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Abstract

This paper describes the NEMO submission
to SIGTYP 2020 shared task (Bjerva et al.,
2020) which deals with prediction of linguis­
tic typological features for multiple languages
using the data derived from World Atlas of
Language Structures (WALS). We employ fre­
quentist inference to represent correlations be­
tween typological features and use this repre­
sentation to train simple multi­class estimators
that predict individual features. We describe
two submitted ridge regression­based configu­
rations which ranked second and third overall
in the constrained task. Our best configuration
achieved the micro­averaged accuracy score of
0.66 on 149 test languages.

1 Introduction

The rapidly developing field of computational lin­
guistic typology (Ramat, 2011) is becoming in­
creasingly popular in natural language processing
(NLP) research (Bender, 2016; Ponti et al., 2019),
where typological corpora such as the World At­
las of Language Structures (WALS) (Dryer and
Haspelmath, 2013) and AUTOTYP (Bickel et al.,
2020) are seeing increased use (Naseem et al.,
2012; Burdick et al., 2020). Despite their popular­
ity, typological corpora are very sparse. Accord­
ing to Murawaki and Yamauchi (2018), less than
15% of the feature values are present for the 2,679
languages represented in WALS. These databases
are human­curated and depend on grammatical de­
scriptions for their development; sparsity is often
due to linguistic sources lacking data on particular
features for a given language. Developing method­
ologies for accurately predicting missing typolog­
ical features on the basis of existing knowledge is
therefore crucial for a wider adoption of typologi­
cal resources in NLP tasks and beyond (Evans and
Levinson, 2009).

This paper presents the work done by the
“NEMOTeam” (Google London and Tokyo) on the
constrained subtask for the SIGTYP 2020 Shared
Task (Bjerva et al., 2020). We experimented
with a variety of machine learning models using
only the features provided in the training, devel­
opment and test sets. Our features included ge­
netic features (genus and family), areal features
(clusters of languages within a radius of the tar­
get language), and derived implicational univer­
sals. Originally introduced by Greenberg (1963)
and demonstrated to capture the syntactic typology
well (Dryer, 1992, 2009; Dunn et al., 2011), sim­
ilarly to others (Daumé III and Campbell, 2007)
we use the framework of universal implications to
capture correlations between other types of typo­
logical features as well. We describe how these
features were derived in detail in Section 3.
As we report below in Section 4, the per­

formance of machine learning algorithms varied
across different feature predictions, with some al­
gorithmsworking better for some features, and less
well for others. On balance however we found
that ridge regression (Hoerl and Kennard, 1970),
also known as Tikhonov regularization (Franklin,
1974), was the most useful approach.

2 Related Work

Here we review the approaches corresponding to
the constrained sub­task of the shared task, where
no external data, such as unlabeled texts, is al­
lowed.
A popular approach to modeling the typologi­

cal diversity of the world’s languages is based on
Bayesian probabilistic inference. Despite recently
drawing some criticism on linguistic grounds
byOno (2020), this approach possesses impressive
explanatory power. In what possibly represents the
earliest model­based typological feature imputer,



18

Daumé III and Campbell (2007) introduced the
probabilistic Bayesian model for uncovering uni­
versal implications in WALS data by associating
random variables with individual WALS features
and discovering the inter­feature correlations from
statistical dependence between random variables.
Themodeling power of the Bayesian approach was
further demonstrated by Daumé III (2009) in a non­
parametric hierarchical Bayesian model combin­
ing linguistic areas and phylogeny.
Murawaki (2015) proposed a deep learning ap­

proach to phylogenetic inference by mapping the
language vectors to a latent space using an auto­
encoder trained using typologically­inspired objec­
tive onWALS datawithmissing values imputed us­
ing a regularized iterative variant of Multiple Cor­
respondence Analysis (MCA) (Josse and Husson,
2012; Josse et al., 2012). In later work, Murawaki
(2017, 2019) and Murawaki and Yamauchi (2018)
abandoned an earlier model in favor of a Bayesian
autologistic approach and demonstrated the superi­
ority of Bayesian predictor over MCA. In this ap­
proach, the languages are represented as random
variables that are explained in terms of other lan­
guages related to each other through phylogenetic
and spatial neighborhood graphs. Bjerva et al.
(2019) introduce a generative model inspired by
the Chomskyan principles­and­parameters frame­
work, drawing on the correlations between typo­
logical features of languages to tackle the novel
task of typological collaborative filtering, a con­
cept borrowed from the area of recommender sys­
tems.
While most state­of­the­art missing feature im­

putation methods are model­based, recently Buis
and Hulden (2019) employed the iterative tech­
nique based on singular value decomposition
(SVD) from the well­studied area of low­rank ma­
trix completion and reported the performance on
par with the prior art. Although lacking explana­
tory power, similarly to MCA, such techniques are
attractive due to their simplicity and computational
efficiency. Takamura et al. (2016) took a stan­
dard machine learning approach by training multi­
nomial logistic regression classifiers for individ­
ual WALS features based on other features present
in the database under various experimental condi­
tions, hypothesizing that the classifier would cap­
ture feature correlations implicit in the data.
The frequentist approach we take is similar in

some respects to work of Takamura et al. (2016)

in that we also train vector space classifiers, but
there are a few notable differences, we: (i) use
typologically­motivated “probabilistic” frequency­
based input space by explicitly representing areal
and phylogenetic associations and implicational
universals, and (ii) explore a wider range of clas­
sification approaches.
Although for this task there is a special inter­

est in the geographic aspect of the modeling, for
our final submission we limited ourselves to the
rather orthodox approach of representing language
associations through fixed neighborhoods, in or­
der not to over­complicate our method (described
in the next section) that can be difficult to rec­
oncile with the more sophisticated models, such
as the very promising model of language evolu­
tion from Kauhanen et al. (2019) and the findings
emerging from the fields of dialectology and di­
alectometry (Szmrecsanyi, 2011; Wieling and Ner­
bonne, 2015; Nerbonne et al., 2020).

3 Method

Here we outline the details of our approach used
to generate the final submission. The open­source
implementation of our training and evaluation
pipeline has been released in public domain.1

3.1 Precomputation of Features
Typological features were preprocessed to find
likely associations between genetic and areal prop­
erties of the language. For each typological feature
𝑓 and value 𝑣 from a set of its values 𝑉𝑓 we com­
puted the following probability estimates:

𝑝genus(𝑣|𝑓) = countgenus(𝑣)
countgenus(𝑓) (1)

𝑝family(𝑣|𝑓) = countfamily(𝑣)
countfamily(𝑓) (2)

𝑝area(𝑣|𝑓) = countarea(𝑣)
countarea(𝑓) , (3)

where count(𝑓) = ∑𝑣𝑖∈𝑉𝑓
count(𝑣𝑖). Here, “fam­

ily” and “genus” in equations 1 and 2 were as
given in the data, and “area” in equation 3 com­
prised all languages within a 2,500 kilometer ra­
dius around the target language’s latitude and lon­
gitude computed using the Haversine formula (Ro­
busto, 1957).2

1Available at https://github.com/google-research/
google-research/tree/master/constrained_language_
typology.

2A reviewer noted that the hard limit of 2,500 kilometers
seemed arbitrary and wondered why we do not weight “neigh­

https://github.com/google-research/google-research/tree/master/constrained_language_typology
https://github.com/google-research/google-research/tree/master/constrained_language_typology
https://github.com/google-research/google-research/tree/master/constrained_language_typology
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Type Example

Family Niger-Congo|Green_and_Blue|
3 Black/green/blue|0.667|9

Genus Bantoid|Green_and_Blue|
3 Black/green/blue|1.000|2

Area 8.0,4.33333|Green_and_Blue|
3 Black/green/blue|0.692|13

Implicational Red_and_Yellow|2 Red/yellow|
Green_and_Blue|3 Black/green/blue|
0.583|12|0.148|54

Table 1: Examples of precomputed most likely associa­
tions for color features.

In addition we computed a set of implicational
universals (Greenberg, 1963). For each feature
value 𝑣𝑗, for feature 𝑓𝑗, we compute the probabil­
ity of of 𝑣𝑗 given 𝑓𝑗, and each 𝑓𝑖, 𝑣𝑖 pair from the
set of known feature­value pairs in the data

𝑝(𝑣𝑗|𝑓𝑗, 𝑓𝑖, 𝑣𝑖) = count(𝑣𝑗)
count(𝑓𝑗, 𝑓𝑖, 𝑣𝑖)

. (4)

For each of the genetic (family and genus), areal
(neighborhood) and universal implication types of
associations we kept a separate table, where, for all
the known features 𝑓 we stored

• the feature 𝑓 ,

• the total number of samples in the data of the
given type with 𝑓 , denoted 𝑐(𝑓),

• the value 𝑣 with the highest estimated proba­
bility per the above equations, denoted 𝑣maj,

• the prior 𝑝maj corresponding to 𝑣maj.

Examples of themost likely associations computed
above are shown in the first three rows of Ta­
ble 1. For the Niger-Congo language family, the
most likely value for the feature Green_and_Blue
(observed 9 times) is 3 Black/green/blue, with
the corresponding prior 0.667. For the Bantoid
language genus, the feature Green_and_Blue
was observed twice, both times with the same
value 3 Black/green/blue. The areal exam­
ple corresponds to the neighborhood of Yoruba,
boring languages according to closeness and use weighted
clustering instead.” We agree that in principle more sophisti­
cated approaches would be nice, but one should bear in mind
that the geographic centroids for languages provided in the
data are at best crude, and so doing anything more sophis­
ticated seemed to us to be crude. Also, to do this properly,
distance is really not sufficient: one would also need to ac­
count for the presence of possible barriers to contact, includ­
ing impassable mountain ranges, seas, and hostile neighbors,
elements that would be hard to model.

Partition Genus Family Area Implicational

TrAIN 11,369 21,592 213,441 144,719
TrAIN+DEV 12,352 23,098 240,840 147,430

TrAIN+DEV+TEST 12,904 24,130 241,438 148,923

Table 2: Precomputed typological feature associations.

(𝜙, 𝜆)=(8.0, 4.3) (where 𝜙 denotes latitude), for
which 13 Green_and_Blue features were observed,
with the most likely value corresponding to
3 Black/green/blue with prior 0.692.
In addition for the implicational features, we

stored the prior probability of 𝑣𝑖 given the con­
ditional feature 𝑓𝑖 from equation 4, and the to­
tal count for 𝑓𝑖. As an example of a weak im­
plicational preference consider the example given
in the fourth row of Table 1, which means that
if a language has 2 Red/yellow for the fea­
ture Red_and_Yellow, then there is a slight pref­
erence (𝑝=0.583, estimated on the basis of 12
examples) for having 3 Black/green/blue as
the value for Green_and_Blue. In other words,
2 Red/yellow ⊃ 3 Black/green/blue. There
were 54 cases of Green_and_Blue in the training
data, for which the estimated a priori probability
for 3 Black/green/blue is 0.148.
Table 2 shows the overall sizes of the association

tables for the genetic, areal and implicational types
described above for the different partitions of the
shared task data.

3.2 Sparse Language Vectors

For each typological feature we train a separate fea­
ture estimator, resulting in 185 estimators overall.
When training an individual estimator, we repre­
sent each language in the training and development
set as a sparse feature vector. Likewise, the lan­
guages whose features need to be predicted at test
time are also represented similarly.
The makeup of individual language vector for

a given typological feature 𝑓 and a language 𝑙 is
shown in Table 3. The vector consists of dense
and sparse subvectors; the components shown in
the first four rows of the table are mostly dense.
The first subvector consists of language’s latitude
𝜙 and longitude 𝜆 coordinate, represented as two
numeric features exactly the same as given in the
shared task data. There is no particular rationale
for this choice other than we previously found that
for a different task (speech synthesis) choosing al­
ternative representations for the language location
(e.g., distances to all other languages in the train­
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Subvector Size Components Type

Location 2 Latitude ϕ(l) Numeric
Longitude λ(l) Numeric
Value vmaj

genus(f) Categorical
Prior pmaj

genus(f) NumericGenus 3
Count cgenus(f) Numeric

Family 3
Value vmaj

family(f) Categorical
Prior pmaj

family(f) Numeric
Count cfamily(f) Numeric
Value vmaj

area(f) Categorical
Prior pmaj

area(f) NumericArea 3
Count carea(f) Numeric

· · · · · · · · · · · ·
Value vmaj(fi) Categorical
Prob. p(vi|f, v, fi) Numeric
Count c(f, v, fi) Numeric
Prior p(vi|fi) Numeric

Implicationali 5

Count c(fi) Numeric
· · · · · · · · · · · ·

Table 3: Language vector for typological feature 𝑓 and
language 𝑙.

ing set) in the input features did not significantly
improve the results (Gutkin and Sproat, 2017).
The next three subvectors representing genus,

family and area, are structured similarly using the
three components used in association tables de­
scribed previously: the majority value 𝑣maj(𝑓) rep­
resented as a categorical feature, the prior corre­
sponding to this value 𝑝maj(𝑓) and the feature fre­
quency 𝑐(𝑓), both represented as numeric features.
For these three subvectors, the missing values are
represented by the three­tuple (𝑣∅, 10−6, 0), where
𝑣∅ denotes a global dummy typological feature
value.3
The first four subvectors described above are fol­

lowed by multiple subvectors representing individ­
ual universal implications, as shown in the fifth
row of Table 3. Each implicational, describing the
dependence of feature 𝑓𝑖 on 𝑓 , is represented as a
five­tuple whose elements are stored in the associ­
ations table for implicational universals: The most
likely value 𝑣maj(𝑓𝑖) of 𝑓𝑖 corresponding to the
highest conditional probability 𝑝(𝑣𝑖|𝑓, 𝑣, 𝑓𝑖) (inter­
preted as probability of 𝑓𝑖 taking value 𝑣𝑖 given
that 𝑓 is 𝑣), the total count 𝑐(𝑓𝑖, 𝑓, 𝑣) of 𝑓𝑖 when 𝑓
is 𝑣, the prior 𝑝(𝑣𝑖|𝑓𝑖) and the total count 𝑐(𝑓𝑖) for
𝑓𝑖 when 𝑓 is 𝑣. The missing implicational is rep­
resented as a five­tuple (𝑣∅, 10−6, 0, 10−6, 0). As
mentioned above, the implicational portion of the
language vector is very sparse because, for a fea­
ture 𝑓 ∈ 𝐹 the language vector belongs to, one
needs to compute all its correlations to other fea­

3The choice of 10−6 for a missing value prior is arbitrary.
Any small non­zero value valid for a log transform is suitable.

Set Langs Families Genera
Features

Types Values
Unique Total

TrAIN 1,125 131 283 185 993 42,698
DEV 83 36 53 182 628 3,246
TEST 149 35 45 179 577 3,056

Total 1,357 145 311 185 1,034 49,000

Table 4: The three partitions of SIGTYP data.

tures 𝑓𝑖 ∈ 𝐹 , where 𝐹 is the set of all 182 known
features. Since the typological database is very
sparse, most of the observed correlations between
𝑓 and 𝑓𝑖 for a given language 𝑙 are poorly instanti­
ated.

The categorical features in the language vector
are represented using a one­hot encoding and the
numeric features are scaled to zero mean and unit
variance. For probability components, prior to nu­
meric feature scaling, the probability features are
transformed into log domain.

The overall representation results in the lan­
guage vectors with a rather high dimensional­
ity. For example, the language vectors for
the Order_of_Subject,_Object_and_Verb fea­
ture have the dimension of 4111. As we shall see
below from the shared task details, this representa­
tion may already be too specific given the training
set which only contains 1,125 data points. This
observation also explains our choice of represent­
ing features and implicationals with the attributes
associated with their most likely majority values
rather than all the values for that feature observed
in the data, as suggested by a reviewer — doing so
will dramatically increase the dimension of input
feature space even further and render out approach
completely intractable.

4 Experiments and Discussion

In what follows, we provide a brief overview of the
datasets, introduce the baseline systems we evalu­
ated against during the development of ourmethod,
provide the evaluation results of miscellaneousma­
chine learning algorithms on the development set
that guided our final model selection, describe the
two configurations submitted to the constrained
subtask and, finally, mention the approaches that
did not work well in our settings.
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Figure 1: Languages in the SIGTYP training (blue), development (green) and test (yellow) sets.

4.1 Data Overview
Some of the properties of the data used in our ex­
periments4 are shown in Table 4, where we sum­
marize the counts for three partitions of the data:
the training and development sets, and the blind
test set. For each of the sets, the total number
of languages is shown along with the number of
unique language families and genera. The count
of typological feature types is displayed along with
the number of unique feature values and the total
number of observed values. As can be seen from
the table, the size of the data is very small, which
precludes us from using state­of­the­art deep learn­
ing methods, especially given our approach to
representing each language as a point in high­
dimensional space.
The 1,357 longitude and latitude language coor­

dinates provided in the data are displayed in Fig­
ure 1 (best viewed in color) using the Mercator
projection. The languages in the training set are
shown in blue, the development set languages in
green and the test set languages in yellow.

4.2 Baselines
For our baselines five simple prediction algorithms
based on deterministic search were implemented.
Initially we evaluated these systems on the devel­
opment (DEV) set and later on the test set, after the
golden truth data was released by the organizers.

4The SIGTYP data is available from https://github.
com/sigtyp/ST2020/tree/master/data.

The globalmajority class predictor (denoted B1)
accumulates the frequencies of all the typological
feature values in the training data and predicts the
most frequent value for the feature in question irre­
spective of its phylogenetic or areal attributes. The
clademajority class predictor (denoted B2) extends
the previous predictor by also taking into account
language genera and families, producing predic­
tions of the form

̂𝑣B2
(𝑓) =

⎧{{
⎨{{⎩

𝑣maj(𝑓) if 𝑐genus(𝑓) = 0 and
𝑐family(𝑓) = 0 ,

𝑣majfamily(𝑓) if 𝑐genus(𝑓) = 0 ,
𝑣majgenus(𝑓) if 𝑐genus(𝑓) > 0 .

Predictor B3 only relies on the distances between
languages’ geographic coordinates defined in the
data. For each typological feature in question, the
predictor returns the value belonging to the closest
language, according to the Haversine formula (Ro­
busto, 1957), with a known value for that feature.
The Haversine distance 𝑑(𝑙𝑖, 𝑙𝑗) is computed be­
tween each pair of languages 𝑙𝑖 and 𝑙𝑗 represented
as points on an ideal sphere using their respec­
tive latitude and longitude coordinates (𝜙𝑖, 𝜆𝑖) and
(𝜙𝑗, 𝜆𝑗).
A naïve approach for combining areal and phylo­

genetic knowledge is implemented by predictor B4
which performs its search in two additional clus­
ters of inter­language distances, grouped by gen­
era and families: The algorithm first searches for

https://github.com/sigtyp/ST2020/tree/master/data
https://github.com/sigtyp/ST2020/tree/master/data
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Sets Systems

Train Test # Evals B1 B2 B3 B4 B5

TrAIN DEV 3,246 53.67 62.69 58.87 59.33 63.56
TrAIN+DEV TEST 5,477 54.66 63.87 58.90 61.68 59.94

Table 5: Micro­averaged accuracies (%) for the five
baseline systems.

the known feature within the geographically clos­
est languages of the same genus, followed by a
search within the closest languages from the same
family, falling back to the closest languages from
the global set.
The final baseline configuration B5 uses an en­

semble approach by combining areal and phyloge­
netic information by using majority voting. The
areal estimate is provided by the majority estimate
from the candidate’s neighborhood (as described
in Section 3.1) or, if that information is not avail­
able due to the nearest language being located be­
yond the neighborhood radius, by the known fea­
ture from the closest languages outside the neigh­
borhood. The phylogenetic clade estimates are pro­
vided by the majority class values from genera and
families (B2), respectively. The final estimate is
produced by themajority voting, where at least two
predictions have to agree, otherwise the predictor
falls back to global majority class estimates (B1).
The micro­averaged accuracies for five of the

baseline systems are shown in Table 5. We per­
formed the evaluation by first obtaining the esti­
mates from a set shown in the first column and
then predicting each known feature value for the
languages from a set shown in the second column
(DEV or golden TEST) by pretending that this value
is unknown. Best accuracies are highlighted in
bold. As can be seen from the table, the best base­
line configuration on the DEV set is the B5 ensem­
ble method, with the pure clade­based B2 coming
second. On the golden TEST set, B2 is the winning
configuration, while the second best configuration
is B4. It is interesting to note, that the methods that
completely ignore phylogeny (B1 and B3) did not
perform well in either evaluation.
As one reviewer notes, the apparent predomi­

nance of phylogeny in our results may seem sur­
prising given that areal features are well­known to
be important in many areas of the world — e.g. In­
dia (Emeneau, 1956). This is likely due at least in
part to the fact that many of the language families
in the sample are small families spoken in a rela­
tively limited geographic area, or else are families

Algorithm Acc. Algorithm Acc.

AdaBoost 41.56 LDA 47.84
Bagging Ensemble 49.04 Linear SVM 55.36

Decision Tree 44.27 Logistic Regression 58.78
DNN 55.55 QDA 34.32

Gaussian Naive Bayes 51.91 Random Forest 63.00
Gaussian Process 23.38 Ridge Regression 75.88

Table 6: Micro­averaged accuracies (%) of various al­
gorithms on the development set.

like Pama­Nyungan, which are more or less iso­
lated from unrelated neighbors. This would tend to
confound the influence of phylogeny versus geog­
raphy, since it is only when part of a language fam­
ily is spoken in an area that is populated by speak­
ers of unrelated families that one will see robust
effects of geography.

4.3 Model Selection Using Development Set

We approach the feature prediction task by train­
ing 185 multi­class classifiers, one for each typo­
logical feature. Several standard machine learn­
ing algorithms were evaluated on the develop­
ment set to establish the most optimal algorithm
for the task. In particular, we trained decision
trees (Breiman et al., 1984), Naive Bayes (Lang­
ley et al., 1992) with Gaussian mixtures, Gaussian
processes (Rasmussen and Williams, 2006), clas­
sifiers based on linear and quadratic discriminant
analysis (LDA and QDA, respectively) (Tharwat,
2016), support vector machines (SVM) with lin­
ear kernel (Suykens and Vandewalle, 1999), multi­
nomial logistic regression (Böhning, 1992), ridge
regression (Hoerl and Kennard, 1970) and simple
feed­forward neural networkswith a single layer of
200 units (DNN). In addition, three ensemble con­
figurations were also evaluated: multi­class Ad­
aBoost (with 100 estimators) (Zhu et al., 2009),
random forests (with 200 estimators, minimum of
three samples per leaf and information gain as split­
ting criterion) (Breiman, 2001) and bagging en­
sembles (Breiman, 1999). For all the algorithms
we used the implementation provided by scikit-
learn toolkit.5 We mostly used default hyper­
parameters provided performing no special tuning.
The evaluation results for each of the classifiers

are shown in Table 6. As can be seen from the table,
there are only five algorithms out of twelve which
are remotely comparable to our development set
baselines summarized in Table 5: DNN, linear

5https://scikit-learn.org/

https://scikit-learn.org/
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SVM, multinomial logistic regression, random for­
est and ridge regression. Out of those, the ran­
dom forest ensemble method and the ridge regres­
sion are the only competitive models, with ridge
regression estimation strongly outperforming all of
our baselines on the development set achieving the
micro­averaged accuracy of 75.88%. On the basis
of this result we chose ridge regression algorithm
for our experiments on the test set and the final sub­
mission.

It is worth noting, however, that it is not difficult
to find cases where the ridge regression estimator
does not perform as well as other methods. For ex­
ample, for feature SVNegO_Order, the DNN (93%
accuracy) and SVM (87% accuracy) both outper­
form ridge regression (80%). We hypothesized
that a better alternative to fixing a certain method
for all the features is to employ an ensemble of clas­
sifiers which are feature­specific. Although we in­
clude this approach in our implementation, so far
we only tested it under scenario of performing an
iterative stratified 𝑘­fold cross­validation (Witten
et al., 2011) over the training, rather than develop­
ment, set. The optimal feature­specific classifiers
obtained by this method did not fare well on the de­
velopment set, which is probably an indicator that
development set was not an optimal reflection of
the training data.

Aside from the ridge regression and random for­
est ensemble methods, the poor average perfor­
mance of other classification algorithms on the
development set is rather unexpected. We hy­
pothesize that this may be due to several con­
founding factors. The first issue is that our
approach of representing training data for each
typological feature as sparse language vectors
results in small amounts of high­dimensional
training data that may not be enough to reli­
ably train most of the classifiers in our partic­
ular setting. The second issue is the high fea­
ture sparsity which adversely affects multi­class
classification for most of the algorithms. Con­
sider the Order_of_Subject,_Object_and_Verb
feature. The frequencies of its seven val­
ues (corresponding to class label counts) in the
training data represented as an ordered set are
{311, 226, 113, 51, 16, 6, 1}. Although we employ
balanced class weighting for all the algorithms, us­
ing the label values to adjust the weights inversely
proportional to class frequencies observed in the
data, this may not be enough. Some unsatisfactory

attempts to further remedy this are described be­
low.
We further note that the relatively good per­

formance of ridge regression and random forest
classifiers on the development data without any
hyper­parameter fine­tuning may possibly be ex­
plained by the relative robustness of both meth­
ods to sparseness and collinearity effects (which
severely affect other types of parametric and non­
parametric predictors in our experiment), as pre­
viously analyzed in detail by Tomaschek et al.
(2018) and observed by others in a typological set­
ting (Burdick et al., 2020) and elsewhere (Josifoski
et al., 2019). We briefly reevaluate these assump­
tions on the released test set in Section 4.6.

4.4 Shared Task Submission

Our submission to shared task consists of two
ridge regression classifier configurations denoted
NEMO_system1 and NEMO_system2.6 The differ­
ence between the two configurations is in how
the training data is generated from the orig­
inal shared task subsets. The training data
for NEMO_system1 classifier consists of the lan­
guage vectors generated from the original training
(train.csv) and development (dev.csv) sets only.
For NEMO_system2, the training data also includes
the phylogenetic, areal and implicational relations
computed from the known features in the blind test
set (test_blinded.csv).

4.5 Approaches That Disappointed

In addition to the experiments described above,
we also tried applying missing feature imputation
algorithms to the data provided, as a preprocess­
ing step prior to training the classifiers described
above. Neither of the feature imputation algo­
rithms that we tried produced satisfactory results
that could improve upon our best baseline. One
of the imputation approaches that we evaluated
was Multiple Imputation with Denoising Autoen­
coders (MIDAS) by Lall and Robinson (2020).
This approach is particularly attractive because it
natively supports categorical features. However,
due to reliance on a denoising autoencoder archi­
tecture (Vincent et al., 2010), the network requires
large amounts of training data to be estimated re­
liably, which prevented us from getting adequate

6Submitted as NEMO_system1_assoc-train-
dev_constrained and NEMO_system2_assoc-train-
dev-test_constrained, respectively.
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Family # Languages Acc.Train Test

Mayan 6 17 0.73
Mahakiranti 4 13 0.72
Tucanoan 3 8 0.67
Nilotic 3 15 0.65
Madang 3 9 0.68
N. Pama­Nyungan 2 24 0.67

Table 7: Numbers of languages from each test family in
the test and training data, along with our best system’s
per­family accuracy.

performance on the provided typological data.7
Similarly disappointing were the attempts to ad­

dress the class imbalance problem during multi­
class classifier training using class resampling
techniques. Similar to the feature imputation
above, resampling was applied as a preprocessing
step prior to training the classifiers. In particu­
lar, neither the application of synthetic minority
over­sampling technique (SMOTE) (Chawla et al.,
2002) nor the adaptive synthetic sampling (He
et al., 2008) produced any improvements over our
best baseline.
We also extended our method to use country

code information provided with the task data for
each language. This was achieved by accumu­
lating the per­country typological feature priors,
similar to other areal and phylogenetic features,
and representing the country codes as categori­
cal features in classification, the process described
in Section 3. Ridge regression estimator that in­
cluded country code information achieved micro­
averaged accuracy of 75.66% on the development
set – a small deterioration of 0.3% compared to our
best result. This may be due to multiple errors in
the provided data, e.g., the country code for the
Chepang language from Sino­Tibetan family spo­
ken in Nepal (Caughley, 1982) is defined as US in
the development set.

4.6 Discussion
We start with some observations about the rather
apparent differences between the test data and the
training and development data. In Table 7 we list
the six language families evidenced in the test data,
and the numbers of languages for each represented
in the training and development data, versus the
test data. As can be seen some of the language
families are significantly more represented in the
test data than they are in the data that was released

7The MIDAS imputer for linguistic typological data is re­
leased with the rest of our software.

Figure 2: Feature accuracy versus number of instances
of the feature in the training and development data
(𝑟=0.21).

earlier. This is particularly the case for Northern
Pama­Nyungan, which comprised two languages
in the training­development data, and twenty four
languages in the test data. This skew can also be
seen in Figure 1 where the yellow dots represent
the test data. There are islands of yellow in Aus­
tralia, Northern South Asia, Central East Africa
and in Central America, surrounded by seas of
green and blue.8

Turning now to our results, we discuss here
the performance of our best model NEMO_system2
(overall micro­averaged accuracy 0.66). First of
all, we note that there is very little correlation be­
tween the number of exemplars of a feature in
training and development, and our system’s perfor­
mance on that feature in the test set (correlation co­
efficient 𝑟=0.21): see Figure 2.9
Second, comparing our results against the

best baseline provided by the task organizers
— frequency-baseline_constrained (overall
micro­averaged accuracy 0.51), we list in Tables 8
and 9 the five features for which our system had
the largest win and loss, respectively in terms of
absolute accuracy difference. Note that three of
the five features for which we showed the largest
gains relate to word order. While this may be due
to the automatically derived implicational features
used in our models — word­order­related features
being probably among the most robust of the im­
plicational universals — it is also true that these
features are better instantiated in the data.

8As one of the reviewers notes, it would be useful for fu­
ture tasks if the organizers could provide a rationale for the
data splits chosen.

9A reviewer asks if there is any correlation between accu­
racy and the number of value settings for each feature in the
training and development set. This correlation is somewhat
higher, and negative (𝑟= − 0.34), not surprising since we
would expect to do worse if there are more possible values.
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Feature baseline our best # in test
Inclusive/Exclusive_Distinction_in_Verbal_Inflection 0.00 0.75 4
Rel_between_the_Order_of_Obj_and_Vb_and_the_Order_of_Adj_and_Noun 0.14 0.86 35
Order_of_Object_and_Verb 0.26 0.89 38
Order_of_Adposition_and_Noun_Phrase 0.26 0.89 27
Epistemic_Possibility 0.20 0.80 5

Table 8: Five features on which our best system most outperformed the best baseline, with accuracies for each,
and counts for each in the test data.

Feature baseline our best # in test
Person_Marking_on_Adpositions 0.50 0.20 10
Genitives,_Adjectives_and_Relative_Clauses 1.00 0.67 3
Noun_Phrase_Conjunction 0.67 0.33 3
Subtypes_of_Asymmetric_Standard_Negation 1.00 0.66 5
Obligatory_Possessive_Inflection 1.00 0.50 6

Table 9: Five features on which our best system most underperformed the best baseline, with accuracies for each,
and counts for each in the test data.

Algorithm Acc. Algorithm Acc.

AdaBoost 0.44 LDA 0.41
Bagging Ensemble 0.50 Linear SVM 0.56

Decision Tree 0.47 Logistic Regression 0.60
DNN 0.58 QDA 0.31

Gaussian Naive Bayes 0.46 Random Forest 0.62
Gaussian Process 0.23 Ridge Regression 0.66

Table 10: Micro­averaged accuracies of various algo­
rithms on the test set.

One reviewer notes that it would be interesting
to see the results of ablation studies for some of the
high dimensional features discussed in Section 3.2.
We agree, but leave this for future work.
Finally, recall from the discussion of develop­

ment set­based model selection in Section 4.3 that
ridge regression was the best performing model,
followed by the non­parametric random forest pre­
dictor (see Table 6). Once the golden test data was
released, we evaluated the same set of twelve clas­
sifiers on the test set with the results shown in Ta­
ble 10. As can be seen from the table, the ranking
of three best classifiers on the development set is
preserved on the held­out test set as well: ridge
regression is the best­performing classifier in our
task, followed by random forest and, finally, multi­
nomial logistic regression.

5 Conclusion

We have presented the NEMO submission to the
2020 SIGTYP shared task. Our system used ge­
netic, geographical and automatically deduced im­
plicational universals, and a range of classifiers
of which ridge regression yielded the best overall
performance. Our method achieved 0.66 overall

accuracy on the task, compared to the best base­
line provided by the organizers, which had an ac­
curacy of 0.51. Our system tended to do better on
test language families that were better represented
in the training and development data, though in­
terestingly the correlation between the number of
instances of features in the training/development
data and performance on that feature was not
strong.
As discussed above, we include in the training

package methods for ensembling classifiers so that
one can find per­feature optimal classifiers, but we
did not make use of this functionality for our sub­
mitted results. We do think, however, that further
experimentation with this functionality would be
useful.
Finally, as one of the reviewers notes, it would

be interesting to ask what use work along the
lines presented here could be to the field lin­
guist/typologist who is interested in testing po­
tential relationships between languages based on
shared features. Many of the systems reported in
Section 2 had this aim in mind. While we do not
want to overstress the value of this sort of work
compared to good linguistic intuition, we do think
that knowing the Bayesian priors of associations,
as we discussed in Section 3.1 could at least serve
as a reminder that some feature settings may be
shared simply because they are very common any­
way.
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