
Proceedings of the 2nd Workshop on Computational Approaches to Discourse, pages 29–51
November 10–11, 2021. ©2021 Association for Computational Linguistics

29

Discourse-Driven Integrated Dialogue Development Environment for
Open-Domain Dialogue Systems

Denis Kuznetsov3 Dmitry Evseev3 Lidiya Ostyakova3

Oleg Serikov3,‡,♥ Daniel Kornev3 Mikhail Burtsev3,‡

3Moscow Institute of Physics and Technology, Moscow
‡AIR Institute, Moscow ♥Higher School of Economics, Moscow

kuznetsov.dp@phystech.edu, dmitrii.evseev@phystech.edu,
l.ostyakova@yandex.ru, oserikov@hse.ru,

danielko@deeppavlov.ai, burtcev.ms@mipt.ru
Abstract

Development environments for spoken dia-
logue systems are popular today because
they enable rapid creation of the dialogue
systems in times when usage of the voice
AI Assistants is constantly growing. We
describe a graphical Discourse-Driven Inte-
grated Dialogue Development Environment
(DD-IDDE) for spoken open-domain dialogue
systems. The DD-IDDE allows dialogue ar-
chitects to interactively define dialogue flows
of their skills/chatbots with the aid of the
discourse-driven recommendation system, en-
hance these flows in the Python-based DSL,
deploy, and then further improve based on the
skills/chatbots usage statistics. We show how
these skills/chatbots can be specified through
a graphical user interface within the VS Code
Extension, and then run on top of the Dialog
Flow Framework (DFF). An earlier version of
this framework has been adopted in one of the
Alexa Prize 4 socialbots while the updated ver-
sion was specifically designed to power the de-
scribed DD-IDDE solution.

1 Introduction

Conversational AI focused on the development of
the dialogue systems is one of the most challenging
areas in the artificial intelligence given the subjec-
tivity of the human language interpretation, and
is gaining more and more popularity across both
academia (Viewer, 2021) and consumer & enter-
prise markets (Statista, 2020).

Dialogue systems are classified into task-
oriented dialogue systems and chat (or non-task-
oriented) dialogue systems. Usually they are stud-
ied differently, but combining them has been pro-
posed (Lee et al., 2006), and has been found effec-
tive in improving user impressions and the relation-
ships with users (Lucas et al., 2018). While task-
oriented systems are more widespread and used
in different business scenarios (Bocklisch et al.,
2017), building systems that can carry multi-turn

open-domain conversations is still far from a solved
problem (Hu et al., 2021).

While there is a significant effort in using large
generative models (Brown et al., 2020), (Roller
et al., 2020) in the open-domain dialogue systems,
recent tests of GPT-3 (Marcus and Davis, 2020),
and Conversational AI challenges like Alexa Prize
Socialbot Grand Challenge (Ram et al., 2018) high-
light the inherent weaknesses of these models,
namely inability to maintain context, avoid contra-
dictions, and control the dialogue strategically in
the long dialogues. These fallacies experienced by
us and other teams during the Amazon Alexa Prize
3 (Gabriel et al., 2020) led us to the importance of
continuing research towards the tightly-controlled
open-domain dialogue management frameworks
like E-STDM (Finch and Choi, 2020).

During the Amazon Alexa Prize 4 (Hu et al.,
2021) competition we developed (Baymurzina
et al., 2021) a first iteration of such framework
called Dialog Flow Framework (DFF) (Kuznetsov
and Evseev, 2021) to aid in rapid development of
open-domain “skills” covering various societal top-
ics in our DREAM Socialbot. Usage showed that
while users enjoy controlled conversation in their
favorite domains, they often interrupt the conversa-
tion with the out-of-domain (Konrád et al., 2021)
responses leading it into the non-anticipated direc-
tions.

Feedback of our Alexa Prize 4 team members
who wrote DFF-based open-domain “skills” shows
that predictions of the possible user response could
significantly cut the time needed by the developer
to design and develop these skills.

The key insight into the conversation is that each
utterance in the dialogue is also a kind of action be-
ing performed by the speaker (Austin, 1962). These
actions are called speech or dialog acts (Jurafsky
and Martin, 2009). Yet while dialog acts used by
some of the Alexa Prize teams e.g., MIDAS (Yu
et al., 2019), are quite sophisticated in understand-



30

ing higher level user intents conceptually similar
to those used in task-oriented systems (Bocklisch
et al., 2017), they are single turn-based and don’t
support the development of the open-domain con-
versations that are interactional and sequential (Eg-
gins and Slade, 1996). Indeed, these dialog act tax-
onomies lack connection to the discourse level of
the casual conversation analysis as shown by (Hall-
iday and M., 2004).

In the effort of making it easier for developers
to design and develop sequential and interactional
multi-turn open-domain dialogue “skills” we pro-
pose a new graphical Discourse-Driven Integrated
Dialogue Development Environment (DD-IDDE)
that combines a novel Discourse-Driven Recom-
mendation System and a DSL for the Dialog Flow
Framework, encapsulated together into an exten-
sion to the popular IDE Visual Studio Code.

2 Related Work

One of the first Development Environments de-
signed for spoken language systems, (Denecke,
2000), was created in 2000. While it supported
an entire dialogue system development lifecycle, it
lacked the power of the modern NLP components
such as NER, Entity Linking, etc. as well as the
means for the development of the open-dialogue
skills/chatbots. Today, there is a variety of dialogue
development frameworks that have emerged to aid
in rapid dialogue system creation. Rule-based ap-
proaches used e.g. in (Bocklisch et al., 2017) are
common in the task-oriented systems broadly used
in businesses. Other systems incorporate support
for full development lifecycle of the dialogue sys-
tems starting with individual NLP ML models and
ending with the complete chatbots (Burtsev et al.,
2018). Some of these systems are also encapsulated
in the form of web-based IDEs e.g. (Lawrence
et al., 2021).

Domain-specific languages (DSLs) are typically
used in dialogue systems to aid in rapid layout of
the dialogue logic. One of the oldest DSLs in this
space, AIML (Wallace, 2001) was created as an
XML dialect that supports pattern matching of the
user utterance and template-based entity extraction
and was used in development of the famous open-
domain dialogue system “A.L.I.C.E.” (Wallace,
2009). RASA DSL (Bocklisch et al., 2017) was
designed for the development of the task-oriented
systems and includes NLU (intent detection and
entity extraction) and stories (actions for intents)

components. JAICF (AI, 2021), a JavaScript-based
state machine-based DSL, was designed to support
both task-oriented systems and chatbots.

A winner of Alexa Prize 2, Gunrock team en-
hanced their socialbot’s (Yu et al., 2019) internal
Dialog Flow framework with the MIDAS dialog act
scheme to create an adaptive and unique conversa-
tion experience with the user. However it does not
enable bot developers with the mechanisms to man-
age dialogue strategically across multiple conversa-
tion turns. Slugbot (Bowden et al., 2019), another
Alexa Prize team, proposed a DRDM dialogue
model to control the coherence of the open-domain
dialogue using discourse relations. Their approach
introduced a combination of dialog acts and four
discourse relations from the PDTB 2.0 (Prasad
et al., 2008) as means to model interaction within
individual turns and at a higher level. Nonetheless,
PDTB 2.0 is based on the 1-million-word Wall
Street Journal corpus which is a written language
and is not best suited for the spoken casual conver-
sation analysis.

DD-IDDE is powered by the Dialog Flow Frame-
work (DFF) derived from the E-STDM framework
which is conceptually similar to both Dialog Flow
framework described in (Yu et al., 2019) and the
DRDM-dialogue model. It’s newly developed DSL
was specifically created so that: (1) all conditions,
responses and even dialogue flows could be imple-
mented as Python functions, and (2) conditions for
state transition could use any of the available anno-
tators like Speech Function Classifier and Predictor
and others within the larger DREAM socialbot or
derived chatbots and assistants. However, while it
is relatively common for dialogue flow frameworks
to have a built-in DSL and support pluggable NLU
components, DD-IDDE specifically incorporates
the support for the novel Discourse-Driven Rec-
ommendation System as well as the visual tools
aiding in designing open-domain dialogues across
multiple conversation steps.

3 Concepts

Development of the discourse-driven open-domain
dialogue “skills” and chatbots is an ongoing it-
erative cycle that includes: (1) design of the
“skill”/chatbot as the sequence of conditional tran-
sitions between states, aided by the discourse
moves recommendations, (2) development of the
“skill”/chatbot, (3) deployment, ending with the (4)
analysis of the running solution, followed by the



31

restart of the cycle.

Flows, Nodes, Transitions, Conditions and Re-
sponses: We split the dialogue graph into the log-
ically related parts called Flows to make it more
convenient to work with. Each Flow represents a di-
alogue subgraph. Typically, flows can be organized
to cover different topics in the dialogue graph. Like
in (Finch and Choi, 2020), we identify the states
of the dialogue at a certain moment, such states
correspond to the Nodes of the dialogue graph. Be-
ing in a certain node of the graph, we can go to an
another node if the Condition that corresponds to
this Transition is true. After each transition, the
Responses corresponding to the node are returned.

Speech Functions and Discourse Moves:
While other solutions often incorporate dia-
logue/speech acts (DAMSL-SWBD, ISO standard,
HCRC etc.) to recognize the higher-level user
intentions in a particular context and describe
discourse of conversations, they still lack the ability
to represent conversational structure and make it
impossible to analyze discourse at the dialogue
level. In DD-IDDE, we propose implementation
of more enhanced intents called Speech Functions
that not only represent single turns but also reflect
their role in the larger dialogue context.

Eggins and Slade in (Eggins and Slade, 1996)
introduced an approach connecting dialogue turns
and cross-turn discourse structure patterns specific
for casual conversation as the higher-level abstrac-
tion. At turn level, they extended Halliday’s con-
cept of Speech Functions (Halliday and M., 2004)
that express pragmatic goals of speakers and can
be used as an enhanced alternative to Dialogue
and Speech Acts. Advantages of Speech Functions
are in specified grammatical criteria for Speech
Function identification and the ability to constrain
a comprehensive systematic discourse model of
dialogues with the help of them.

These Speech Functions express different dis-
course purposes and can compound patterns that
are expressed by so-called moves. There are
three types of Discourse Moves as defined by
Eggins and Slade: (i) Opening moves are used
to start a discussion of a new topic in the dia-
logue. (ii) Sustaining moves develop the current
topic of conversation. (iii) Reacting moves de-
note the transfer of the role of the current speaker.
The first subtype of reacting moves are responses
(React.Response), which lead dialogues or top-

ics of conversation to completion, the second one
is rejoinders (React.Rejoinder), which, on the
contrary, prolong the conversation.

To enable users design dialogue flows with the
aid of the Speech Functions and Discourse Moves,
we built Speech Function Classifier (4.2) and
Speech Function Predictor (4.3).

DFF DSL: DFF DSL is Python-based language
for definition of a dialogue graph, conditions of
transitions between nodes (e.g. checks for Speech
Functions), and functions for processing user or
dialogue system utterances (e.g. entity extraction).
All the elements in DFF DSL can be callable (func-
tions), including dialogue graphs, which makes the
DSL flexible and extensible.

DFF Extensions: DFF DSL extensions are mod-
ules which can be used in the dialog flow for NLU
or NLG. NLU extensions include Speech Function
Classifier, Speech Function Predictor and Entity
Extraction Module. DFF DSL extensions for NLG
are Slot Filling Module (fills the dialogue system’s
response template with extracted entities), Factoid
Response Generation Module (provides content of
pages from text databases) and Generic Responses
Module (returns short utterances such as “Yes” or
“No”, which represent appropriate Speech Function
responses to user utterance’s Speech Function).

4 Implementation

4.1 Core

We use Dialog Flow Framework (DFF) as a core
of the DD-IDDE. Creating conversational agents
with the support of the open-domain skills is chal-
lenging as was shown, for example, in (Kuratov
et al., 2019). Currently, there are many ready-made
solutions (Finch and Choi, 2020), (Lison and Ken-
nington, 2016), (Ultes et al., 2017), (Bocklisch
et al., 2017).

The alpha version of DFF was developed dur-
ing the Alexa Prize 4 Challenge, based on E-
STDM (Finch and Choi, 2020). After the Chal-
lenge, all the shortcomings formulated during the
competition were taken into account and the DFF
DSL was rewritten. DFF (Kuznetsov and Evseev,
2021) is flexible, expressive, minimal, easy to ex-
pand through ready-made extensions or own exten-
sions, as well as collect statistics with subsequent
analysis.

Having minimal dependencies, DFF is
lightweight and stateless. This allows it to be used



32

directly as a service in the case of the microservice
architecture applications or as a separate API
accessible from outside.

DFF has an expressive Python-based DSL called
DFF DSL specially designed to be a minimal-
istic and extensible scripting markup language
when compared to other solutions (e.g., AIML,
RiveScript, ChatScript, botml), which supports us-
ing specific extensions (e.g., discourse-driven in-
tegrated dialogue development, a mechanism to
extract and use entities based on their Wikidata,
generic responses based on the speech functions
ontology and etc).

There is a set of community-created extentions
that are well documented, and it is straightforward
to add own extentions to the framework.

4.2 Speech Function Classifier
To aid in the development of the Speech Function
Classifier, we picked the Santa Barbara Corpus
of Spoken American English, which consists of
60 transcriptions of the naturally-occurring spoken
conversations. Three face-to-face dialogues were
preprocessed and then labeled with the Speech
Functions into a small dataset including about 1700
manually annotated utterances. Two annotators
reached an inter-annotator agreement of κ = 0.71
on 1200 utterances which is considered to be a
good result. By limiting taxonomy from 45 to 33
classes, using a hierarchical algorithm based on
several Logistic Regression models with different
parameters, and a rule-based approach, the last ver-
sion of Speech Function Classifier achieved an
F1-score varying from 52% to 71% depending on
the distribution of the Speech Functions in a par-
ticular dialogue. The resulting Speech Function
Classifier annotator classifies each phrase in the
user’s utterance as well as each dialogue system’s
response candidate with Speech Functions. This
classification enables the dialogue system to predict
the dialogue system’s response Speech Functions
most expected by the user.

4.3 Speech Function Predictor
Speech Function Predictor yields probabilities of
speech functions that can follow a speech function
predicted by Speech Function Classifier. Speech
Function Predictor is a model based on the statis-
tics of speech function sequences in the manually
annotated data. As the collected data is not fully
representative, rules were added covering missing
cases of speech functions sequences. Speech Func-

tion Predictor annotation to each last phrase of the
user’s utterances serves as a recommendation for
a dialogue system’s next response. It is deployed
as the HTTP endpoint available for the VS Code
extension as the Recommendation API.

4.4 Discourse-Driven Recommendation
System

The recommendation system uses Speech Func-
tions used to classify each bot utterance as an input
for the Speech Function Predictor to suggest the
possible kinds of user responses. The same mech-
anism is then used to design next bot responses
based on the user responses, enabling the rapid
design of the sequential discourse-driven open-
domain dialogue system.

4.5 Graphical User Interface

The DD-IDDE offers a split GUI (Serikov and
Babadeev, 2021) that offers both visual design of
the current open-domain skill’s/chatbot’s dialogue
flows and a mechanism for working with the code-
behind that represents the logic of the aforemen-
tioned skill/chatbot. It also provides a mechanism
to obtain recommendations for the discourse moves
for the selected node(s).

Visual dialogue graph editor allows users to
sketch DFF scenarios in form of the dialogue graph.
Here, the nodes of the graph are System States, the
transitions are allowed by users’ utterances (see
figure 4). It is powered by the modified Draw.IO
(JGraph Ltd, 2021), (Dieterichs and Rouillé, 2021)
editor interface.

Code behind editor is a Python editor, and it
shows DFF DSL produced from the dialogue flows
designed in the visual editor. It can be extended
with the standard Pylint-based recommendations
and aids user in fixing errors prior to launching the
target skill/chatbot.

This GUI is provided in the form of the VS Code
Extension.

4.6 Conversational Analysis

The DD-IDDE enables users to further improve
their skills/chatbots based on the analysis of the
user behavior. A DFF Extension was made that
allows collecting the particular dialogue flows and
individual nodes usage statistics at run-time as well
as showing statistics charts in a dashboard.



33

4.7 General Statistical Recommendation
System

The aforementioned DFF Extension for Conver-
sation Analysis enables DFF open-domain “skill”
developers to use the collected statistics of frequen-
cies of transitions between nodes to focus devel-
oper’s attention on the user behavior.

5 Evaluation

DFF DSL vs pure Python: DFF DSL helps to
implement scenario skills more easily. For exam-
ple, Coronavirus skill in DFF DSL format takes
about 250 lines, while in pure Python format -
about 650 lines. Coronavirus skill in DFF DSL
has a clear structure (21 states and 27 transitions),
in pure Python the skill has 19 functions and the
main function which handles the scenario contains
64 if/else statements, where some of the if/else
conditions are nested (making the code harder for
maintenance).

Developing With and Without Discourse-
Driven Recommendations: Development
of DFF DSL-based open-domain “skill” is a
multi-step cycle that includes initial skill de-
sign, development, test, deployment, feedback
gathering, until skill quality is improved. The
most challenging parts of the skill design are: (1)
prediction of the out-of-domain responses that
can be not so obvious for developers, and (2)
sequential dialogue design. Our initial experiments
with the DD-IDDE and its Discourse Moves
recommendations showed that time required to
address both the out-of-domain responses and to
design sequential dialogue was significantly cut
compared to the pure DFF DSL skills design.

Conclusions and Future Directions

In this paper, we introduced a new Discourse-
Driven Integrated Dialogue Development Envi-
ronment (DD-IDDE) focused on aiding users in
building open-domain skills/chatbots based on the
discourse-driven recommendations. Our DD-IDDE
makes it possible for novice users to rapidly design
their scenario-driven skills in the visual editor with
the discourse move recommendations, and then
expand their skills with the custom Python code.
In the future versions we plan to further expand
the DD-IDDE to enable seamless transitions be-
tween the manually edited DFF DSL and its visual
graph representation, add deeper integration of the

statistics into the main interface of the VS Code
extension, as well as add other extentions to the
underlying DFF framework.

Acknowledgements

Authors are deeply grateful to the Alexa Prize
organizers for their feedback and advice during
the Alexa Prize Grand Challenge 4. Authors also
thanks our contributor Dmitry Babadeev who be-
came an owner of the VS Code extension encapsu-
lating the DD-IDDE, and all members of Neural
Networks and Deep Learning Lab for their support
and advice during the project development. Oleg
Serikov is partially supported by the framework of
the HSE University Basic Research Program.

References
Just AI. 2021. Jaicf. https://github.com/

just-ai/jaicf-kotlin/wiki.

John Langshaw Austin. 1962. How to do things with
words. William James Lectures. Oxford University
Press.

Dilyara Baymurzina, Denis Kuznetsov, Dmitry Evseev,
Dmitry Karpov, Alsu Sagirova, Anton Peganov,
Fedor Ignatov, Elena Ermakova, Daniil Cherni-
avskii, Sergey Kumeyko, Oleg Serikov, Yury Kura-
tov, Lidiya Ostyakova, Daniel Kornev, and Mikhail
Burtsev. 2021. Dream technical report for the alexa
prize 4. 4th Proceedings of Alexa Prize.

Tom Bocklisch, Joey Faulkner, Nick Pawlowski, and
Alan Nichol. 2017. Rasa: Open source language un-
derstanding and dialogue management.

Kevin K. Bowden, JiaQi Wu, Wen Cui, Juraj Juraska,
Vrindavan Harrison, Brian Schwarzmann, Nick San-
ter, and Marilyn A. Walker. 2019. Slugbot: Develop-
ing a computational model and framework of a novel
dialogue genre. CoRR, abs/1907.10658.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen,
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam Mc-
Candlish, Alec Radford, Ilya Sutskever, and Dario
Amodei. 2020. Language models are few-shot learn-
ers.

Mikhail Burtsev, Alexander Seliverstov, Rafael
Airapetyan, Mikhail Arkhipov, Dilyara Baymurz-
ina, Nickolay Bushkov, Olga Gureenkova, Taras
Khakhulin, Yuri Kuratov, Denis Kuznetsov, et al.

https://github.com/just-ai/jaicf-kotlin/wiki
https://github.com/just-ai/jaicf-kotlin/wiki
http://scholar.google.de/scholar.bib?q=info:xI2JvixH8_QJ:scholar.google.com/&output=citation&hl=de&as_sdt=0,5&ct=citation&cd=1
http://scholar.google.de/scholar.bib?q=info:xI2JvixH8_QJ:scholar.google.com/&output=citation&hl=de&as_sdt=0,5&ct=citation&cd=1
http://arxiv.org/abs/1712.05181
http://arxiv.org/abs/1712.05181
http://arxiv.org/abs/1907.10658
http://arxiv.org/abs/1907.10658
http://arxiv.org/abs/1907.10658
http://arxiv.org/abs/2005.14165
http://arxiv.org/abs/2005.14165


34

2018. Deeppavlov: Open-source library for dia-
logue systems. In Proceedings of ACL 2018, System
Demonstrations, pages 122–127.

Matthias Denecke. 2000. An integrated development
environment for spoken dialogue systems. In Pro-
ceedings of the COLING-2000 Workshop on Using
Toolsets and Architectures To Build NLP Systems,
pages 51–60, Centre Universitaire, Luxembourg. In-
ternational Committee on Computational Linguis-
tics.

Henning Dieterichs and Vincent Rouillé. 2021.
Draw.io vs code integration. https:
//github.com/hediet/vscode-drawio.

S. Eggins and D. Slade. 1996. Analysing casual con-
versation.

James D. Finch and Jinho D. Choi. 2020. Emora stdm:
A versatile framework for innovative dialogue sys-
tem development.

Raefer Gabriel, Yang Liu, Anna Gottardi, Mihail Eric,
Anju Khatri, Anjali Chadha, Qinlang Chen, Behnam
Hedayatnia, Pankaj Rajan, Ali Binici, Shui Hu,
Karthik Gopalakrishnan, Seokhwan Kim, Lauren
Stubel, Kate Bland, Arindam Mandal, and Dilek Z.
Hakkani-Tür. 2020. Further advances in open do-
main dialog systems in the third alexa prize socialbot
grand challenge.

M. A. K. Halliday and Christian Matthiessen M. I.
M. 2004. An introduction to functional grammar /
M.A.K. Halliday, 3rd ed. / rev. by christian m.i.m.
matthiessen. edition. Hodder Arnold London.

Shui Hu, Yang Liu, Anna Gottardi, Behnam He-
dayatnia, Anju Khatri, Anjali Chadha, Qinlang
Chen, Pankaj Rajan, Ali Binici, Varun Somani,
Yao Lu, Prerna Dwivedi, Lucy Hu, Hangjie Shi,
Sattvik Sahai, Mihail Eric, Karthik Gopalakrishnan,
Seokhwan Kim, Spandana Gella, Alexandros
Papangelis, Patrick Lange, Di Jin Nicole Chartier,
Mahdi Namazifar, Aishwarya Padmakumar, Sarik
Ghazarian, Shereen Oraby, Anjali Narayan-Chen,
Yuheng Du, Lauren Stubell, Savanna Stiff, Kate
Bland, Arindam Mandal, Reza Ghanadan, and Dilek
Hakkani-Tur. 2021. Further advances in open do-
main dialog systems in the fourth alexa prize social-
bot grand challenge. https://d7qzviu3xw2xc.
cloudfront.net/alexa/alexaprize/docs/
sgc4/Alexa-Prize-Technical-Paper-2021_
Final.pdf.

JGraph Ltd. 2021. diagrams.net. https://github.
com/jgraph/drawio.

Dan Jurafsky and James H. Martin. 2009. Speech and
language processing : an introduction to natural
language processing, computational linguistics, and
speech recognition. Pearson Prentice Hall, Upper
Saddle River, N.J.

Jakub Konrád, Jan Pichl, Petr Marek, Petr Lorenc,
Van Duy Ta, and Ondrej Kobza. 2021. Alquist 4.0:
Towards social intelligence using generative models
and dialogue personalization. 4th Proceedings of
Alexa Prize.

Yuri Kuratov, Idris Yusupov, Dilyara Baymurzina,
Denis Kuznetsov, Daniil Cherniavskii, Alexan-
der Dmitrievskiy, Elena Ermakova, Fedor Ignatov,
Dmitry Karpov, Daniel Kornev, et al. 2019. Dream
technical report for the alexa prize 2019. 3rd Pro-
ceedings of Alexa Prize.

Denis Kuznetsov and Dmitry Evseev. 2021. Di-
alog flow framework @ deepmipt github.
https://github.com/deepmipt/dialog_
flow_framework/.

Andrew Lawrence, Braden Ream, Michael Hood, and
Tyler Han. 2021. Visual skill building. https://
www.voiceflow.com/.

Cheongjae Lee, Sangkeun Jung, Minwoo Jeong, and
Gary Geunbae Lee. 2006. Chat and goal-oriented di-
alog together: a unified example-based architecture
for multi-domain dialog management. In 2006 IEEE
Spoken Language Technology Workshop, pages 194–
197.

Pierre Lison and Casey Kennington. 2016. Opendial:
A toolkit for developing spoken dialogue systems
with probabilistic rules. In Proceedings of ACL-
2016 system demonstrations, pages 67–72.

Gale M. Lucas, Jill Boberg, David Traum, Ron Art-
stein, Jonathan Gratch, Alesia Gainer, Emmanuel
Johnson, Anton Leuski, and Mikio Nakano. 2018.
Getting to know each other: The role of social di-
alogue in recovery from errors in social robots. In
Proceedings of the 2018 ACM/IEEE International
Conference on Human-Robot Interaction, HRI ’18,
page 344–351, New York, NY, USA. Association for
Computing Machinery.

Gary Marcus and Ernest Davis. 2020. Experiments
testing gpt-3’s ability at commonsense reasoning: re-
sults. https://cs.nyu.edu/~davise/papers/
GPT3CompleteTests.html.

Rashmi Prasad, Nikhil Dinesh, Alan Lee, Eleni Milt-
sakaki, Livio Robaldo, Aravind Joshi, and Bon-
nie Webber. 2008. The Penn Discourse TreeBank
2.0. In Proceedings of the Sixth International
Conference on Language Resources and Evaluation
(LREC’08), Marrakech, Morocco. European Lan-
guage Resources Association (ELRA).

Ashwin Ram, Rohit Prasad, Chandra Khatri, Anu
Venkatesh, Raefer Gabriel, Qing Liu, Jeff Nunn,
Behnam Hedayatnia, Ming Cheng, Ashish Nagar,
Eric King, Kate Bland, Amanda Wartick, Yi Pan,
Han Song, Sk Jayadevan, Gene Hwang, and Art Pet-
tigrue. 2018. Conversational ai: The science behind
the alexa prize.

https://aclanthology.org/W00-1508
https://aclanthology.org/W00-1508
https://github.com/hediet/vscode-drawio
https://github.com/hediet/vscode-drawio
http://arxiv.org/abs/2006.06143
http://arxiv.org/abs/2006.06143
http://arxiv.org/abs/2006.06143
https://d7qzviu3xw2xc.cloudfront.net/alexa/alexaprize/docs/sgc4/Alexa-Prize-Technical-Paper-2021_Final.pdf
https://d7qzviu3xw2xc.cloudfront.net/alexa/alexaprize/docs/sgc4/Alexa-Prize-Technical-Paper-2021_Final.pdf
https://d7qzviu3xw2xc.cloudfront.net/alexa/alexaprize/docs/sgc4/Alexa-Prize-Technical-Paper-2021_Final.pdf
https://d7qzviu3xw2xc.cloudfront.net/alexa/alexaprize/docs/sgc4/Alexa-Prize-Technical-Paper-2021_Final.pdf
https://github.com/jgraph/drawio
https://github.com/jgraph/drawio
http://www.amazon.com/Speech-Language-Processing-2nd-Edition/dp/0131873210/ref=pd_bxgy_b_img_y
http://www.amazon.com/Speech-Language-Processing-2nd-Edition/dp/0131873210/ref=pd_bxgy_b_img_y
http://www.amazon.com/Speech-Language-Processing-2nd-Edition/dp/0131873210/ref=pd_bxgy_b_img_y
http://www.amazon.com/Speech-Language-Processing-2nd-Edition/dp/0131873210/ref=pd_bxgy_b_img_y
https://github.com/deepmipt/dialog_flow_framework/
https://github.com/deepmipt/dialog_flow_framework/
https://www.voiceflow.com/
https://www.voiceflow.com/
https://doi.org/10.1109/SLT.2006.326788
https://doi.org/10.1109/SLT.2006.326788
https://doi.org/10.1109/SLT.2006.326788
https://doi.org/10.1145/3171221.3171258
https://doi.org/10.1145/3171221.3171258
https://cs.nyu.edu/~davise/papers/GPT3CompleteTests.html
https://cs.nyu.edu/~davise/papers/GPT3CompleteTests.html
http://www.lrec-conf.org/proceedings/lrec2008/pdf/754_paper.pdf
http://www.lrec-conf.org/proceedings/lrec2008/pdf/754_paper.pdf
http://arxiv.org/abs/1801.03604
http://arxiv.org/abs/1801.03604


35

Stephen Roller, Emily Dinan, Naman Goyal, Da Ju,
Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott,
Kurt Shuster, Eric M. Smith, Y-Lan Boureau, and
Jason Weston. 2020. Recipes for building an open-
domain chatbot.

Oleg Serikov and Dmitry Babadeev. 2021. Dd-
idde alpha version 0.2.1. https://github.com/
deepmipt/vscode-dff/releases/tag/0.2.1.

Statista. 2020. Number of digital voice assistants in use
worldwide from 2019 to 2024 (in billions)*. https:
//www.statista.com/statistics/973815/
worldwide-digital-voice-assistant-in-use/.

Stefan Ultes, Lina M Rojas Barahona, Pei-Hao Su,
David Vandyke, Dongho Kim, Inigo Casanueva,
Paweł Budzianowski, Nikola Mrkšić, Tsung-Hsien
Wen, Milica Gasic, et al. 2017. Pydial: A multi-
domain statistical dialogue system toolkit. In Pro-
ceedings of ACL 2017, System Demonstrations,
pages 73–78.

Google Books Ngram Viewer. 2021. Chat-
bot, natural language processing popularity.
https://books.google.com/ngrams/graph?
content=chatbot%2C+natural+language+
processing&year_start=2000.

Richard Wallace. 2001. Artificial intelligence
markup language (aiml). https://web.
archive.org/web/20060505035935/http:
//aitools.org/aiml/spec/.

Richard S. Wallace. 2009. The Anatomy of A.L.I.C.E.,
pages 181–210. Springer Netherlands, Dordrecht.

Dian Yu, Michelle Cohn, Yi Mang Yang, Chun-Yen
Chen, Weiming Wen, Jiaping Zhang, Mingyang
Zhou, Kevin Jesse, Austin Chau, Antara Bhowmick,
Shreenath Iyer, Giritheja Sreenivasulu, Sam David-
son, Ashwin Bhandare, and Zhou Yu. 2019. Gun-
rock: A social bot for complex and engaging long
conversations.

http://arxiv.org/abs/2004.13637
http://arxiv.org/abs/2004.13637
https://github.com/deepmipt/vscode-dff/releases/tag/0.2.1
https://github.com/deepmipt/vscode-dff/releases/tag/0.2.1
https://www.statista.com/statistics/973815/worldwide-digital-voice-assistant-in-use/
https://www.statista.com/statistics/973815/worldwide-digital-voice-assistant-in-use/
https://www.statista.com/statistics/973815/worldwide-digital-voice-assistant-in-use/
https://books.google.com/ngrams/graph?content=chatbot%2C+natural+language+processing&year_start=2000
https://books.google.com/ngrams/graph?content=chatbot%2C+natural+language+processing&year_start=2000
https://books.google.com/ngrams/graph?content=chatbot%2C+natural+language+processing&year_start=2000
https://web.archive.org/web/20060505035935/http://aitools.org/aiml/spec/
https://web.archive.org/web/20060505035935/http://aitools.org/aiml/spec/
https://web.archive.org/web/20060505035935/http://aitools.org/aiml/spec/
https://doi.org/10.1007/978-1-4020-6710-5_13
http://arxiv.org/abs/1910.03042
http://arxiv.org/abs/1910.03042
http://arxiv.org/abs/1910.03042


36

A User Interaction

A.1 Designing
Having installed the DD-IDDE VS Code Ex-
tension 1, user creates a new .drawio file
in the common/dff_markup_scenarios with
the name of the target skill scenario, e.g.,
pet_scenario.drawio - see 1.

User then proceeds with defining the Speech
Function of the starting node by double-clicking
on it - see 2.

Once the first node has been set up, user can
use the Speech Function Recommendations to pick
the next discourse moves by clicking on the “Show
Suggestions” menu item - see 3.

User then continues adding nodes based on their
scenario, with the aid of the Speech Function rec-
ommendations - see 4.

A.2 Developing
Once the designed skill is sufficiently outlined, user
proceeds with the use of the Show Markup function-
ality that generates the code based on the designed
skill - see 5.

With the generated DFF DSL code, user can
now add the additional code-behind functionality
such as the use of the regular expressions, custom
intents, and the like - see 6.

A.3 Analyzing
In the Conversational Analysis dashboard user can
observe the frequency of nodes’ visits of the indi-
vidual dialogue flows, rates of transitions within
dialogues, as well as the frequency of the user re-
sponses. User can also collect statistics of annota-
tions of user and bot utterances, custom data com-
ing from other DFF extentions, e.g., classification
of user utterances with the speech functions, user
and bot emotions etc. The dashboard is described in
more detail in appendix D. The dashboard allows
users to select as many dialogues as one dialog and
show user behavior on it. On this dialog graph is
shown for one dialog 12 and on this one for many
8.

A.4 VS Code Extension Graphical User
Interface Illustrations

VS Code Extension GUI is shown in figures 1, 2,
3, 4, 5, 6

1https://github.com/deepmipt/vscode-dff/
releases/tag/0.2.1

https://github.com/deepmipt/vscode-dff/releases/tag/0.2.1
https://github.com/deepmipt/vscode-dff/releases/tag/0.2.1


37

Figure 1: New .drawio file created in VS Code

Figure 2: Setting Speech Function for the current node



38

Figure 3: Using the Speech Function Recommendations

Figure 4: Outlining Scenario In VS Code Extension



39

Figure 5: Using the Show Markup functionality to generate DFF Markup Code

Figure 6: Adding Custom Code to the DFF Markup File



40

B DFF: Detailed Overview

B.1 Description

DFF as well as many extentions for it are dis-
tributed with an open source license, like many
other frameworks (e.g., Emora STDM, AIML,
RiveScript, ChatScript, botml, OpenDial, PyDial).
DFF is distributed with Apache 2.0 license.

DFF DSL is a Python-based DSL for designing
scenario-driven skills/chatbots. The main element
of a skill in DFF DSL format is a dialogflow (a
set of nodes and transitions between them, which
refers to a particular subtopic). A dialogflow is
a Python dictionary where keys are node names
and elements describe response in this node and
transitions to other nodes in the same dialogflow or
in other dialogflows (Fig. 13). The main features
of a dialogflow in DFF DSL format:

• a condition for transition between nodes can
be one of predefined conditions in DFF DSL
(for example, a regular expression or a func-
tion which checks the speech function in the
user utterance, etc.)

• a response can be a string or a function

• processing of user utterance and response with
custom functions (which can be used, for
example, for slot extraction and slot filling
(Fig. 14))

• extensions for using facts databases (for ex-
ample, Wikipedia) for response generation
(Fig. 16) or generic responses to user utter-
ance speech function

The solution, like many others (e.g., AIML), is
based on the state machine. However, unlike others,
DFF aids in the development of the open-domain
skills/chatbots with the help of the discourse moves
recommendation making it easy to design these
skills and chatbots. It also incorporates a mecha-
nism to extract and use entities based on their Wiki-
data types, as well as to provide generic responses
based on the speech functions ontology.

DFF was designed to be extensible as a modular
system. With the external extentions, DFF can be
significantly expanded as in complex frameworks
(Finch and Choi, 2020), (Bocklisch et al., 2017).
There is a set of community-created extentions that
are well documented, and it is straightforward to
add own extentions to the framework.

DFF DSL is automatically validated before start-
ing the bot, making it easy to identify issues before-
hand..

B.2 Transitions
The target node for transition can be:

• the node name from the current dialogflow;

• the name of another dialogflow and the node
in this dialogflow;

• special keywords (“forward” - to the next node
in the current dialogflow, “back” - to the previ-
ous node, “repeat” - to make cycle transition,
“previous” - to the previous active node).

Transitions between nodes can be local (which
can be used only in the dialogflow where they were
defined) or global (can be used in any other di-
alogflow).

C DFF: Extensions

The approach of dividing DFF into modules allows
users to incorporate both lightweight annotators,
classifiers, and so on, as well as modules based
on neural models that require a large amount of
resources in their solutions.

In production ready systems, it is necessary to
use keywords and a matching pattern for the agent
to work, as well as the selection of entities, the
presence of ontologies, the identification of intents,
the classification of sentiments, and much more.

C.1 Generic Responses Module
Generic responses are short utterances, generated
by the bot in response to a particular speech func-
tion in user utterance. Generic responses can be
useful if the user is proactive and responds with
long and detailed utterances, the bot in this case
will say somewhat like “yes”, “I agree”. Examples
of generic responses:

• “No” in response to "Re-
act.Respond.Confront.Reply.Contradict" and
"React.Respond.Reply.Contradict" speech
functions;

• “I don’t know.” to "Re-
act.Respond.Confront.Reply.Disawow"
and "React.Respond.Reply.Disawow";

• “I don’t agree with you” to "Re-
act.Respond.Confront.Reply.Disagree"
and "React.Respond.Reply.Disagree";



41

• “Yes” to "Re-
act.Respond.Support.Reply.Affirm",
"React.Respond.Support.Reply.Agree"
and "React.Respond.Reply.Agree".

Generic responses are implemented as an ex-
tention for DFF DSL with one cycled node of di-
alogflow and a response function which extracts a
speech function from the user utterance and gener-
ates a suitable generic response.

C.2 Other Extentions
Entity Extraction Module is used to find entities
of particular types in the user utterance and store
them in shared memory. Entities can be extracted
by:

• Wikidata Entity Type: user can specify a
Wikidata ID for the given entity type to find
entities of this type in the given utterance, e.g.
to find a city user should specify "wiki:Q515"
(which corresponds to “city” in Wikipedia)

• Entity Tag from the set of ("PERSON", "LO-
CATION", "ORGANIZATION", etc.): user
can specify one of these tags to find entities of
this type, e.g., to find a location user should
specify "tag:LOCATION"

Slot Filling Module is used to fill extracted en-
tities in the slots of the response.

Factoid Response Generation Module pro-
vides content of the page from the databases like
Wikipedia, wikiHow, etc. mentioned as the argu-
ment of the extension function.

Generic Responses Module returns short utter-
ances (for example, “Yes”, “No”, “I agree” etc.)
that represent selected speech functions as appropri-
ate response to the selected user utterance’s speech
functions.



42

D DFF: Conversational Analysis
Dashboard

The statistics DFF extention 2 comes with a dash-
board that displays various statistics. Using them,
users can evaluate the user’s use of script branches.
The dashboard is shown in figures 7, 8, 9, 10, 12

2https://github.com/kudep/dff-node-stats/

https://github.com/kudep/dff-node-stats/


43

Figure 7: Statistic data frame is shown in the Dashboard

Figure 8: Transition graph with counters is built for all dialogues. Counters show numbers of users hitting these
nodes or edges.

Figure 9: These figures are built in the dashboard. The top figure shows nodes that will be sent by all users at a
certain step of the dialogue. The abscissa axis shows the order of a step in the dialog, the ordinate axis shows the
node in which the user is located for this step. The bottom figure shows the frequency of users hitting each node,
different colors are shown in different flows in which the nodes



44

Figure 10: Statistic of transitions in dashboard. The top figure shows the frequency of users hitting each transition
between nodes. The bottom figure shows duration of processing time for each transition between nodes. Different
colors are shown in different flows in which the nodes.

Figure 11: Statistic of transition in dashboard for one dialog. This figure shows the user transitions from node to
node. The abscissa axis shows the order of a step in the dialog, the ordinate axis shows the node in which the user
is located for this step.



45

Figure 12: This figure is built in the dashboard. The graph shows user transitions through the script graph using
one dialog as an example. Counters show numbers of users hitting these nodes or edges.



46

E Additional Code Examples

This section of the appendix contains the code and
tables with descriptions



47

Figure 13: Example of dialog flow in DFF DSL format

Figure 14: DFF DSL elements for entity extraction from user utterance and slot filling in response

Figure 15: DFF DSL elements for entity extraction using Entity Detection annotator

Figure 16: Dialog Flow with "fact_provider" - a function for response generation using a wikiHow article

Figure 17: Dialogflow for generic responses generation



48

Figure 18: Coronavirus skill in pure Python



49

Figure 19: Coronavirus skill DFF DSL format



50

Speaker Utterance Speech Function

Bot Do you like animals? Open.Demand.Opinion
User yeah React.Respond.Support.Reply.Affirm
Bot Would you like to have a

pet?
Open.Demand.Opinion

User yeah React.Respond.Support.Reply.Affirm
Bot Cool! What pet is it? React.Rejoinder.Support.Track.Clarify
User I have a dog. His name is

Archie.
React.Respond.

Confront.Reply.Resolve
Bot I also would like to have

such a friend. What breed
is your pet?

React.Rejoinder.Support.Track.Clarify

User He is a golden retriever. React.Respond.
Confront.Reply.Resolve

Bot Alright. And what color is
it?

React.Rejoinder.Support.Track.Clarify

User He’s golden one with
white ears.

React.Respond.
Confront.Reply.Resolve

Bot Have you ever tried to
train your pet?

React.Rejoinder.
Support.Challenge.Rebound

User Yeah, I train him every
week in the park.

React.Respond.Support.Reply.Affirm

Bot Would you like to know
how dogs are trained?

React.Rejoinder.
Support.Challenge.Rebound

User okay React.Respond.Support.Reply.Affirm
Bot Some breeds are more

independent and hard to
train than others.

Sustain.Continue.Prolong.Extend

User yeah React.Respond.Support.Register

Table 1: Dialog Example



51

Speech Function Discourse purpose

Open.Attend attention seeking
Open.Demand.Fact demand factual information
Open.Demand.Opinion demand evaluative information
Open.Give.Fact give factual information
Open.Give.Opinion give evaluative information
Sustain.Continue.Prolong.Extend offer additional or contrasting information
Sustain.Continue.Prolong.Elaborate clarify and restate
Sustain.Continue.Prolong.Enhance qualify previous move by giving details
Sustain.Continue.Monitor check that audience is still engaged
React.Rejoinder.Confront.Challenge.Counter dismiss addressee’s right to his/her position
React.Rejoinder.Confront.Response.Re-
challenge

question relevance of a prior move

React.Rejoinder.Support.Challenge.Rebound dismiss addressee’s right to his/her position
React.Rejoinder.Support.Response.Resolve provide clarification
React.Rejoinder.Support.Track.Check elicit repetition of a misheard element
React.Rejoinder.Support.Track.Clarify verify information heard
React.Rejoinder.Support.Track.Confirm confirm information heard
React.Rejoinder.Support.Track.Probe volunteer further details
React.Respond.Confront.Disengage show unwillingness to interact
React.Respond.Confront.Reply.Contradict negate prior information
React.Respond.Confront.Reply.Disagree provide negative respond to question
React.Respond.Confront.Reply.Disawow deny acknowledgement of information
React.Respond.Support.Develop.Elaborate clarify and restate a prior move
React.Respond.Support.Develop.Enhance qualify previous move by giving details
React.Respond.Support.Develop.Extend offer additional or contrasting information
React.Respond.Support.Engage show willingness to interact
React.Respond.Support.Register display attention to the speaker
React.Respond.Support.Reply.Acknowledge indicate knowledge of information given
React.Respond.Support.Reply.Affirm provide positive response to the question
React.Respond.Support.Develop.Enhance deny acknowledgement of information
React.Respond.Support.Reply.Agree indicate support of information given

Table 2: Discourse Purposes of Speech Functions


