
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natural Language Processing, pages 3641–3651

August 1–6, 2021. ©2021 Association for Computational Linguistics

3641

Measuring Fine-Grained Domain Relevance of Terms:
A Hierarchical Core-Fringe Approach

Jie Huang1,3 Kevin Chen-Chuan Chang1,3 Jinjun Xiong2,3 Wen-mei Hwu1,3

1University of Illinois at Urbana-Champaign, USA
2IBM Thomas J. Watson Research Center, USA

3IBM-Illinois Center for Cognitive Computing Systems Research (C3SR), USA
{jeffhj, kcchang, w-hwu}@illinois.edu

jinjun@us.ibm.com

Abstract

We propose to measure fine-grained domain
relevance– the degree that a term is relevant
to a broad (e.g., computer science) or narrow
(e.g., deep learning) domain. Such measure-
ment is crucial for many downstream tasks in
natural language processing. To handle long-
tail terms, we build a core-anchored semantic
graph, which uses core terms with rich descrip-
tion information to bridge the vast remaining
fringe terms semantically. To support a fine-
grained domain without relying on a matching
corpus for supervision, we develop hierarchi-
cal core-fringe learning, which learns core and
fringe terms jointly in a semi-supervised man-
ner contextualized in the hierarchy of the do-
main. To reduce expensive human efforts, we
employ automatic annotation and hierarchi-
cal positive-unlabeled learning. Our approach
applies to big or small domains, covers head
or tail terms, and requires little human effort.
Extensive experiments demonstrate that our
methods outperform strong baselines and even
surpass professional human performance.1

1 Introduction

With countless terms in human languages, no one
can know all terms, especially those belonging to
a technical domain. Even for domain experts, it
is quite challenging to identify all terms in the do-
mains they are specialized in. However, recogniz-
ing and understanding domain-relevant terms is the
basis to master domain knowledge. And having a
sense of domains that terms are relevant to is an
initial and crucial step for term understanding.

In this paper, as our problem, we propose to
measure fine-grained domain relevance, which is
defined as the degree that a term is relevant to a

1The code and data, along with several term lists
with domain relevance scores produced by our meth-
ods are available at https://github.com/jeffhj/
domain-relevance.

given domain, and the given domain can be broad
or narrow– an important property of terms that has
not been carefully studied before. E.g., deep learn-
ing is a term relevant to the domains of computer
science and, more specifically, machine learning,
but not so much to others like database or compiler.
Thus, it has a high domain relevance for the former
domains but a low one for the latter. From another
perspective, we propose to decouple extraction and
evaluation in automatic term extraction that aims to
extract domain-specific terms from texts (Amjadian
et al., 2018; Hätty et al., 2020). This decoupling
setting is novel and useful because it is not limited
to broad domains where a domain-specific corpus
is available, and also does not require terms must
appear in the corpus.

A good command of domain relevance of terms
will facilitate many downstream applications. E.g.,
to build a domain taxonomy or ontology, a crucial
step is to acquire relevant terms (Al-Aswadi et al.,
2019; Shang et al., 2020). Also, it can provide or fil-
ter necessary candidate terms for domain-focused
natural language tasks (Huang et al., 2020). In
addition, for text classification and recommenda-
tion, the domain relevance of a document can be
measured by that of its terms.

We aim to measure fine-grained domain rele-
vance as a semantic property of any term in human
languages. Therefore, to be practical, the proposed
model for domain relevance measuring must meet
the following requirements: 1) covering almost
all terms in human languages; 2) applying to a wide
range of broad and narrow domains; and 3) relying
on little or no human annotation.

However, among countless terms, only some of
them are popular ones organized and associated
with rich information on the Web, e.g., Wikipedia
pages, which we can leverage to characterize the
domain relevance of such “head terms.” In contrast,
there are numerous “long-tail terms”– those not as

https://github.com/jeffhj/domain-relevance
https://github.com/jeffhj/domain-relevance

3642

frequently used– which lack descriptive informa-
tion. As Challenge 1, how to measure the domain
relevance for such long-tail terms?

On the other hand, among possible domains of
interest, only those broad ones (e.g., physics, com-
puter science) naturally have domain-specific cor-
pora. Many existing works (Velardi et al., 2001;
Amjadian et al., 2018; Hätty et al., 2020) have re-
lied on such domain-specific corpora to identify
domain-specific terms by contrasting their distribu-
tions to general ones. In contrast, those fine-grained
domains (e.g., quantum mechanics, deep learning)–
which can be any topics of interest– do not usually
have a matching corpus. As Challenge 2, how to
achieve good performance for a fine-grained do-
main without assuming a domain-specific corpus?

Finally, automatic learning usually requires large
amounts of training data. Since there are countless
terms and plentiful domains, human annotation is
very time-consuming and laborious. As Challenge
3, how to reduce expensive human efforts when ap-
plying machine learning methods to our problem?

As our solutions, we propose a hierarchical core-
fringe domain relevance learning approach that ad-
dresses these challenges. First, to deal with long-
tail terms, we design the core-anchored semantic
graph, which includes core terms which have rich
description and fringe terms without that informa-
tion. Based on this graph, we can bridge the do-
main relevance through term relevance and include
any term in evaluation. Second, to leverage the
graph and support fine-grained domains without
relying on domain-specific corpora, we propose hi-
erarchical core-fringe learning, which learns the
domain relevance of core and fringe terms jointly
in a semi-supervised manner contextualized in the
hierarchy of the domain. Third, to reduce human
effort, we employ automatic annotation and hier-
archical positive-unlabeled learning, which allow
to train our model with little even no human effort.

Overall, our framework consists of two pro-
cesses: 1) the offline construction process, where
a domain relevance measuring model is trained by
taking a large set of seed terms and their features
as input; 2) the online query process, where the
trained model can return the domain relevance of
query terms by including them in the core-anchored
semantic graph. Our approach applies to a wide
range of domains and can handle any query, while
nearly no human effort is required. To validate the
effectiveness of our proposed methods, we conduct

extensive experiments on various domains with
different settings. Results show our methods sig-
nificantly outperform well-designed baselines and
even surpass human performance by professionals.

2 Related Work

The problem of domain relevance of terms is re-
lated to automatic term extraction, which aims to
extract domain-specific terms from texts automati-
cally. Compared to our task, automatic term extrac-
tion, where extraction and evaluation are combined,
possesses a limited application and has a relatively
large dependence on corpora and human annota-
tion, so it is limited to several broad domains and
may only cover a small number of terms. Existing
approaches for automatic term extraction can be
roughly divided into three categories: linguistic,
statistical, and machine learning methods. Linguis-
tic methods apply human-designed rules to identify
technical/legal terms in a target corpus (Handler
et al., 2016; Ha and Hyland, 2017). Statistical
methods use statistical information, e.g., frequency
of terms, to identify terms from a corpus (Frantzi
et al., 2000; Nakagawa and Mori, 2002; Velardi
et al., 2001; Drouin, 2003; Meijer et al., 2014).
Machine learning methods learn a classifier, e.g.,
logistic regression classifier, with manually labeled
data (Conrado et al., 2013; Fedorenko et al., 2014;
Hätty et al., 2017). There also exists some work on
automatic term extraction with Wikipedia (Vivaldi
et al., 2012; Wu et al., 2012). However, terms stud-
ied there are restricted to terms associated with a
Wikipedia page.

Recently, inspired by distributed representations
of words (Mikolov et al., 2013a), methods based
on deep learning are proposed and achieve state-of-
the-art performance. Amjadian et al. (2016, 2018)
design supervised learning methods by taking the
concatenation of domain-specific and general word
embeddings as input. Hätty et al. (2020) propose a
multi-channel neural network model that leverages
domain-specific and general word embeddings.

The techniques behind our hierarchical core-
fringe learning methods are related to research on
graph neural networks (GNNs) (Kipf and Welling,
2017; Hamilton et al., 2017); hierarchical text clas-
sification (Vens et al., 2008; Wehrmann et al., 2018;
Zhou et al., 2020); and positive-unlabeled learning
(Liu et al., 2003; Elkan and Noto, 2008; Bekker
and Davis, 2020).

3643

few-shot learning
quantum chemistry
⋯

0.877
0.001
⋯

core
fringe

query terms domain relevance

CFL
HiCFL

machine learning
deep learning
few-shot learning
quantum mechanics
⋯

seed terms
model training

graph
construction

offline

online

Figure 1: The overview of the framework. In this figure, machine learning is a core term associated with a
Wikipedia page, few-shot learning is a fringe term included in the offline core-anchored semantic graph, and
quantum chemistry is a fringe term included in the online process. Best viewed in color.

3 Methodology

We study the Fine-Grained Domain Relevance of
terms, which is defined as follows:

Definition 1 (Fine-Grained Domain Relevance)
The fine-grained domain relevance of a term is the
degree that the term is relevant to a given domain,
and the given domain can be broad or narrow.

The domain relevance of terms depends on many
factors. In general, a term with higher semantic rel-
evance, broader meaning scope, and better usage
possesses a higher domain relevance regarding the
target domain. To measure the fine-grained domain
relevance of terms, we propose a hierarchical core-
fringe approach, which includes an offline training
process and can handle any query term in evalua-
tion. The overview of the framework is illustrated
in Figure 1.

3.1 Core-Anchored Semantic Graph
There exist countless terms in human languages;
thus it is impractical to include all terms in a system
initially. To build the offline system, we need to pro-
vide seed terms, which can come from knowledge
bases or be extracted from broad, large corpora by
existing term/phrase extraction methods (Handler
et al., 2016; Shang et al., 2018).

In addition to providing seed terms, we should
also give some knowledge to machines so that they
can differentiate whether a term is domain-relevant
or not. To this end, we can leverage the descrip-
tion information of terms. For instance, Wikipedia

contains a large number of terms (the surface form
of page titles), where each term is associated with
a Wikipedia article page. With this page informa-
tion, humans can easily judge whether a term is
domain-relevant or not. In Section 3.3, we will
show the labeling can even be done completely
automatically.

However, considering the countless terms, the
number of terms that are well-organized and associ-
ated with rich description is small. How to measure
the fine-grained domain relevance of terms with-
out rich information is quite challenging for both
machines and humans.

Fortunately, terms are not isolated, while com-
plex relations exist between them. If a term is
relevant to a domain, it must also be relevant to
some domain-relevant terms and vice versa. This is
to say, we can bridge the domain relevance of terms
through term relevance. Summarizing the obser-
vations, we divide terms into two categories: core
terms, which are terms associated with rich descrip-
tion information, e.g., Wikipedia article pages, and
fringe terms, which are terms without that informa-
tion. We assume, for each term, there exist some
relevant core terms that share similar domains. If
we can find the most relevant core terms for a given
term, its domain relevance can be evaluated with
the help of those terms. To this end, we can utilize
the rich information of core terms for ranking.

Taking Wikipedia as an example, each core term
is associated with an article page, so they can

3644

be returned as the ranking results (result term)
for a given term (query term). Considering the
data resources, we use the built-in Elasticsearch
based Wikipedia search engine2 (Gormley and
Tong, 2015). More specifically, we set the max-
imum number of links as k (5 as default). For a
query term v, i.e., any seed term, we first achieve
the top 2k Wikipedia pages with exact match. For
each result term u in the core, we create a link from
u to v. If the number of links is smaller than k,
we do this process again without exact match and
build additional links. Finally, we construct a term
graph, named Core-Anchored Semantic Graph,
where nodes are terms and edges are links between
terms.

In addition, for terms that are not provided ini-
tially, we can also handle them as fringe terms and
connect them to core terms in evaluation. In this
way, we can include any term in the graph.

3.2 Hierarchical Core-Fringe Learning

In this section, we aim to design learning methods
to learn the fine-grained domain relevance of core
and fringe terms jointly. In addition to using the
term graph, we can achieve features of both core
and fringe terms based on their linguistic and statis-
tical properties (Terryn et al., 2019; Conrado et al.,
2013) or distributed representations (Mikolov et al.,
2013b; Yu and Dredze, 2015). We assume the la-
bels, i.e., domain-relevant or not, of core terms are
available, which can be achieved by an automatic
annotation mechanism introduced in Section 3.3.

As stated above, if a term is highly relevant to
a given domain, it must also be highly relevant to
some other terms with a high domain relevance
and vice versa. Therefore, to measure the domain
relevance of a term, in addition to using its own fea-
tures, we aggregate its neighbors’ features. Specif-
ically, we propagate the features of terms via the
term graph and use the label information of core
terms for supervision. In this way, core and fringe
terms help each other, and the domain relevance
is learned jointly. The propagation process can be
achieved by graph convolutions (Hammond et al.,
2011). We first apply the vanilla graph convolu-
tional networks (GCNs) (Kipf and Welling, 2017)
in our framework. The graph convolution operation
(GCNConv) at the l-th layer is formulated as the

2https://en.wikipedia.org/w/index.php?
search

following aggregation and update process:

h
(l+1)
i = φ

(∑
j∈Ni∪{i}

1

cij
W (l)

c h
(l)
j + b(l)c

)
, (1)

where Ni is the neighbor set of node i. cij is the
normalization constant. h(l)

j ∈ Rd(l)×1 is the hid-
den state of node j at the l-th layer, with d(l) being
the number of units; h(0)

j = xj , which is the fea-

ture vector of node j. W
(l)
c ∈ Rd(l+1)×d(l) is the

trainable weight matrix at the l-th layer, and b
(l)
c is

the bias vector. φ(·) is the nonlinearity activation
function, e.g., ReLU(·) = max(0, ·).

Since core terms are labeled as domain-relevant
or not, we can use the labels to calculate the loss:

L = −
∑

i∈Vcore

(yi log zi + (1− yi) log(1− zi)),

(2)
where yi is the label of node i regarding the target
domain, and zi = σ(hoi), with hoi being the output
of the last GCNConv layer for node i and σ(·)
being the sigmoid function. The weights of the
model are trained by minimizing the loss. The
relative domain relevance is obtained as s = z.

Combining with the overall framework, we get
the first domain relevance measuring model, CFL,
i.e., Core-Fringe Domain Relevance Learning.

CFL is useful to measure the domain relevance
for broad domains such as computer science. For
domains with relatively narrow scopes, e.g., ma-
chine learning, we can also leverage the label in-
formation of domains at the higher level of the
hierarchy, e.g., CS→ AI→ ML, which is based
on the idea that a domain-relevant term regarding
the target domain should also be relevant to the
parent domain. Inspired by related work on hierar-
chical multi-label classification (Vens et al., 2008;
Wehrmann et al., 2018), we introduce a hierarchi-
cal learning method considering both global and
local information.

We first apply lc GCNConv layers according to
Eq. (1) and get the output of the last GCNConv
layer, which is h(lc)

i . In order not to confuse, we
omit the subscript that identifies the node number.
For each domain in the hierarchy, we introduce a
hierarchical global activation ap. The activation at
the (l + 1)-th level of the hierarchy is given as

a(l+1)
p = φ(W (l)

p [a(l)
p ;h(lc)] + b(l)p), (3)

where [·; ·] indicates the concatenation of two vec-
tors; a(1)

p = φ(W
(0)
p h(lc) + b

(0)
p). The global in-

https://en.wikipedia.org/w/index.php?search
https://en.wikipedia.org/w/index.php?search

3645

formation is produced after a fully connected layer:

zp = σ(W
(lp)
p a

(lp)
p + b

(lp)
p), (4)

where lp is the total number of hierarchical levels.
To achieve the local information for each level

of the hierarchy, the model first generates the local
hidden state a

(l)
q by a fully connected layer:

a(l)
q = φ(W

(l)
t a(l)

p + b
(l)
t). (5)

The local information at the l-th level of the hierar-
chy is then produced as

z(l)
q = σ(W (l)

q a(l)
q + b(l)q). (6)

In our core-fringe framework, all the core terms
are labeled at each level of the hierarchy. Therefore,
the loss of hierarchical learning is computed as

Lh = ε(zp,y
(lp)) +

lp∑
l=1

ε(z(l)
q ,y

(l)), (7)

where y(l) denotes the labels regarding the domain
at the l-th level of the hierarchy and ε(z,y) is the
binary cross-entropy loss described in Eq. (2). In
testing, The relative domain relevance s is calcu-
lated as

s = α · zp + (1−α) · (z(1)
q ◦ z(2)

q , ...,z
(lp)
q), (8)

where ◦ denotes element-wise multiplication. α
is a hyperparameter to balance the global and lo-
cal information (0.5 as default). Combining with
our general framework, we refer to this model as
HiCFL, i.e., Hierarchical CFL.

Online Query Process. If seed terms are provided
by extracting from broad, large corpora relevant to
the target domain, most terms of interest will be al-
ready included in the offline process. In evaluation,
for terms that are not provided initially, our model
treats them as fringe terms. Specifically, when re-
ceiving such a term, the model connects it to core
terms by the method described in Section 3.1. With
its features (e.g., compositional term embeddings)
or only its neighbors’ features (when features can-
not be generated directly), the trained model can
return the domain relevance of any query.

3.3 Automatic Annotation and Hierarchical
Positive-Unlabeled Learning

Automatic Annotation. For the fine-grained do-
main relevance problem, human annotation is very

time-consuming and laborious because the num-
ber of core terms is very large regarding a wide
range of domains. Fortunately, in addition to build-
ing the term graph, we can also leverage the rich
information of core terms for automatic annotation.

In the core-anchored semantic graph constructed
with Wikipedia, each core term is associated with
a Wikipedia page, and each page is assigned one
or more categories. All the categories form a hier-
archy, furthermore providing a category tree. For
a given domain, we can first traverse from a root
category and collect some gold subcategories. For
instance, for computer science, we treat category:
subfields of computer science3 as the root category
and take categories at the first three levels of it as
gold subcategories. Then we collect categories for
each core term and examine whether the term itself
or one of the categories is a gold subcategory. If
so, we label the term as positive. Otherwise, we
label it as negative. We can also combine gold sub-
categories from some existing domain taxonomies
and extract the categories of core terms from the
text description, which usually contains useful text
patterns like “x is a subfield of y”.

Hierarchical Positive-Unlabeled Learning. Ac-
cording to the above methods, we can learn the fine-
grained domain relevance of terms for any domain
as long as we can collect enough gold subcategories
for that domain. However, for domains at the low
level of the hierarchy, e.g., deep learning, a cate-
gory tree might not be available in Wikipedia. To
deal with this issue, we apply our learning methods
in a positive-unlabeled (PU) setting (Bekker and
Davis, 2020), where only a small number of terms,
e.g., 10, are labeled as positive, and all the other
terms are unlabeled. We use this setting based on
the following consideration: if a user is interested
in a specific domain, it is quite easy for her to give
some important terms relevant to that domain.

Benefiting from our hierarchical core-fringe
learning approach, we can still obtain labels for
domains at the high level of the hierarchy with the
automatic annotation mechanism. Therefore, all
the negative examples of the last labeled hierarchy
can be used as reliable negatives for the target do-
main. For instance, if the target domain is deep
learning, which is in the CS→ AI→ ML→ DL
hierarchy, we consider all the non-ML terms as
the reliable negatives for DL. Taking the positively

3https://en.wikipedia.org/wiki/
Category:Subfields_of_computer_science

https://en.wikipedia.org/wiki/Category:Subfields_of_computer_science
https://en.wikipedia.org/wiki/Category:Subfields_of_computer_science

3646

labeled examples and the reliable negatives for su-
pervision, we can learn the domain relevance of
terms by our proposed HiCFL model contextual-
ized in the hierarchy of the domain.

4 Experiments

In this section, we evaluate our model from differ-
ent perspectives. 1) We compare with baselines
by treating some labeled terms as queries. 2) We
compare with human professionals by letting hu-
mans and machines judge which term in a query
pair is more relevant to a target domain. 3) We
conduct intuitive case studies by ranking terms
according to their domain relevance.

4.1 Experimental Setup

Datasets and Preprocessing. To build the sys-
tem, for offline processing, we extract seed terms
from the arXiv dataset (version 6)4. As an ex-
ample, for computer science or its sub-domains,
we collect the abstracts in computer science ac-
cording to the arXiv Category Taxonomy5, and
apply phrasemachine to extract terms (Handler
et al., 2016) with lemmatization and several fil-
tering rules: frequency > 10; length ≤ 6; only
contain letters, numbers, and hyphen; not a stop-
word or a single letter.

We select three broad domains, including com-
puter science (CS), physics (Phy), and mathemat-
ics (Math); and three narrow sub-domains of them,
including machine learning (ML), quantum me-
chanics (QM), and abstract algebra (AA), with the
hierarchies CS→ AI→ML, Phy→ mechanics→
QM, and Math→ algebra→ AA. Each broad do-
main and its sub-domains share seed terms because
they share a corpus. To achieve gold subcategories
for automatic annotation (Section 3.3), we collect
subcategories at the first three levels of a root cate-
gory (e.g., category: subfields of physics) for broad
domains (e.g., physics); or the first two levels for
narrow domains, e.g., category: machine learning
for machine learning. Table 1 reports the total sizes
and the ratios that are core terms.

Baselines. Since our task on fine-grained domain
relevance is new, there is no existing baseline for
model comparison. We adapt the following mod-
els on relevant tasks in our setting with additional
inputs (e.g., domain-specific corpora):

4https://www.kaggle.com/
Cornell-University/arxiv

5https://arxiv.org/category_taxonomy

domain #terms core ratio

CS ML 113,038 27.7%
Phy QM 416,431 12.1%

Math AA 103,984 26.4%

Table 1: The statistics of the data.

• Relative Domain Frequency (RDF): Since
domain-relevant terms usually occur more in a
domain-specific corpus, we apply a statistical
method using freqs(w)/freqg(w) to measure the
domain relevance of term w, where freqs(·) and
freqg(·) denote the frequency of occurrence in
the domain-specific/general corpora respectively.

• Logistic Regression (LR): Logistic regression
is a standard supervised learning method. We
use core terms with labels (domain-relevant or
not) as training data, where features are term
embeddings trained by a general corpus.

• Multilayer Perceptron (MLP): MLP is a stan-
dard neural neural-based model. We train MLP
using embeddings trained with a domain-specific
corpus or a general corpus as term features, re-
spectively. We also concatenate the two embed-
dings as features (Amjadian et al., 2016, 2018).

• Multi-Channel (MC): Multi-Channel (Hätty
et al., 2020) is the state-of-the-art model for au-
tomatic term extraction, which is based on a
multi-channel neural network that takes domain-
specific and general corpora as input.

Training. For all supervised learning methods, we
apply automatic annotation in Section 3.3, i.e., we
automatically label all the core terms for model
training. In the PU setting, we remove labels on
target domains. Only 20 (10 in the case studies)
domain-relevant core terms are randomly selected
as the positives, with the remaining terms unla-
beled. In training, all the negative examples at the
previous level of the hierarchy are used as reliable
negatives.

Implementation Details. Though our proposed
methods are independent of corpora, some base-
lines (e.g., MC) require term embeddings trained
from general/domain-specific corpora. For easy
and fair comparison, we adopt the following ap-
proach to generate term features. We consider each
term as a single token, and apply word2vec CBOW
(Mikolov et al., 2013a) with negative sampling,
where dimensionality is 100, window size is 5, and
number of negative samples is 5. The training cor-

https://www.kaggle.com/Cornell-University/arxiv
https://www.kaggle.com/Cornell-University/arxiv
https://arxiv.org/category_taxonomy

3647

Computer Science Physics Mathematics
ROC-AUC PR-AUC ROC-AUC PR-AUC ROC-AUC PR-AUC

RDF SG 0.714 0.417 0.736 0.496 0.694 0.579
LR G 0.802±0.000 0.535±0.000 0.822±0.000 0.670±0.000 0.854±0.000 0.769±0.000

MLP S 0.819±0.003 0.594±0.003 0.853±0.001 0.739±0.004 0.868±0.000 0.803±0.001

MLP G 0.863±0.001 0.674±0.002 0.874±0.001 0.761±0.003 0.904±0.001 0.846±0.002

MLP SG 0.867±0.001 0.667±0.002 0.875±0.001 0.765±0.002 0.904±0.001 0.843±0.003

MC SG 0.868±0.002 0.664±0.006 0.877±0.003 0.768±0.004 0.903±0.001 0.843±0.002

CFL G 0.885±0.001 0.712±0.002 0.905±0.000 0.812±0.002 0.918±0.001 0.870±0.002

CFL C 0.883±0.001 0.708±0.002 0.901±0.000 0.800±0.001 0.919±0.001 0.879±0.002

S and G indicate the corpus used. S: domain-specific corpus, G: general corpus, SG: both.
C means the pre-trained compositional GloVe embeddings are used.

Table 2: Results for broad domains.

pus can be a general one (the entire arXiv corpus,
denoted as G), or a domain-specific one (the sub-
corpus in the branch of the corresponding domain,
denoted as S). We also apply compositional GloVe
embeddings (Pennington et al., 2014) (element-
wise addition of the pre-trained 100d word embed-
dings, denoted as C) as non-corpus-specific fea-
tures of terms for reference.

For all the neural network-based models, we use
Adam (Kingma and Ba, 2015) with learning rate of
0.01 for optimization, and adopt a fixed hidden di-
mensionality of 256 and a fixed dropout ratio of 0.5.
For the learning part of CFL and HiCFL, we apply
two GCNConv layers and use the symmetric graph
for training. To avoid overfitting, we adopt batch
normalization (Ioffe and Szegedy, 2015) right after
each layer (except for the output layer) and be-
fore activation and apply dropout (Hinton et al.,
2012) after the activation. We also try to add reg-
ularizations for MLP and MC with full-batch or
mini-batch training, and select the best architecture.
To construct the core-anchored semantic graph, we
set k as 5. All experiments are run on an NVIDIA
Quadro RTX 5000 with 16GB of memory under
the PyTorch framework. The training of CFL for
the CS domain can finish in 1 minute.

We report the mean and standard deviation of
the test results corresponding to the best validation
results with 5 different random seeds.

4.2 Comparison to Baselines

To compare with baselines, we separate a portion of
core terms as queries for evaluation. Specifically,
for each domain, we use 80% labeled terms for
training, 10% for validation, and 10% for testing

(with automatic annotation). Terms in the valida-
tion and testing sets are treated as fringe terms. By
doing this, the evaluation can represent the general
performance for all fringe terms to some extent.
And the model comparison is fair since the rich
information of terms for evaluation is not used in
training. We also create a test set with careful hu-
man annotation on machine learning to support
our overall evaluation, which contains 2000 terms,
with half for evaluation and half for testing.

As evaluation metrics, we calculate both ROC-
AUC and PR-AUC with automatic or manually
created labels. ROC-AUC is the area under the re-
ceiver operating characteristic curve, and PR-AUC
is the area under the precision-recall curve. If a
model achieves higher values, most of the domain-
relevant terms are ranked higher, which means the
model has a better measurement on the domain
relevance of terms.

Table 2 and Table 3 show the results for three
broad/narrow domains respectively. We observe
our proposed CFL and HiCFL outperform all the
baselines, and the standard deviations are low.
Compared to MLP, CFL achieves much better per-
formance benefiting from the core-anchored seman-
tic graph and feature aggregation, which demon-
strates the domain relevance can be bridged via
term relevance. Compared to CFL, HiCFL works
better owing to hierarchical learning.

In the PU setting– the situation when automatic
annotation is not applied to the target domain, al-
though only 20 positives are given, HiCFL still
achieves satisfactory performance and significantly
outperforms all the baselines (Table 4).

The PR-AUC scores on the manually created test

3648

Machine Learning Quantum Mechanics Abstract Algebra
ROC-AUC PR-AUC ROC-AUC PR-AUC ROC-AUC PR-AUC

LR G 0.917±0.000 0.346±0.000 0.879±0.000 0.421±0.000 0.872±0.000 0.525±0.000

MLP S 0.902±0.001 0.453±0.009 0.903±0.001 0.545±0.004 0.910±0.000 0.641±0.007

MLP G 0.932±0.001 0.562±0.010 0.922±0.001 0.587±0.014 0.923±0.000 0.658±0.006

MLP SG 0.928±0.001 0.574±0.011 0.923±0.000 0.574±0.007 0.925±0.001 0.673±0.004

MC SG 0.928±0.002 0.554±0.007 0.924±0.001 0.590±0.003 0.924±0.001 0.685±0.005

CFL G 0.950±0.002 0.627±0.013 0.950±0.000 0.678±0.003 0.938±0.001 0.751±0.009

HiCFL G 0.965±0.003 0.645±0.014 0.957±0.001 0.691±0.003 0.942±0.002 0.769±0.006

S and G indicate the corpus used. S: domain-specific corpus, G: general corpus, SG: both.

Table 3: Results for narrow domains.

Machine Learning Quantum Mechanics Abstract Algebra
ROC-AUC PR-AUC ROC-AUC PR-AUC ROC-AUC PR-AUC

LR G 0.860±0.000 0.206±0.000 0.788±0.000 0.280±0.000 0.833±0.000 0.429±0.000

MLP S 0.804±0.003 0.144±0.003 0.767±0.009 0.260±0.005 0.804±0.006 0.421±0.010

MLP G 0.836±0.005 0.234±0.016 0.813±0.006 0.295±0.011 0.842±0.003 0.467±0.011

MLP SG 0.844±0.003 0.230±0.015 0.796±0.008 0.291±0.011 0.839±0.006 0.463±0.013

MC SG 0.852±0.006 0.251±0.019 0.795±0.014 0.303±0.017 0.861±0.004 0.547±0.006

CFL G 0.918±0.001 0.441±0.009 0.897±0.002 0.408±0.004 0.887±0.002 0.563±0.018

HiCFL G 0.940±0.008 0.508±0.026 0.897±0.004 0.421±0.014 0.915±0.002 0.648±0.009

Table 4: Results for narrow domains (PU learning).

PR-AUC PR-AUC (PU)

LR G 0.509±0.000 0.449±0.000

MLP S 0.550±0.017 0.113±0.010

MLP G 0.586±0.016 0.299±0.027

MLP SG 0.590±0.005 0.217±0.013

MC SG 0.603±0.016 0.281±0.012

CFL G 0.703±0.017 0.525±0.013

HiCFL G 0.755±0.011 0.581±0.036

Table 5: Results (PR-AUC) for machine learning with
manual labeling.

set without and with the PU setting are reported
in Table 5. We observe that the results are gener-
ally consistent with results reported in Table 3 and
Table 4, which indicates the evaluation with core
terms can work just as well.

4.3 Comparison to Human Performance

In this section, we aim to compare our model with
human professionals in measuring the fine-grained
domain relevance of terms. Because it is diffi-
cult for humans to assign a score representing do-

ML-AI ML-CS AI-CS
Human 0.698±0.087 0.846±0.074 0.716±0.115

HiCFL 0.854±0.017 0.932±0.007 0.768±0.023

Table 6: Accuracies of domain relevance comparison.

main relevance directly, we generate term pairs as
queries and let humans judge which one in a pair
is more relevant to machine learning. Specifically,
we create 100 ML-AI, ML-CS, and AI-CS pairs
respectively. Taking ML-AI as an example, each
query pair consists of an ML term and an AI term,
and the judgment is considered right if the ML term
is selected.

The human annotation is conducted by five se-
nior students majoring in computer science and
doing research related to terminology. Because
there is no clear boundary between ML, AI, and
CS, it is possible that a CS term is more relevant
to machine learning than an AI term. However, the
overall trend is that the higher the accuracy, the
better the performance. From Table 6, we observe
that HiCFL far outperforms human performance.

3649

The depth of the background color indicates the domain relevance. The darker the color, the higher the domain relevance (annotated by the authors);
* indicates the term is a core term, otherwise it is a fringe term.

1-10 101-110 1001-1010 10001-10010 100001-100010
supervised learning* adversarial machine learning* regularization strategy method for detection tumor region

convolutional neural network* temporal-difference learning* weakly-supervised approach gait parameter mutual trust
machine learning* restricted boltzmann machine learned embedding stochastic method inherent problem

deep learning* backpropagation through time* node classification problem recommendation diversity healthcare system*
semi-supervised learning* svms non-convex learning numerical experiment two-phase*

q-learning* word2vec* sample-efficient learning second-order method posetrack
reinforcement learning* rbms cnn-rnn model landmark dataset half*
unsupervised learning* hierarchical clustering* deep bayesian general object detection mfcs

recurrent neural network* stochastic gradient descent* classification score cold-start recommendation borda count*
generative adversarial network* svm* classification algorithm* similarity of image diverse way

Table 7: Ranking results for machine learning with HiCFL.

Given positives (10): deep learning, neural network, deep neural network, deep reinforcement learning, multilayer perceptron, convolutional neural network, recurrent neural
network, long short-term memory, backpropagation, activation function.

1-10 101-110 1001-1010 10001-10010 100001-100010
convolutional neural network* discriminative loss multi-task deep learning low light image law enforcement agency*

recurrent neural network* dropout regularization self-supervision face dataset case of channel
artificial neural network* semantic segmentation* state-of-the-art deep learning algorithm estimation network release*

feedforward neural network* mask-rcnn generative probabilistic model method on benchmark datasets ahonen*
deep learning* probabilistic neural network* translation model distributed constraint electoral control

neural network* pretrained network probabilistic segmentation gradient information runge*
generative adversarial network* discriminator model handwritten digit classification model on a variety many study

multilayer perceptron* sequence-to-sequence learning deep learning classification model constraint mean value*
long short-term memory* autoencoders multi-task reinforcement learning automatic detection efficient beam
neural architecture search* conditional variational autoencoder skip-gram* feature redundancy pvt*

Table 8: Ranking results for deep learning with HiCFL (PU learning).

Although we have reduced the difficulty, the task
is still very challenging for human professionals.

4.4 Case Studies
We interpret our results by ranking terms accord-
ing to their domain relevance regarding machine
learning or deep learning, with hierarchy CS →
AI→ML→ DL. For CS-ML, we label terms with
automatic annotation. For DL, we create 10 DL
terms manually as the positives for PU learning.

Table 7 and Table 8 show the ranking results
(1-10 represents terms ranked 1st to 10th). We
observe the performance is satisfactory. For ML,
important concepts such as supervised learning, un-
supervised learning, and deep learning are ranked
very high. Also, terms ranked before 1010th are
all good domain-relevant terms. For DL, although
only 10 positives are provided, the ranking results
are quite impressive. E.g., unlabeled positive terms
like artificial neural network, generative adversarial
network, and neural architecture search are ranked
very high. Besides, terms ranked 101st to 110th are
all highly relevant to DL, and terms ranked 1001st
to 1010th are related to ML.

5 Conclusion

We introduce and study the fine-grained domain
relevance of terms– an important property of terms
that has not been carefully studied before. We

propose a hierarchical core-fringe domain rele-
vance learning approach, which can cover almost
all terms in human languages and various domains,
while requires little or even no human annotation.

We believe this work will inspire an automated
solution for knowledge management and help a
wide range of downstream applications in natural
language processing. It is also interesting to inte-
grate our methods to more challenging tasks, for
example, to characterize more complex properties
of terms even understand terms.

Acknowledgments

We thank the anonymous reviewers for their valu-
able comments and suggestions. This material is
based upon work supported by the National Sci-
ence Foundation IIS 16-19302 and IIS 16-33755,
Zhejiang University ZJU Research 083650, IBM-
Illinois Center for Cognitive Computing Systems
Research (C3SR) - a research collaboration as part
of the IBM Cognitive Horizon Network, grants
from eBay and Microsoft Azure, UIUC OVCR
CCIL Planning Grant 434S34, UIUC CSBS Small
Grant 434C8U, and UIUC New Frontiers Initiative.
Any opinions, findings, and conclusions or recom-
mendations expressed in this publication are those
of the author(s) and do not necessarily reflect the
views of the funding agencies.

3650

References
Fatima N Al-Aswadi, Huah Yong Chan, and

Keng Hoon Gan. 2019. Automatic ontology con-
struction from text: a review from shallow to deep
learning trend. Artificial Intelligence Review, pages
1–28.

Ehsan Amjadian, Diana Inkpen, T Sima Paribakht, and
Farahnaz Faez. 2018. Distributed specificity for au-
tomatic terminology extraction. Terminology. Inter-
national Journal of Theoretical and Applied Issues
in Specialized Communication, 24(1):23–40.

Ehsan Amjadian, Diana Inkpen, Tahereh Paribakht,
and Farahnaz Faez. 2016. Local-global vectors to
improve unigram terminology extraction. In Pro-
ceedings of the 5th International Workshop on Com-
putational Terminology, pages 2–11.

Jessa Bekker and Jesse Davis. 2020. Learning from
positive and unlabeled data: a survey. Mach. Learn.,
109(4):719–760.

Merley Conrado, Thiago Pardo, and Solange Oliveira
Rezende. 2013. A machine learning approach to au-
tomatic term extraction using a rich feature set. In
Proceedings of the 2013 NAACL HLT Student Re-
search Workshop, pages 16–23.

Patrick Drouin. 2003. Term extraction using non-
technical corpora as a point of leverage. Terminol-
ogy, 9(1):99–115.

Charles Elkan and Keith Noto. 2008. Learning classi-
fiers from only positive and unlabeled data. In Pro-
ceedings of the 14th ACM SIGKDD international
conference on Knowledge discovery and data min-
ing, pages 213–220.

Denis Fedorenko, N Astrakhantsev, and D Turdakov.
2014. Automatic recognition of domain-specific
terms: an experimental evaluation. Proceedings of
the Institute for System Programming, 26(4):55–72.

Katerina Frantzi, Sophia Ananiadou, and Hideki Mima.
2000. Automatic recognition of multi-word terms:.
the c-value/nc-value method. International journal
on digital libraries, 3(2):115–130.

Clinton Gormley and Zachary Tong. 2015. Elastic-
search: the definitive guide: a distributed real-time
search and analytics engine. ” O’Reilly Media,
Inc.”.

Althea Ying Ho Ha and Ken Hyland. 2017. What is
technicality? a technicality analysis model for eap
vocabulary. Journal of English for Academic Pur-
poses, 28:35–49.

William L Hamilton, Rex Ying, and Jure Leskovec.
2017. Inductive representation learning on large
graphs. In Proceedings of the 31st International
Conference on Neural Information Processing Sys-
tems, pages 1025–1035.

David K Hammond, Pierre Vandergheynst, and Rémi
Gribonval. 2011. Wavelets on graphs via spec-
tral graph theory. Applied and Computational Har-
monic Analysis, 30(2):129–150.

Abram Handler, Matthew Denny, Hanna Wallach, and
Brendan O’Connor. 2016. Bag of what? simple
noun phrase extraction for text analysis. In Proceed-
ings of the First Workshop on NLP and Computa-
tional Social Science, pages 114–124.

Anna Hätty, Michael Dorna, and Sabine Schulte
im Walde. 2017. Evaluating the reliability and in-
teraction of recursively used feature classes for ter-
minology extraction. In Proceedings of the student
research workshop at the 15th conference of the Eu-
ropean chapter of the association for computational
linguistics, pages 113–121.

Anna Hätty, Dominik Schlechtweg, Michael Dorna,
and Sabine Schulte im Walde. 2020. Predicting de-
grees of technicality in automatic terminology ex-
traction. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 2883–2889.

Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky,
Ilya Sutskever, and Ruslan R Salakhutdinov. 2012.
Improving neural networks by preventing co-
adaptation of feature detectors. arXiv preprint
arXiv:1207.0580.

Jie Huang, Zilong Wang, Kevin Chen-Chuan Chang,
Wen-mei Hwu, and Jinjun Xiong. 2020. Exploring
semantic capacity of terms. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing.

Sergey Ioffe and Christian Szegedy. 2015. Batch nor-
malization: Accelerating deep network training by
reducing internal covariate shift. In International
Conference on Machine Learning, pages 448–456.

Diederik P Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. Proceedings of
the 3rd International Conference on Learning Rep-
resentations.

Thomas N. Kipf and Max Welling. 2017. Semi-
supervised classification with graph convolutional
networks. In Proceedings of International Confer-
ence on Learning Representations.

Bing Liu, Yang Dai, Xiaoli Li, Wee Sun Lee, and
Philip S Yu. 2003. Building text classifiers using
positive and unlabeled examples. In Third IEEE In-
ternational Conference on Data Mining, pages 179–
186. IEEE.

Kevin Meijer, Flavius Frasincar, and Frederik Hogen-
boom. 2014. A semantic approach for extracting do-
main taxonomies from text. Decision Support Sys-
tems, 62:78–93.

3651

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013a. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013b. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems, pages 3111–3119.

Hiroshi Nakagawa and Tatsunori Mori. 2002. A simple
but powerful automatic term extraction method. In
COLING-02: COMPUTERM 2002: Second Interna-
tional Workshop on Computational Terminology.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Proceedings of the 2014 conference
on empirical methods in natural language process-
ing (EMNLP), pages 1532–1543.

Chao Shang, Sarthak Dash, Md Faisal Mahbub
Chowdhury, Nandana Mihindukulasooriya, and Al-
fio Gliozzo. 2020. Taxonomy construction of un-
seen domains via graph-based cross-domain knowl-
edge transfer. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 2198–2208.

Jingbo Shang, Jialu Liu, Meng Jiang, Xiang Ren,
Clare R Voss, and Jiawei Han. 2018. Automated
phrase mining from massive text corpora. IEEE
Transactions on Knowledge and Data Engineering,
30(10):1825–1837.

Ayla Rigouts Terryn, Véronique Hoste, and Els Lefever.
2019. In no uncertain terms: a dataset for mono-
lingual and multilingual automatic term extraction
from comparable corpora. Language Resources and
Evaluation, pages 1–34.

Paola Velardi, Michele Missikoff, and Roberto Basili.
2001. Identification of relevant terms to support the
construction of domain ontologies. In Proceedings
of the ACL 2001 Workshop on Human Language
Technology and Knowledge Management.

Celine Vens, Jan Struyf, Leander Schietgat, Sašo
Džeroski, and Hendrik Blockeel. 2008. Decision
trees for hierarchical multi-label classification. Ma-
chine learning, 73(2):185.

Jorge Vivaldi, Luis Adrián Cabrera-Diego, Gerardo
Sierra, and Marı́a Pozzi. 2012. Using wikipedia to
validate the terminology found in a corpus of basic
textbooks. In LREC, pages 3820–3827.

Jonatas Wehrmann, Ricardo Cerri, and Rodrigo Bar-
ros. 2018. Hierarchical multi-label classification
networks. In International Conference on Machine
Learning, pages 5075–5084.

Wenjuan Wu, Tao Liu, He Hu, and Xiaoyong Du. 2012.
Extracting domain-relevant term using wikipedia
based on random walk model. In 2012 Seventh Chi-
naGrid Annual Conference, pages 68–75. IEEE.

Mo Yu and Mark Dredze. 2015. Learning composition
models for phrase embeddings. Transactions of the
Association for Computational Linguistics, 3:227–
242.

Jie Zhou, Chunping Ma, Dingkun Long, Guangwei Xu,
Ning Ding, Haoyu Zhang, Pengjun Xie, and Gong-
shen Liu. 2020. Hierarchy-aware global model for
hierarchical text classification. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 1106–1117.

