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Abstract
We describe the SustaiNLP 2020 shared task:
efficient inference on the SuperGLUE bench-
mark (Wang et al., 2019). Participants are eval-
uated based on performance on the benchmark
as well as energy consumed in making predic-
tions on the test sets. We describe the task,
its organization, and the submitted systems.
Across the six submissions to the shared task,
participants achieved efficiency gains of 20×
over a standard BERT (Devlin et al., 2019)
baseline, while losing less than an absolute
point in performance.

1 Introduction

While ever-larger pretrained language models have
led to impressive gains across a variety of natural
language processing (NLP) tasks, there is growing
concern about the environmental impact of training
and deploying these models (Strubell et al., 2019;
Schwartz et al., 2019). In response, there has been
a growing body of research focusing on making
these large models smaller and more efficient with
minimal sacrifice to performance (Sanh et al., 2019;
Michel et al., 2019, i.a.).

The SustaiNLP 2020 shared task focuses on the
development of computationally and energy effi-
cient NLP systems. The task uses the SuperGLUE
benchmark (Wang et al., 2019), a standard bench-
mark for natural language understanding. Systems
are evaluated on both the benchmark score as well
as the energy consumed in evaluating the system
on the benchmark. Participants are therefore incen-
tivized to develop models that are energy efficient
while maintaining the high performance of recent
models. The shared task received six submissions
that employed a large variety of optimizations to
improve system efficiency. Overall, the submitted
systems were on average 20× more efficient than a
standard baseline using pretrained language models
while nearly matching baseline performance.

2 Shared Task Description

2.1 Task

The shared task centers on the SuperGLUE bench-
mark, a suite of eight diverse NLU tasks designed
to test a system’s ability to perform a broad range
of language understanding capabilities. The tasks
vary substantially in task type, input size, and tex-
tual domain. We use seven of the eight Super-
GLUE tasks, as the extremely small nature of the
Winograd Schema Challenge (WSC) makes it chal-
lenging to obtain meaningful performance while
improving the efficiency of the system. We briefly
describe the seven tasks used here; see Wang et al.
(2019) for an in-depth discussion of the tasks.

• Boolean Questions (BoolQ; Clark et al., 2019)
is a question answering (QA) dataset where
each example consists of a paragraph and a
yes/no question about that paragraph. The
test set consists of 3245 examples, and the
evaluation metric is accuracy.

• CommitmentBank (CB; De Marneffe et al.,
2019) is a natural language inference (NLI)
task where each example consists of a short
text containing an embedded clause. The task
is to determine if the embedded clause is en-
tailed or contradicted by the original text. The
test set consists of 250 examples, and the eval-
uation metrics are accuracy and F1.

• Choice of Plausible Alternatives (COPA;
Roemmele et al., 2011) is a causal reason-
ing dataset where each example consists of a
premise sentence and the task is to determine
a likely cause or effect of the premise from
among two choices. The test set consists of
500 examples, and the evaluation metric is
accuracy.
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• Multi-Sentence Reading Comprehension
(MultiRC; Khashabi et al., 2018) is a QA
dataset where each example consists of a
paragraph and a variable number of multiple
choice questions about the paragraph. Each
questions can have one or more valid answers.
The test set consists of 1800 examples, and
the evaluation metrics are F1 over all answer
choices as well as exact match of answer sets.

• Reading Comprehension with Commonsense
Reasoning Dataset (ReCoRD; Zhang et al.,
2018) is a QA dataset where each example
consists of a news article and a Cloze question
about the article whose answer choices are
entities in the article. If an entity appears
multiple times in the article, all mentions are
considered correct. The test set consists of
10K examples, and the evaluation metrics are
maximum token-level F1 (over all mentions)
and exact match.

• Recognizing Textual Entailment (RTE; Dagan
et al., 2006; Bar Haim et al., 2006; Giampic-
colo et al., 2007; Bentivogli et al., 2009) is
a collection of NLI datasets where each ex-
ample consists of a premise sentence and a
hypothesis sentence. The task is to determine
if the premise entails, contradicts, or is neu-
tral to the hypothesis. The test set consists
of 300 examples, and the evaluation metric is
accuracy.

• Words in Context (WiC) is a word sense dis-
ambiguation task where each example con-
sists of a pair of sentence that each contain the
same marked word. The task is to determine if
the word has the same sense in both sentences.
The test set consists of 1400 examples, and
the evaluation metric is accuracy.

To participate, each submission produces pre-
dictions on the test set of each task and is scored
according to the task evaluation metrics. The over-
all task performance is determined by averaging
performance metrics for each task. For tasks with
multiple evaluation metrics, we first average within
each task.

2.2 Efficiency

As the workshop focuses on developing computa-
tionally efficient systems, we additionally evaluate

systems by how efficiently they produce predic-
tions on the test set. We focus on measuring ef-
ficiency during inference rather than training, as,
in the current paradigm, models are trained only
a handful of (expensive) times but used for infer-
ence many more times. Additionally, measuring
efficiency during training is complicated by the
widespread reliance on pretrained model compo-
nents.

Though there are many metrics for measur-
ing efficiency, we follow the recommendation
of Henderson et al. (2020) and measure effi-
ciency by the power consumed throughout the
course of inference. To do so, we use the
experiment-impact-tracker library Hen-
derson et al. (2020).

2.3 Organization

We consider two1 tracks: one using GPUs and one
restricted to CPU only. All systems were welcome
to use any programming language or libraries, but
were run on standardized hardware environments.
For the GPU track, participants had four Nvidia
V100s (32GB) available to them, but all partici-
pants chose to use only one GPU due to the cost of
parallelization overhead. We run all submissions
three times and report the mean task and efficiency
scores.

3 Submissions

We provided participants with a simple baseline
that follows the standard paradigm of finetuning a
pretrained language model to each task. For pre-
trained models, we use BERT-base (Devlin et al.,
2019) and RoBERTa-large (Liu et al., 2019), as
provided by the HuggingFace Transformers library
(Wolf et al., 2019).

There were six submissions to the shared task,
four submissions to the GPU track and two sub-
missions to the CPU track. All submissions were
provided by Kim and Hassan (2020). We provide a
brief description of the six submissions below; see
Kim and Hassan (2020) for in-depth descriptions.
Systems 1-* are submissions to the GPU track and
systems 3-* are submissions to the CPU track.

• 1-1: This submission employs optimizations
at all levels. The model is first trained using

1Originally, we considered three tracks: one CPU track
and two GPU tracks separated by performance thresholds.
However, we only received submissions to two of the three
tracks
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system total BoolQ CB COPA MultiRC ReCoRD RTE WiC
G

PU
BERT-base 328.781 7.035 1.334 1.299 20.380 290.650 5.350 0.734

RoBERTa-large 752.935 16.020 2.734 4.014 43.278 667.607 13.126 6.156
1-1 16.169 0.639 0.230 0.010 2.972 12.170 0.260 0.095
1-2 15.248 0.594 0.023 0.016 2.524 11.632 0.337 0.122
1-3 19.953 1.615 0.046 0.049 4.559 12.661 0.677 0.345
1-4 20.477 1.641 0.050 0.060 5.356 12.348 0.653 0.369

C
PU

BERT-base 1449.018 21.698 2.296 4.515 62.951 1324.910 22.182 10.466
3-1 65.570 1.548 0.056 0.060 4.111 58.756 0.639 0.399
3-2 92.797 1.911 0.102 0.166 6.830 82.750 0.259 0.778

Table 1: Energy consumption (×1000) in kWh for various systems.

system avg BoolQ CB COPA MultiRC ReCoRD RTE WiC

BERT-base 64.5 76.5 82.2/87.6 50.8 69.5/18.6 58.1/57.4 68.5 69.1
1-1 63.6 74.0 79.3/86.0 58.0 65.7/17.9 56.6/55.8 66.4 66.0
1-2 63.8 74.0 79.3/86.0 58.0 67.5/18.8 56.6/55.8 66.4 66.0

1-3, 3-1 63.6 73.7 79.3/86.0 58.0 65.8/18.1 56.6/55.8 66.9 65.9
1-4, 3-2 63.8 73.7 79.3/86.0 58.0 67.6/18.4 56.6/55.8 66.9 65.9

Table 2: Task performance for various systems. For BoolQ, COPA, RTE, and WiC, the evaluation metric is
accuracy. For CB, the evaluation metrics are accuracy and F1. For MultiRC, the evaluation metrics are answer-
level F1 and exact match. For ReCoRD, the evaluation metrics are token-level F1 and exact match. The overall
task performance is an unweighted average of performance across tasks.

both task-specific and task-agnostic knowl-
edge distillation (Hinton et al., 2015) from the
pretrained and finetuned BERT model. They
then reduce the model sizes via network prun-
ing (Karnin, 1990) and further decrease the
memory footprint by using 16-bit precision.
Finally, they improve the runtime by fusing
specific operations using onnxruntime and us-
ing a large evaluation batch size.

• 1-2: This submission is the same as 1-1 except
they use a modified model for MultiRC.

• 1-3: This submission is a hybrid system that
uses the GPU only for ReCoRD due to its
much larger size and CPU for all other tasks.
It uses the same optimizations as 1-1.

• 1-4: This submission is the same as 1-3 except
it uses the modified MultiRC model.

• 3-1: This submission uses the same models
as 1-3, but runs only on CPUs. It includes
additional CPU-specific optimizations such as
8-bit quantization for some matrix multiplica-
tions and optimzed number of CPU processes
per task.

• 3-2: This submission uses the same models
as 1-4, but only uses CPUs. It uses the same
optimizations as 3-1.

4 Results

Energy and task results are respectively presented
in Tables 1 and Table 2.

We find that the submitted systems are able to
substantially improve total energy consumption
over the baseline systems, as much as 20× in both
the GPU and CPU settings, while trading off less
than one point average task performance. The dif-
ferences tend to be larger in the CPU setting than
the GPU setting, likely because large, unoptimized
pretrained language models were developed to be
run on GPUs. The improvements of the submitted
systems vary wildly between tasks, and do not scale
linearly in the size of the test set. On CB and COPA,
two of the smallest datasets, the improvements are
as much as 50−100× in the GPU setting. On WiC
and BoolQ, the improvements are a more modest
10×. Similarly, the improvements do not seem to
scale in the size of the inputs, as improvements on
the paragraph-input tasks (BoolQ, MultiRC, and
ReCoRD) are frequently matched and dwarfed by
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improvements on the sentence-level tasks.
Among the systems, we find that the hybrid

submissions (1-3, 1-4) consistently consume more
power than the GPU-only counterparts (1-1, 1-2).
All of the submissions that use a GPU (1-*) sub-
stantially outperform those that do not (3-*), which
is in large part due to the large test set for ReCoRD.
We observe fairly high variance between similar
systems (1-1 and 1-2; 1-3 and 1-4; 3-1 and 3-2). In
the worst case, systems 3-1 and 3-2 only differ by
the MultiRC model, but the energy consumption
varies significantly. We attribute this variance to
runtime differences in the environment.

Task performances are consistently around 2 ab-
solute points lower in the submitted systems than
the baseline, except for COPA, where the submitted
systems outperform the baseline. However, given
the large efficiency improvements over the baseline,
this tradeoff seems favorable.

5 Conclusion

We describe the results of the SustaiNLP 2020
Shared Task. The six submissions were able to
substantially improve over the baseline systems,
obtaining improvements 20× in energy consump-
tion while only losing a point in performance. To
achieve these results, the submissions employed
efficiency optimizations at numerous levels, includ-
ing model architecture, storage, and runtime, which
hints at the rich design space for efficient machine
learning models.
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