lexical and syntactic features for a connective and
its preceding and following word. They also utilize
the syntactic parse path from the connective to the
root of the tree model, as well as the compressed
path where adjacent identical tags are combined.

Note that a version of this parser specifically
aimed at parsing BioDRB has been made available.
Here, we use the general version of the parser to
be able to consistently evaluate its performance on
out-of-domain text across datasets.

CONLL2015 Similar to the PDTB e2e parser,
the CONLL2015 winning parser is trained on
PDTB sec 02-21, evaluated using sec 22, and
tested on sec 23. Wang and Lan (2015) reimple-
mented well-established techniques from Pitler and
Nenkova (2009) and Lin et al. (2014), and added
the POS tags of nodes from the connective’s parent

to capture more syntactic context information from
the connective.

As part of the CONLL2015 shared task, competi-
tors had access to the dependency tree, which we
do not have access to. Instead, we generated parse
trees using Stanford’s CoreNLP Natural Language
Processing Toolkit (the same parser that was used
by the e2e parser). We note that the parse tree result
after running Stanford CoreNLP might be different
from the one that is given by CONLL2015, which
in turn might affect performance of this model.

DisSent In this model, connectives are used in
the downstream task for learning sentence represen-
tation from explicit discourse relations. Nie et al.
(2019) used texts from a BookCorpus (Zhu et al.,
2015) to train and test their models. They identi-
fied common connectives in these texts, choosing
those with a frequency greater than 1% in PDTB.
As a result, the list of connectives that their parser
can identify is much smaller than that used by other
parsers (18 connectives compared to approximately
100 used by other parsers). Moreover, the possi-
ble dependency patters that are defined for each of
these connective types is also restricted, and so this
parser runs the risk of missing instances of the 18
connective types that it does aim to identify. We
prepared the input for this parser using Stanford’s
CoreNLP dependency parser.

Discopy The final model included is a recent neu-
ral model proposed by Knaebel and Stede (2020),
which achieves state-of-the-art results in connective
identification. Instead of using various combina-
tions of syntactic or lexical features, the method
implements a neural model which relies on pre-
trained word embeddings. The model concatenates
contextualized embeddings of connectives with the
embeddings of their contexts. For multi-word con-
nectives, the contextualized embeddings of the sin-
gle words are averaged. The model is then trained
in a multi-task setting, to predict the connective or
predict the coherence relation. They used PDTB
sec 02–22 for training and sec 23-24 for testing.
Here, we assess their best performing bert-based
model on connective identification task, with con-
text size of 1.

3.2 Data

Parser performance was measured on four differ-
ent datasets in order to determine how well the
parsers can identify connectives in various domains.
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All datasets have already been annotated with dis-
course relations, and therefore we can use the gold
connectives from these annotations.

PDTB2 sec 23 We evaluated all parsers on the
Penn Discourse Treebank 2.0 (PDTB2, Prasad
et al., 2008). The PDTB consists of discourse an-
notations on the Wall Street Journal texts. We here
evaluate performance on section 23, which is com-
monly used as test dataset. According to the gold
label annotations, the dataset contains 923 explicit
connective tokens, with 62 unique types.

BioDRB We included text from the Biomedical
Discourse Relation Bank (BioDRB; Prasad et al.,
2011). This corpus consists of discourse annota-
tions of 24 biomedical research articles from the
GENIA corpus, using an adapted version of the
PDTB2 annotation framework. These texts repre-
sent the biomedical, scientific text genre.

The BioDRB has 2636 gold explicit connective
tokens with 180 unique connective types. The
higher number of connective types in BioDRB
compared to PDTB is mainly due to BioDRB
having annotated modified connectives as unique
types (e.g. 180 seconds after, due mainly to), and
to BioDRB annotating post-modified connectives
(because of), which PDTB2 does not annotate. To
make the comparison consistent across datasets, we
mapped the gold connectives in BioDRB to the cor-
responding connective heads annotated in PDTB.
We removed connectives considered to be alter-
native lexicalizations in PDTB. The final dataset
contains 2574 connective tokens with 134 unique
connective types.

TED-MDB TED-MDB (Zeyrek et al., 2019) is
a resource of TED talk transcripts manually anno-
tated for discourse relations. TED talks are highly
structured speeches that are often minutely pre-
pared and are meant to provide targeted informa-
tion on various topics or ideas. The resource is
multilingual, but we focus only on English in the
current contribution.

TED-MDB currently consists of 6 TED talk tran-
scripts annotated in PDTB3-style, with a total of
304 explicit connective tokens and 35 unique con-
nective types. The reduced number of connective
types compared to the PDTB can be attributed
to the smaller size of this dataset as well as the
genre. However, TED-MDB also includes connec-
tive types that are not included in PDTB2’s con-
nective list (some of which are part of PDTB3’s

connective list), such as at, by, in and through.

Disco-SPICE Disco-SPICE (Rehbein et al.,
2016) is a corpus of transcribed broadcast inter-
views and telephone conversations from the SPICE-
Ireland corpus (Kallen and Kirk, 2008), annotated
in PDTB3-style. These texts represent a more in-
formal, spontaneous spoken genre than the TED
talks. This dataset contains 1163 explicit connec-
tive tokens with 50 unique connective types. Again,
the reduced number of connective types can be at-
tributed to the domain.

4 Results

4.1 Overall accuracy

Table 1 presents the accuracy of each parser. The
results show that Discopy is most accurate in iden-
tifying connectives in the PDTB, BioDRB and
TED-MDB, but the e2e parser displays a higher
F1 score in DiscoSPICE. Moreover, we find that,
across the board, performance significantly drops
for datasets other than the PDTB. This emphasizes
the need for out-of-domain evaluation and develop-
ment. Chi-squared tests confirm that the difference
in performance between the parsers and between
the datasets are significant, see Appendix A.

Heuristic The heuristic uses PDTB’s connective
list as input to identify connectives, resulting in the
highest recall on all datasets.1 The heuristic’s recall
on BioDRB is lower than on other datasets because
a portion of the connectives annotated in BioDRB
are not included in PDTB’s connective lexicon.

Its F1 score on spoken data is relatively high
compared to other parsers, particularly for Dis-
coSPICE. This can be attributed to its insensitivity
to syntactic requirements for Arg2 that are based on
the written domain but are often impractical for the
spoken domain. Hence, when syntactic features are
too complex/inaccurate for spoken texts, connec-
tives themselves can be used as reliable features.

Nevertheless, of all parse methods included, the
heuristic’s precision is lowest on all datasets. This
reflects its high false positive rate, which is due to
the heuristic not being able to distinguish between
discourse versus non-discourse usage of connec-
tives. Simply extracting all connectives using a
heuristic might therefore be helpful for identifying

1Recall on PDTB is not 1 because there was one instance
of if...if...then, where the gold standard attributed a single
instance of then to both if ’s.
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Heuristic PDTB e2e CONLL2015 DisSent Discopy
P R F1 P R F1 P R F1 P R F1 P R F1

PDTB .29 .99 .46 .92 .91 .91 .92 .82 .87 .75 .32 .45 .97 .92 .95
BioDRB .21 .67 .32 .80 .53 .63 .86 .31 .46 .48 .24 .32 .86 .56 .68
TED-MDB .49 .92 .64 .81 .69 .74 .84 .66 .74 .64 .22 .33 .85 .71 .77
DiscoSPICE .32 .88 .46 .41 .54 .47 .35 .37 .36 .54 .20 .29 .40 .48 .43

Table 1: Precision, Recall and F1 per corpus and parse method.

connectives, but human input or additional com-
putational input would still be necessary to then
decide on whether the candidate connective func-
tions as a discourse connective.

PDTB e2e Performance of the PDTB e2e parser
on the PDTB corpus is lower than reported in Lin
et al. (2014) (91% versus 95% F1, respectively).
This drop in the F1 score may be due to minor
differences between our experimental set-up and
theirs: we evaluated connective identification from
final outputs of the end-to-end parser, while the
original paper performed a separate training and
testing on connective classifiers.

Applying the parser to datasets other than PDTB
leads to a drop in performance. On BioDRB and
TED-MDB, the e2e parser shows a high precision
score but low recall score, which can be explained
in part by the corpora having annotated a larger
number of connective types than the PDTB2. Fi-
nally, we note low precision and recall scores on
DiscoSPICE, with F1 scores on this spoken genre
considerably lower than on the PDTB texts.

CONLL2015 Performance of the CONLL2015
winning parser on PDTB is lower than reported
in the original paper (87% versus 94% F1, respec-
tively, Wang and Lan, 2015). This drop in perfor-
mance is likely caused by the difference in depen-
dency tree parser used to prepare the data.

Further, this parser shows a low recall score on
BioDRB, which can again be explained by the dif-
ference in connective lists. The performance on
TED-MDB is in line with PDTB e2e, but perfor-
mance on DiscoSPICE is relatively low. This might
be attributed to the syntactic structure of the texts:
Wang and Lan (2015)’s new features can capture
more syntactic features from texts, but this might re-
sult in lower accuracy when the parsed structure di-
verges from that of the trained texts. This indicates
that complex lexical and syntactic features are too
restrictive and therefore not appropriate for sponta-
neous spoken texts like those in DiscoSPICE.

DisSent As mentioned in Section 3, DisSent tar-
gets only the 18 most frequently occurring con-
nective types. Considering DisSent only takes a
small portion of PDTB’s connective types into ac-
count, it has the potential to uncover a relatively
high number of connective tokens: a maximum
of 86% of all gold connectives in PDTB, 43% in
the BioDRB, 87% in TED-MDB, and 89% in Dis-
coSPICE. However, the results show that it missed
a significant portion of these connectives: it identi-
fied 26% of all gold connectives in PDTB, 11% in
the BioDRB, 19% in TED-MDB, and 18% in Dis-
coSPICE. Consequently, DisSent shows low recall
scores in every corpus. In addition, it shows poor
precision in BioDRB and TED-MDB specifically
(but relatively high precision in DiscoSPICE com-
pared to other parsers, which might be due to less
diverse dependency patterns in DiscoSPICE). We
conclude that DisSent can only be competitive if it
is extended to include more connective types and
syntactic patterns.

Discopy Discopy outperforms the other parsers
on the PDTB, BioDRB, and TED-MDB. This indi-
cates that word embeddings are more flexible than
hand-engineered features, and can perform well
without domain knowledge. The outlier for this
parser is DiscoSPICE: e2e outperforms Discopy
on this dataset (47% versus 43% F1). It seems
that none of the parsers can parse connectives in
this dataset with high accuracy, which could be ex-
plained by the features of transcribed spontaneous
spoken language that are very different from writ-
ten language (such as fragments, disfluencies and
interjections).

The performance of the parser on PDTB is
slightly lower than reported in the original paper,
which could be a result of the implementation of
the models.

4.2 Analyses of specific connectives

Detailed results on accuracy per connective for ev-
ery dataset and parser are provided as an online
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appendix.2 We here highlight some observations
based on this data. We focus on results from the
PDTB e2e, CONLL2015, and Discopy, since these
provide the most coverage and behave similarly.

Certain connectives were identified accurately in
all corpora by the parsers. These include addition-
ally, although, however, while, instead, meanwhile,
nevertheless, therefore, unless, and whereas. Many
of these tend to function consistently as discourse
connectives (i.e. they do not occur frequently in a
non-connective usage), which might explain why
they are easier to identify.

The remainder of this section presents a quali-
tative analysis, in which we consider in particular
connectives that were included in the PDTB con-
nective list, but were not identified correctly. We
take the PDTB dataset as our reference model, and
compare the other datasets to performance in this
dataset. Most findings can be classified as an issue
relating to the gold label, an issue relating to the
parser, or an issue relating to token frequency. We
end with general observations regarding DisSent.
Table 4 in Appendix B presents a summary of the
findings.

Performance on the PDTB dataset All three
parsers show relatively poor accuracy on or, nor,
once and previously. Moreover, all parsers miss
some connective types altogether, such as finally,
specifically, rather, hence (all parsers), earlier (e2e
and CONLL), and consequently (CONLL and Dis-
copy). Both of these issues are likely related to to-
ken frequency: these connectives all occur very in-
frequently in the test set and relatively infrequently
in the training data. The poor performance might
therefore be a reflection of the lack of training
data; it remains a question whether the performance
on these connectives will generalize if the test set
would include more instances of them.

Both PDTB e2e and CONLL2015 (but not Dis-
copy) also show poor performance on as, which
occurs more frequently in the PDTB test set (n=40).
The e2e parser shows higher precision than recall,
whereas the CONLL2015 parser shows lower preci-
sion than recall. Manual inspection of the instances
of as that were not identified did not reveal any pat-
tern indicating why they might have been missed.
As we will see in the next paragraphs, as proved
to be difficult to identify in the other datasets as
well. The divergence between the parsers on this

2https://osf.io/xzsa7/?view_only=
0cc5d937fa264fb59b5fe5e035c1ac75

connective is particularly interesting.

Genre-specific findings: BioDRB versus PDTB
Performance on the following connectives in Bio-
DRB was relatively poor in all parsers: as, once,
still, except, and after. Note that performance for
as, once, and after was also comparatively lower in
PDTB (albeit higher than in BioDRB). Difficulty
with these connective types is likely due to their
frequent usage as non-discourse connectives. Re-
garding still, the e2e parser seems to have a specific
issue: it only identified those instances of still in
BioDRB that occurred argument-initially.

Second, we find an issue with the BioDRB gold
label for until: the gold BioDRB dataset contains
11 instances of until, but all three parsers only iden-
tified one instance. For the “false negatives”, the
Arg2 only contains a verb or noun phrase, as in
(7). Such fragments are generally not considered
to be full relational arguments and the connectives
are therefore usually not annotated. It appears that
BioDRB has more relaxed restrictions on what can
constitute a relational argument. This can possibly
explain the general trend of the parsers displaying
relatively low recall compared to precision scores
for BioDRB.

(7) E14.5 fetal thymic lobes were collected and
stored in the TRIzol (GIBCO BRL) at -70C
until RNA isolation.

We also find an issue with the gold label for in-
stances of also in BioDRB: all parsers perform well
on this connective in the PDTB but in the BioDRB,
they show low precision. The gold BioDRB lists
92 instances of also, PDTB e2e identified 183 in-
stances, CONLL 126 instances and Discopy 156
instances. Consider Example (8), a true positive
identified by all parsers, and Example (9), a “false
positive” identified by e2e and Discopy. Both rela-
tions are very similar, and so it is unclear why one
instance of also was part of the gold dataset and
the other was not.

(8) A much lower, but still significant increase
was seen in fetal TN2 cells (25% increase, p
< 0.01). Proliferation was also significantly
higher at the fetal TN3 stage compared to
adult (50% increase, p < 0.01).

(9) In the peripheral blood of OX35-treated rats,
the percentage of CD3+ cells was significantly
lower than in PBS-treated animals. The per-
centage of CD4+ cells in the OX35-treated

https://osf.io/xzsa7/?view_only=0cc5d937fa264fb59b5fe5e035c1ac75
https://osf.io/xzsa7/?view_only=0cc5d937fa264fb59b5fe5e035c1ac75
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group was also significantly lower than that
of the PBS control.

Similar to performance in the PDTB, the parsers
show low performance on previously in BioDRB,
which appears to be a difficult connective to iden-
tify accurately. In BioDRB, the errors can be at-
tributed to both an issue with the gold label as well
as an issue with the parsers. The gold contained no
instances of previously, but the parsers all identified
a different number of occurrences (3 to 8 instances).
Some of these cases, such as Example (10), appear
to be valid.

(10) In agreement with this, western blot analysis
demonstrated an upregulation of Id1 protein,
while the amount of Id2 and Id3 protein lev-
els remained unchanged. Previously, Id1 has
been considered not to be expressed in later
developmental stages than pro-B cells (...).

Genre-specific findings: spoken versus writ-
ten Spoken data is characterised by certain fre-
quent connectives displaying a higher rate of non-
connective usage compared to written data (e.g.,
but, so, and). As expected, these connectives show
poorer performance in the spoken domain com-
pared to the written domain.

We also find lower performance on as, when
and then in the spoken domain. Regarding as, we
can see this is a consistently difficult connective
candidate to identify across all datasets. The poor
performance of the parsers on when in TED-MDB
can be attributed to an issue with the gold labels.
Certain instances of when were not included in the
gold TED-MDB, but the parsers were accurate in
identifying these “false positives”. Example (11)
presents an instance of when that was not part of
the gold dataset but was identified accurately by
the parsers.

(11) We thrive when we stay at our own leading
edge.

Poor performance on then in DiscoSPICE can
be attributed in part to missed instances in the gold
dataset, but also to the common usage of then as
a non-discourse connective in DiscoSPICE, as in
Example (12). Such instances, where no clear ar-
guments or relation sense can be identified for the
connective, were not annotated in DiscoSPICE but
the parsers did identify them.

(12) Yeah so, so hopefully just the three people are
alright and they’re not. Cos then like with
eleven people you’d be assured to have a few
good people there but three people you’re just.

We also note a peculiarity for if in TED-MDB.
The parsers identified false positives for if in TED-
MDB, an issue which can be attributed to annota-
tion standards. The instances were in fact rhetorical
“what if” relations (see Example 13), whereby the
first argument could be taken to be what (or rather,
what substitutes Arg1). Annotation frameworks
would likely not consider such instances as true
connectives, since the what cannot constitute a full
relational argument according to most segmenta-
tion conventions.

(13) What if they used that firepower to allocate
more of their capital to companies working
the hardest at solving these challenges or at
least not exacerbating them?

Finally, we note two issues specific to tran-
scribed spoken data. First, some connectives are
sometimes spelled differently in transcribed text
than in normal written text, such as because being
transcribed as cos. Such phonetic spelling vari-
ants lead to a higher rate of false negatives. Sec-
ond, some false negatives in DiscoSPICE can be at-
tributed to disfluencies, interjections or fillers such
as uh and ehm. For example, both PDTB e2e and
CONLL (but not Discopy) missed an instance of
the connective after in DiscoSPICE (Example 14)
because the connective is immediately followed by
a filler, which affected the syntactic parse of the
argument. Both of these issues might be solved by
additional preprocessing of the spoken text (correct-
ing spelling variants and removing disfluencies),
but a better solution would be to develop a parser
for spoken data that can handle such characteristics.

(14) Fintan rang me actually right after uhm I put
down the phone to you.

Connective-specific findings for DisSent Of
the 18 connectives that DisSent aims to identify, it
shows poor performance in most datasets on four
connectives in particular: and, so, as, and though.
Furthermore, DisSent fails to identify any instances
of but in both the PDTB and BioDRB. These re-
sults can be explained by DisSent’s method:it does
not identify connectives based on a heuristic search,
but rather based on the syntactic pattern that the
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connective occurs in. The possible patterns that
are provided for every connective are, in some
cases, too restricted or coarse-grained, which is
why the parser misses many instances of and, and
all instances of but. This parser is hence extremely
sensitive to the dependency parse of the dataset.

5 Discussion

Explicit connective identification can be done rel-
atively reliably by existing parsers, but gains can
still be made in this area. We therefore aimed to
evaluate existing parsers and uncover more fine-
grained errors. The results showed that Discopy
(Knaebel and Stede, 2020) outperformed the other
parsers in three out of four datasets: PDTB, Bio-
DRB, and TED-MDB. This indicates that the con-
textualized embeddings used by Discopy are more
flexible predictors of discourse connective usage
than the syntactic and lexical features used by other
parsers, even on out-of-domain data.

The exception to this is DiscoSPICE, for which
the PDTB e2e parser performed best. However,
even e2e’s performance on this dataset was not suf-
ficient. DiscoSPICE contains features and syntactic
patterns that are specific to spoken data, such as
disfluencies, incomplete sentence structures, and
increased ambiguity of connectives (e.g., whether
so is used as a connective or marker). These fea-
tures can explain the low performance of all parsers
on this dataset. There is still room for improvement
in this area.

The performance of all parsers was lower on out-
of-domain text compared to PDTB. This reaffirms
earlier findings, which showed that a connective
identification classifier trained on PDTB does not
perform well on BioDRB even with domain adapta-
tion techniques, compared to a classifier trained on
the BioDRB alone (Ramesh and Yu, 2010; Prasad
et al., 2011). Of course, these results cannot be
considered surprising, given that prior work on dis-
course parsing has heavily focused on the written
domain, with a strong bias towards newspaper text.
Similar evaluations have not been done on other do-
mains, nor have the parsers been applied frequently
to other domains (but see Laali and Kosseim, 2014;
Marchal et al., 2021, for an application of the e2e
parser to spoken translated data). This underlines
the importance of evaluation of existing parsers on
other domains and the need for domain adaption of
connective identification models and classifiers.

The results further indicated that performance is

affected by the connectives’ usage as non-discourse
connectives and the connectives’ frequency. One
solution, as suggested by Lin et al. (2014), is to
separately train a model for each highly ambiguous
connective and another generic model to identify
the remaining connectives. Another solution could
be to provide parsers with more training data for
infrequent connectives, which can be obtained via
connective generation; this approach has recently
been applied to address the lack of training data for
implicit relations (Shi and Demberg, 2019; Kurfalı
and Östling, 2021).

When analyzing connective-specific results, we
found that poor performance could often be at-
tributed to issues with the gold label. Some of the
false positives seemed to be valid connectives, and
might therefore actually be missed instances in the
gold dataset. This highlights that in manual annota-
tion, errors are still prevalent and maybe inevitable
to some extent, which can affect performance of
parsers. One way to remedy this is to support man-
ual annotation with the output of SOTA parsers or
even a simple heuristic, so that inconsistencies or
false negatives would be less likely to occur.

We also found divergences between what frame-
works and parsers consider relational arguments:
BioDRB identified instances of until with only a
noun phrase as the second argument, which the
parsers consistently did not consider a relational
connective. Conversely, Discopy consistently iden-
tified instances of what if -relations, which the gold
standard did not consider to be relations. Discourse
segmentation therefore has an impact on connec-
tive identification as well. Unfortunately, the is-
sue of segmentation is still not entirely resolved in
the field of discourse relation annotation (see, e.g.,
Hoek et al., 2018).

Many connectives annotated in the gold datasets
could not be identified at all by the parsers because
they rely on PDTB2’s connective list. This list is
not exhaustive and would need to be expanded for
the parsers to provide more coverage. One place to
start would be PDTB 3.0’s connective list (Webber
et al., 2019). However, even this list will not cover
all connective types that might also occur in other
genres (e.g. hereafter occurs in BioDRB but not
PDTB). Extending connective lists with a general
lexicon of English connectives (Das et al., 2018)
can provide new connective candidates as well.

With regards to running the models, we observed
a trade-off between accuracy and computational
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cost: the training and testing of Discopy (a bert-
based model) required much more computational
energy than any traditional parser (Bender et al.,
2021). When comparing the success of neural
methods and the other three parsers, it is impor-
tant to be clear about the context in which they are
used (Bender and Koller, 2020).

Finally, we note that our results did not perfectly
replicate those of the original authors. This is likely
due to a difference in the experimental set-up used
(e.g., the dependency parse method used by Wang
and Lan (2015) was not publicly available) and a
difference in evaluation methods. To ensure that the
lack of replicability was not due to incorrect imple-
mentation, the second author and another, unrelated
researcher independently implemented all parse
methods, and neither were able to perfectly repli-
cate the results. Note that Han et al. (2020) also
obtained different results than the original when
replicating the e2e parser (although they observed
improved scores), and attributed these divergences
to minor variations between experimental set-ups
in terms of implementations, hyperparameter set-
tings and/or choice of the type of F1 score reported
on. These results emphasize the general need in
the field for more transparent reporting and a more
consistent approach to evaluation (see also Kim
et al., 2020, for implicit relation classification).

6 Conclusion

A comparison of different parse methods revealed
that Discopy, a neural parser using sentence em-
beddings, generally outperforms parsers using syn-
tactic and lexical features. The results also showed
a severe performance drop when applying the
parsers to other domains, especially spontaneous
spoken discourse. This can be attributed to genre-
specific syntactic structures, issues with the gold
standards, and differences between connective lexi-
cons. These results emphasise the need for out-of-
domain training and evaluation, and provide insight
as to where gains can be made.

Acknowledgements

This research was funded by the German Research
Foundation (DFG) as part of SFB 1102 “Informa-
tion Density and Linguistic Encoding”. We are
grateful to Ida Novindasari and Anam Sadiq for
their contributions to the implementations of the
parsers.

References
Emily M. Bender, Timnit Gebru, Angelina McMillan-

Major, and Shmargaret Shmitchell. 2021. On the
dangers of stochastic parrots: Can language models
be too big? . Proceedings of the 2021 ACM Confer-
ence on Fairness, Accountability, and Transparency.

Emily M. Bender and Alexander Koller. 2020. Climb-
ing towards NLU: On meaning, form, and under-
standing in the age of data. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 5185–5198, Online. As-
sociation for Computational Linguistics.

Ludivine Crible and Maria-Josep Cuenca. 2017. Dis-
course markers in speech: characteristics and chal-
lenges for corpus annotation. Dialogue and Dis-
course, 8(2):149–166.

Debopam Das, Tatjana Scheffler, Peter Bourgonje, and
Manfred Stede. 2018. Constructing a lexicon of En-
glish discourse connectives. In Proceedings of the
19th Annual SIGdial Meeting on Discourse and Dia-
logue, pages 360–365.

Sindhuja Gopalan and Sobha Lalitha Devi. 2016.
BioDCA Identifier: A System for Automatic Iden-
tification of Discourse Connective and Arguments
from Biomedical Text. In Proceedings of the Fifth
Workshop on Building and Evaluating Resources for
Biomedical Text Mining (BioTxtM2016), pages 89–
98.

Kelvin Han, Phyllicia Leavitt, and Srilakshmi Balard.
2020. Comparing PTB and UD information for
PDTB discourseconnective identification. In Actes
de la 6e conférence conjointe Journées d’Études sur
la Parole (JEP, 33e édition), Traitement Automa-
tique des Langues Naturelles (TALN, 27e édition),
Rencontre des Étudiants Chercheurs en Informa-
tique pour le Traitement Automatique des Langues
(RÉCITAL, 22e édition). Volume 3: Rencontre des
Étudiants Chercheurs en Informatique pour le TAL,
pages 123–136.

Jet Hoek, Jacqueline Evers-Vermeul, and Ted JM
Sanders. 2018. Segmenting discourse: Incorporat-
ing interpretation into segmentation? Corpus Lin-
guistics and Linguistic Theory, 14(2):357–386.

Yangfeng Ji, Gholamreza Haffari, and Jacob Eisenstein.
2016. A latent variable recurrent neural network for
discourse-driven language models. In Proceedings
of the 2016 Conference of the North American Chap-
ter of the Association for Computational Linguis-
tics: Human Language Technologies, pages 332–
342, San Diego, California. Association for Compu-
tational Linguistics.

Jeffrey L Kallen and John Monfries Kirk. 2008. ICE-
Ireland: A User’s Guide: Documentation to Accom-
pany the Ireland Component of the International
Corpus of English (ICE-Ireland). Cló Ollscoil na
Banríona.

https://doi.org/10.18653/v1/2020.acl-main.463
https://doi.org/10.18653/v1/2020.acl-main.463
https://doi.org/10.18653/v1/2020.acl-main.463
https://doi.org/10.18653/v1/N16-1037
https://doi.org/10.18653/v1/N16-1037


104

Najoung Kim, Song Feng, Chulaka Gunasekara, and
Luis Lastras. 2020. Implicit discourse relation clas-
sification: We need to talk about evaluation. In Pro-
ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 5404–
5414. Association for Computational Linguistics.

René Knaebel and Manfred Stede. 2020. Contextu-
alized embeddings for connective disambiguation
in shallow discourse parsing. In Proceedings of
the First Workshop on Computational Approaches
to Discourse, pages 65–75, Online. Association for
Computational Linguistics.

Murathan Kurfalı and Robert Östling. 2021. Let’s be
explicit about that: Distant supervision for implicit
discourse relation classification via connective pre-
diction. arXiv preprint arXiv:2106.03192.

Majid Laali and Leila Kosseim. 2014. Inducing dis-
course connectives from parallel texts. In Proceed-
ings of COLING 2014, the 25th International Con-
ference on Computational Linguistics: Technical Pa-
pers, pages 610–619.

Man Lan, Jianxiang Wang, Yuanbin Wu, Zheng-Yu
Niu, and Haifeng Wang. 2017. Multi-task attention-
based neural networks for implicit discourse rela-
tionship representation and identification. In Pro-
ceedings of the 2017 Conference on Empirical Meth-
ods in Natural Language Processing, pages 1299–
1308, Copenhagen, Denmark. Association for Com-
putational Linguistics.

Ziheng Lin, Hwee Tou Ng, and Min-Yen Kan. 2014. A
PDTB-styled end-to-end discourse parser. Natural
Language Engineering, 20(2):151–184.

Marian Marchal, Merel CJ Scholman, and Vera Dem-
berg. 2021. Semi-automatic discourse annotation in
a low-resource language: Developing a connective
lexicon for Nigerian Pidgin. In Proceedings of the
Second Workshop on Computational Approaches to
Discourse.

Allen Nie, Erin Bennett, and Noah Goodman. 2019.
DisSent: Learning sentence representations from ex-
plicit discourse relations. In Proceedings of the
57th Annual Meeting of the Association for Com-
putational Linguistics, pages 4497–4510, Florence,
Italy. Association for Computational Linguistics.

Emily Pitler and Ani Nenkova. 2009. Using syntax to
disambiguate explicit discourse connectives in text.
In Proceedings of the ACL-IJCNLP 2009 Confer-
ence Short Papers, pages 13–16, Suntec, Singapore.
Association for Computational Linguistics.

Rashmi Prasad, Nikhil Dinesh, Alan Lee, Eleni Milt-
sakaki, Livio Robaldo, Aravind Joshi, and Bon-
nie Webber. 2008. The Penn Discourse TreeBank
2.0. In Proceedings of the Sixth International
Conference on Language Resources and Evaluation
(LREC’08), Marrakech, Morocco. European Lan-
guage Resources Association (ELRA).

Rashmi Prasad, Susan McRoy, Nadya Frid, Aravind
Joshi, and Hong Yu. 2011. The biomedical dis-
course relation bank. BMC bioinformatics, 12(1):1–
18.

Balaji Polepalli Ramesh and Hong Yu. 2010. Iden-
tifying discourse connectives in biomedical text.
In AMIA Annual Symposium Proceedings, volume
2010, page 657. American Medical Informatics As-
sociation.

Ines Rehbein, Merel Scholman, and Vera Demberg.
2016. Annotating discourse relations in spoken
language: A comparison of the PDTB and CCR
frameworks. In Proceedings of the Tenth Inter-
national Conference on Language Resources and
Evaluation (LREC’16), pages 1039–1046, Portorož,
Slovenia. European Language Resources Associa-
tion (ELRA).

Diego Xavier Roman, Allison Briceño, Hannah Ro-
hde, and Stephanie Hironaka. 2016. Linguistic co-
hesion in middle-school texts: A comparison of log-
ical connectives usage in science and social studies
textbooks. The Electronic Journal for Research in
Science & Mathematics Education, 20(6).

Wei Shi and Vera Demberg. 2019. Learning to explic-
itate connectives with Seq2Seq network for implicit
discourse relation classification. In Proceedings of
the 13th International Conference on Computational
Semantics - Long Papers, pages 188–199, Gothen-
burg, Sweden. Association for Computational Lin-
guistics.

Jianxiang Wang and Man Lan. 2015. A refined end-
to-end discourse parser. In Proceedings of the Nine-
teenth Conference on Computational Natural Lan-
guage Learning - Shared Task, pages 17–24, Beijing,
China. Association for Computational Linguistics.

Bonnie Webber, Rashmi Prasad, Alan Lee, and Ar-
avind Joshi. 2019. The Penn Discourse Treebank
3.0 annotation manual. Philadelphia, University of
Pennsylvania.

Deniz Zeyrek, Amália Mendes, Yulia Grishina, Mu-
rathan Kurfalı, Samuel Gibbon, and Maciej Ogrod-
niczuk. 2019. Ted multilingual discourse bank (ted-
mdb): a parallel corpus annotated in the pdtb style.
Language Resources and Evaluation, pages 1–27.

Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhut-
dinov, Raquel Urtasun, Antonio Torralba, and Sanja
Fidler. 2015. Aligning books and movies: Towards
story-like visual explanations by watching movies
and reading books. In Proceedings of the IEEE inter-
national conference on computer vision, pages 19–
27.

A Model comparisons

Chi2 tests confirm that the difference in perfor-
mance (TP and FN distribution) between the top
three parsers is significant in each dataset, with the

https://doi.org/10.18653/v1/2020.codi-1.7
https://doi.org/10.18653/v1/2020.codi-1.7
https://doi.org/10.18653/v1/2020.codi-1.7
https://doi.org/10.18653/v1/D17-1134
https://doi.org/10.18653/v1/D17-1134
https://doi.org/10.18653/v1/D17-1134
https://doi.org/10.18653/v1/P19-1442
https://doi.org/10.18653/v1/P19-1442
https://aclanthology.org/P09-2004
https://aclanthology.org/P09-2004
http://www.lrec-conf.org/proceedings/lrec2008/pdf/754_paper.pdf
http://www.lrec-conf.org/proceedings/lrec2008/pdf/754_paper.pdf
https://aclanthology.org/L16-1165
https://aclanthology.org/L16-1165
https://aclanthology.org/L16-1165
https://doi.org/10.18653/v1/W19-0416
https://doi.org/10.18653/v1/W19-0416
https://doi.org/10.18653/v1/W19-0416
https://doi.org/10.18653/v1/K15-2002
https://doi.org/10.18653/v1/K15-2002


105

exception of TED-MDB, as displayed in Table 2.
The top three parsers considered here because these
were most competitive. Chi2 tests confirm that the
difference in performance (TP and FP distribution)
between the datasets is significant in each parser,
as shown in Table 3.

Dataset χ2 df

PDTB 52.45 2 ***
BioDRB 369.88 2 ***
TED-MDB 1.74 2
DiscoSPICE 69.25 2 ***

Table 2: Chi2 statistics to test whether there is a signifi-
cant difference between the parsers per dataset.

Parser χ2 df

e2e 879.32 3 ***
CONLL 1005 3 ***
Discopy 1204.8 3 ***

Table 3: Chi2 statistics to test whether there is a signifi-
cant difference between the datasets per parser.

B Summary of connective-specific results

Table 4 presents the highlights of the connective-
specific results per dataset.
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Poor perfor-
mance

Unidentified con-
nectives

Issues with
gold label

Other observations

PDTB2 as, or, nor, once,
previously

finally, specif-
ically, rather,
hence

- PDTB e2e and CONLL2015 show
low performance on as, but Discopy
performs better.

BioDRB after, as, except,
once, still

besides until, also,
previously

BioDRB maintains different seg-
mentation rules; New connective
types not on PDTB2’s list; PDTB
e2e parser only identifies argument-
initial instances of still.

TED-
MDB

and, as, so,
then, when

for, on the one
hand, rather

when Rhetorical “what if” relations present
false positives; New connective types
not on PDTB2’s list.

Disco-
SPICE

and, as, but, so,
then

after, also, finally,
for, later, other-
wise, still

then Phonetic spelling of connectives can-
not be identified; Syntactic structures
affect performance; PDTB e2e and
CONLL are affected by interjections.

Table 4: Summary of connective-specific analysis per dataset.


