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Abstract 

This paper describes our proposed model 

for the Chinese Grammatical Error Diagno-

sis (CGED) task in NLPTEA2020. The 

goal of CGED is to use natural language 

processing techniques to automatically di-

agnose Chinese grammatical errors in sen-

tences. To this end, we design and imple-

ment a CGED model named BERT with 

Score-feature Gates Error Diagnoser 

(BSGED), which is based on the BERT 

model, Bidirectional Long Short-Term 

Memory (BiLSTM) and conditional ran-

dom field (CRF). In order to address the 

problem of losing partial-order relation-

ships when embedding continuous feature 

items as with previous works, we propose a 

gating mechanism for integrating continu-

ous feature items, which effectively retains 

the partial-order relationships between fea-

ture items. We perform LSTM processing 

on the encoding result of the BERT model, 

and further extract the sequence features. In 

the final test-set evaluation, we obtained 

the highest F1 score at the detection level 

and are among the top 3 F1 scores at the 

identification level. 

1 Introduction 

Recently, with the continuous development of 

China, more and more people have begun to learn 

Chinese as their second language. Due to the many 

complexities of Chinese, such as the differences in 

how tenses are formed in Chinese and English, 

many learners mistakenly write many Chinese 

sentences with grammatical errors when they first 

learn Chinese. Therefore, it is necessary to de-

velop a CGED system, which can not only im-

prove the learning efficiency of Chinese learners, 

but also serve many downstream tasks based on 

Chinese corpora. 

Compared with English grammatical error diag-

nosis, Chinese grammatical error correction has re-

ceived limited interest in the research community. 

English grammar error detection models began be-

ing developed as early as the 1980s, such as the 

early Writer’s Workbench system (Macdonald NH, 

1983) for detecting punctuation errors and style er-

rors. Later, a series of tasks for English grammati-

cal error detection and correction were proposed, 

such as CoNLL-2013 (Ng et al., 2013) and 

CoNLL-2014 (Ng et al., 2014). With the release of 

the CGED task in the NLPTEA workshop in recent 

years, grammar diagnosis models for Chinese have 

also begun to be developed. 

The goal of the CGED task is to use natural lan-

guage processing techniques to diagnose grammat-

ical errors in Chinese sentences written by learners 

who use Chinese as a second language. The CGED 

task allows researchers to exchange experiences 

and ultimately promote the development of this 

shared task. It defines four types of Chinese gram-

matical errors, which are: redundant words (de-

noted as a capital "R"), missing words ("M"), word 

selection errors ("S"), and word ordering errors 

("W"). The system developed for this task needs to 

identify the type and location of the errors in the 

input sentence. 

Most recent solutions to the CGED shared task 

convert the problem into a sequence labeling prob-

lem and use a BiLSTM-CRF-based architecture as 

a basic framework to train the model. However, in 

previous work, feature engineering for the input se-

quence has become more and more complex. In ad-

dition, for some score-based features which exhibit 

partial-order relationships, such as the commonly 

used PMI Score features, previous works usually 

learn their embedding matrix after discretizing the 

scores. Through this process, the partial-order rela-

tionships between items will be lost, and the di-

mensionality of the feature embedding matrix will 

gradually increase as the granularity of the score 
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discretization becomes finer, increasing the num-

ber of parameters needed to be trained. In response 

to the above problems, we design and implement 

BERT with Score-feature Gates Error Diagnoser  

(BSGED), and integrate score-based features 

through the use of a gating mechanism, which not 

only greatly reduces the workload of feature engi-

neering, but also retains the original partial-order 

relationships for score-based features. Experiments 

verify that the BSGED model achieves excellent 

results with less feature engineering. 

In summary, our contributions are as follows: 

⚫ We propose a novel model BSGED for the 

CGED task, which achieves better results 

with fewer prior features and greatly re-

duces the workload of feature engineering. 

⚫ We propose a gating mechanism for inte-

grating score-based features, which not 

only preserves the partial-order relation-

ships between feature items, but also 

greatly reduces the amount of model train-

ing parameters. 

⚫ Through ablation experiments, we verify 

the effectiveness of adding a BiLSTM layer 

to further improve the model's ability to 

capture long-term dependencies of input 

sequences. 

2 Related Work 

Grammatical error diagnosis models appeared as 

early as the 1980s. Early grammatical error diag-

nosis models used rule-based methods to check and 

correct grammatical errors (Naber D, 2003). How-

ever, because the design of matching rules requires 

rich linguistic knowledge, it has become more and 

more difficult as well as time-consuming to design 

rules for such models. 

In order to deal with more complex error types, 

a series of grammatical error detection and correc-

tion models based on machine translation technol-

ogy have been proposed. Brockett et al. (2006) pro-

posed a model that uses Statistical Machine Trana-

lation (SMT) techniques to detect and correct 

grammatical errors, which deal with mass/count 

noun confusions by translating the incorrect 

phrases as a whole. Felice et al. (2014) proposed a 

model for grammatical error diagnosis which com-

bines rule-based and SMT systems in a pipeline. 

The model first uses rules to detect errors and gen-

erate candidates. After the candidates are roughly 

screened by the n-gram language model, they are 

sent to the SMT model for further screening. In the 

end, candidates will be further selected through 

language models and filtering rules. In order to 

solve the CGED2018 shared task, Hu et al. (2018) 

proposed a sequence-to-sequence network to 

model the problem, and used a semi-supervised 

method to generate pseudo-grammatical error data 

for training the model. 

Models based on machine translation require a 

large-scale training corpus to train the model. In-

spired by the powerful capabilities of Neural Ma-

chine Translation (NMT) in grammatical error di-

agnosis, Zheng et al. (2016) regarded CGED as a 

sequence labeling problem, and used the powerful 

feature learning ability of an LSTM network to 

model the input sequence, and achieved better re-

sults. Yang et al. (2017) incorporated more gram-

matical features into the model based on the 

BiLSTM-CRF framework. Based on the LSTM-

CRF error detection model, Li et al. (2018) com-

bined three error correction models: a rule-based 

model, an NMT GEC model, and an SMT GEC 

model. The three GEC models aid the BiLSTM-

CRF model in marking possible error locations 

during the detection phase. Fu et al. (2018) de-

signed a model that incorporates richer features 

and added a template matcher and probability fu-

sion mechanism. 

3 Methodology 

3.1 Baseline Model 

Similar to most previous models for CGED shared 

tasks, we treat the CGED problem as a sequence 

labeling problem, and use BiLSTM-CRF as the 

basic framework of BSGED. Specifically, for a 

given input sequence 𝑠𝑖, which consists of a char-

acter sequence  [𝑐1, 𝑐2, … , 𝑐𝑛], BSGED will out-

put an equal-length sequence  𝑌𝑖 , which is com-

posed of a label sequence [𝑦1, 𝑦2, … , 𝑦𝑛] composi-

tion. We adopt the BIO marking strategy, that is, 

for characters without grammatical errors, we mark 

them as 'O', and for a subsequence of grammatical 

errors, such as word selection errors, the initial 

characters will be marked as 'B-S', The remaining 

single characters will be marked as 'I-S'. 

Inspired by previous work, we use a BiLSTM 

network as the RNN unit to obtain the input char-

acter encoding sequence. The BiLSTM network 

has a strong ability to capture long-term dependen-

cies of the input sequence. CRFs are widely used 

in a large number of natural language processing 

tasks, especially sequence-annotation tasks. With 
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the addition of a CRF, the BiLSTM-CRF model 

can predict the input sequence more accurately. For 

example, the BiLSTM-CRF model can avoid in-

correct sequence predictions beginning with "I-X". 

In terms of feature selection, we select some simple 

features, such as the POS tag sequence, POS Score, 

and PMI Score. Different from previous work, 

BSGED adopts the BERT model as the character 

encoder of the input sequence, and uses a novel fu-

sion mechanism to incorporate score-based fea-

tures. The model details are introduced in the next 

section. The framework of the base model adopted 

by BSGED is shown in Figure 1. 

 

3.2 BERT-Encoder and Gating mechanism 

Unlike previous models based on the BiLSTM-

CRF architecture, BSGED does not utilize overly 

complex feature engineering, but uses the novel 

BERT model to obtain a token embedding repre-

sentation of the input sequence. As a pre-trained 

language model, BERT has been successfully ap-

plied to many natural language understanding tasks, 

such as Chinese spelling error correction (Zhang et 

al. 2020). Due to its powerful semantic extraction 

capabilities, we utilize BERT as a semantic feature 

extractor, converting characters into vector repre-

sentations. In order to preserve the long-term de-

pendencies on the input sequence better, BSGED 

takes the final layer output of the BERT model as 

part of the BiLSTM input, instead of concatenating 

it with the output results of the other features 

through the BiLSTM network. Experiments verify 

that this operation can further improve the overall 

performance of BSGED. 

                                                           
1 https://github.com/HIT-SCIR/ltp 

We use prior knowledge to calculate the POS 

features of the input sequence and the PMI features 

between adjacent words. Specifically, we first use 

the LTP word segmentation tool1 to perform word 

segmentation processing on the input sequence, 

and then perform part-of-speech tagging on the 

segmented sequence. This step also makes use of 

the LTP library. We also integrate location infor-

mation into the POS tags. For example, for a Chi-

nese sequence 𝐴1𝐴2𝐴3𝐵1𝐵2𝐶1, the segmented se-

quence should be 𝐴1𝐴2𝐴3  - 𝐵1𝐵2  - 𝐶1 . Assuming 

the POS information of word A, word B, and word 

C are 𝑐, 𝑝, 𝑟 respectively, then the result of   POS 

labeling should be 𝐵𝑐𝐼𝑐𝐼𝑐  - 𝐵𝑝𝐼𝑝 - 𝐵𝑟. 

For the score-based features, we use the news 

corpus provided by SogouCS2 as a large corpus to 

obtain prior-knowledge statistics. Similar to the ap-

proach of Yang et al. (2017), for the POS Score fea-

ture, we first count the discrete probability distri-

bution of the POS feature of each word, and use the 

probability value as its POS Score. Similarly, we 

count the co-occurrence frequency between every 

two words on the same large corpus, and use the 

normalized co-occurrence frequency score as the 

PMI Score of two adjacent words. It should be 

noted that we also merge the character position in-

formation in the vocabulary into these feature 

items. 

 
We propose a novel fusion mechanism for score-

based features. For continuous score features, tra-

ditional models usually discretize them first, and 

then embed the discretized score into a low-dimen-

sional space. However, this embedding method 

will lose the partial-order relationships between the 

scores. In addition, the size of the feature space will 

change with the discretization granularity and the 

original value range of the score, and the model 

will have more parameters to be trained. Our ap-

proach differs in that we retain the continuity of 

2 https://www.sogou.com/labs/resource/cs.php 

 

Figure 1: The base model of the BiLSTM-CRF 

framework used by BSGED 

 

Figure 2: Schematic diagram of the features used 

in BSGED 

https://github.com/HIT-SCIR/ltp
https://www.sogou.com/labs/resource/cs.php
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score features and train a matrix 𝑴𝑓 ∈ ℝ2∗𝐷  for 

each score-based feature, where 𝐷  is the preset 

embedding matrix dimension. For the 𝑖 -th 

character, the final score embedding vector is as 

follows: 

 𝑒𝑚𝑏𝑖 = 𝑴𝑖[𝑝𝑜𝑠𝑖] ∗ 𝑠𝑐𝑜𝑟𝑒𝑖  (1) 

Where 𝑒𝑚𝑏𝑖 is the final embedding representation 

and 𝑝𝑜𝑠𝑖 is the position information of the charac-

ter, 𝑝𝑜𝑠𝑖 = 0 for a "B-Word", and 𝑝𝑜𝑠𝑖 = 1 for an 

"I-Word". At this point, the role of score-based fea-

tures is similar to an input gate (Hochreiter and 

Schmidhuber, 1997). This strategy not only pre-

serves the partial-order relationship of score fea-

tures, but also greatly reduces the size of the pa-

rameter matrix. The composition structure of the 

features for the input sequence is shown in Figure 

2. 

3.3 Ensemble mechanism 

Following our experiments, we find that for differ-

ent initialization parameters, the prediction results 

of the model are highly variable. This observation 

is consistent with that of Yang et al. (2017). In or-

der to further improve the performance, we train 

multiple single models and use an ensemble mech-

anism to fuse them together. We adopt a simple and 

effective voting mechanism as our ensemble 

method, which improves the precision of the model 

while preserving the recall value. 

In our final version, we use a total of four pa-

rameter groups, and we select 4 random factors for 

each group, so we finally merge 16 single models. 

3.4 Post-Processing 

The ensemble mechanism may produce conflicting 

prediction results. To solve this problem, we per-

form post-processing operations on the results of 

the ensemble model. We adopt some rule-base 

schemes, which integrate prior knowledge simply 

and effectively. The main processing methods are 

as follows: 

First, in cases when some single models predict 

a sentence to be correct and other single models 

predict it to be incorrect, the conflict is resolved by 

retaining the prediction ‘incorrect’. The ‘correct’ 

label is only output when all models predict the 

sentence as ‘correct’. 

Second, we resolve ‘incorrect’ predictions with 

overlaps, such as when the following two predic-

tions are output for sentence 𝑠𝑖: 

 {
 < 𝑏1, 𝑒1, 𝑡𝑦𝑝𝑒1 >
 < 𝑏2, 𝑒2, 𝑡𝑦𝑝𝑒2 >

 (2) 

Where 𝑏 is the starting position of the prediction, 𝑒 

is the ending position, and 𝑡𝑦𝑝𝑒 is the predicted er-

ror type. When Equation 3 is established, BSGED 

believes that the two prediction results overlap. 

 {
𝑡𝑦𝑝𝑒1 =  𝑡𝑦𝑝𝑒2

 𝑏1 ∈ (𝑏2, 𝑒2) ⋁  𝑏2 ∈ (𝑏1, 𝑒1)
 (3) 

When overlapping occurs, the model uses the 

segmentation boundary of the original sentence to 

filter. Suppose that the word segmentation bound-

ary of sentence 𝑠𝑖  is 𝐷 =  [𝑑1, 𝑑2, … , 𝑑𝑗 , … 𝑑𝑛] , 

that is, 𝑠𝑖[𝑑𝑗−1: 𝑑𝑗]  represents a word of the sen-

tence. The model will retain the prediction result of 

< 𝑏𝑖, 𝑒𝑖, 𝑡𝑦𝑝𝑒𝑖 > which is more suitable for 𝐷. 

4 Experiment 

4.1 Data Preparation 

We use all the data from the CGED2015-

CGED2018 training and test sets, as well as the 

training data from CGED2020. More specifically, 

our training data consists of the following parts: all 

data from the CGED2015-2016 training set and 

test set, all data from the CGED2017-2018 training 

set, 50% of the CGED2017-2018 test set, and 20% 

of the CGED2020 training set. The validation set 

consists of 50% of the CGED2017-2018 test set 

and 80% of the CGED2020 training set. 

Since the training set of CGED2020 has the 

same data as the test set from CGED2017-2018, in 

order to prevent data leakage, we de-duplicate the 

training set. Following de-duplication, the training 

set contains 43925 samples, and the validation set 

contains 3843 samples. 

4.2 BERT Selection 

Since richer model initialization parameters result 

in more diverse predictions, thereby further im-

proving the recall rate of the model after ensem-

bling, we therefore choose two different BERT pre-

training parameters to initialize our model. 

In addition to using the BERT-Base-Chinese 

version released by Google (Devlin et al., 2018), 

we also use another version of Chinese BERT. In 

order to further promote the research and develop-

ment of Chinese information processing, the HFL 

team released the Chinese pre-training model 

BERT-wwm (Cui et al., 2019), which uses a Whole 

Word Masking technique, as well as models 

closely related to this technology: BERT-wwm-ext. 
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BERT-wwm is trained on Chinese Wikipedia (in-

cluding simplified and traditional characters) and 

LTP is used to perform word segmentation before 

masking is carried out on all Chinese characters 

that make up the same word. Similar to other 

BERT-based models, it has 12 layers, 768 hidden 

size, and 12 self-attention heads. 

 

 

4.3 Validation Results 

We select the model parameters through the vali-

dation set results, which mainly include the selec-

tion of the filtering threshold during model integra-

tion. Since BSGED uses a total of 16 single models 

for integration, we first simply set the max filtering 

threshold to 10, and explore the performance of the 

model after integration within this range. The per-

formance of the model on the validation set is 

shown in Table 3 and Figure 3. It should be noted 

that when selecting parameters, we only paid atten-

tion to the performance of the model at the position 

level. 

 
It can be seen that as the filtering threshold in-

creases, as does the precision, and the resulting pre-

dictions are more reliable; and as the filtering 

threshold decreases, the recall rate of the results 

will increase, enabling the model to be able to 

cover more actual errors. A low threshold will en-

courage retention of a large number of over-detec-

tion errors, while a high threshold will filter out 

partially correct results during post-processing. 

When the filter threshold is in the middle of the 

range, the model can achieve a higher F1 value.  

Finally, we select three fusion models by select-

ing the parameter group with the highest precision  

Filter thresh-

old  

Detection Level Identification Level Position Level 

Pre Rec F1 Pre Rec F1 Pre Rec F1 

1 0.7013 0.9633 0.8117 0.4683 0.851 0.6041 0.2091 0.5419 0.3017 

4 0.8115 0.8254 0.8184 0.6347 0.608 0.6211 0.4255 0.3751 0.3987 

10 0.8881 0.5408 0.6722 0.7733 0.3511 0.4829 0.622 0.2247 0.3301 

Table 1: Performance of the BSGED on the validation set with different filtering thresholds 

 Detection Level Identification Level Position Level 

Pre Rec F1 Pre Rec F1 Pre Rec F1 

Run #1 0.8565 0.9757 0.9122  0.5571 0.8432 0.6709  0.2097 0.4648 0.2890  

Run #1 0.9303 0.8478 0.8872  0.7018 0.5779 0.6339  0.4008 0.288 0.3351  

Run #1 0.9739 0.5513 0.7041  0.7939 0.2975 0.4328  0.5757 0.1519 0.2404  

Best Team 0.9875 0.9757 0.9122 0.7939 0.8432 0.6736 0.5757 0.4648 0.4041 

Table 2: The performance of the three submissions on the official evaluation test data set. The scores in bold 

represent the best scores we obtained among all the participating teams. The “Best Team” row records the 

best scores among all participating teams for each task-specific evaluating metric. 

Filter thresh-

old  

Pre Rec F1 

1 0.2091 0.5419 0.3017 

2 0.307 0.4603 0.3683 

3 0.3754 0.4149 0.3942 

4 0.4255 0.3751 0.3987 

5 0.4678 0.3439 0.3964 

6 0.5071 0.3214 0.3934 

7 0.5356 0.2932 0.3789 

8 0.569 0.2692 0.3655 

9 0.5988 0.2475 0.3502 

10 0.622 0.2247 0.3301 

Table 3: The influence of filtering threshold on 

the performance of the ensemble model 

 

Figure 3: The influence of filtering threshold on 

precision, recall and F1 value. 
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rate, the parameter group with the highest recall 

rate, and the parameter group with the highest F1 

value. The results on the validation set are shown 

in Table 1.  

4.4 Testing Results 

The final version of BSGED obtained the top F1 

score at the detection level and was among the top 

3 F1 scores at the identification level on the test set 

released by CGED2020. In addition, BSGED ob-

tained the highest precision rate and recall rate 

among all error diagnosis evaluation levels except 

the precision rate at the Detection Level. The spe-

cific results are shown in Table 2.

 

4.5 Ablation Experiment 

In order to evaluate the novel components of our 

approach, we conduct two sets of ablation experi-

ments. 

The first set of ablation experiments focuses on 

the gating mechanism. We use 7 parameter groups 

from the 16 parameter groups from our original ex-

periments. 7 single models use the traditional dis-

cretized embedding method for score-based fea-

tures, and 7 single models used the novel gating 

approach we propose. The final comparison results 

are shown in Table 4. The results show that the con-

trol group that uses the gating mechanism achieves 

higher F1 values at each level of error detection; 

the performance improvements at the detection 

level, identification level, and position level are 

0.0173, 0.0371 and 0.0348 respectively, demon-

strating the effectiveness of the gating mechanism. 

The second set of ablation experiments shows 

the performance improvement brought about by 

the addition of the BiLSTM layer compared to the 

BERT-only model. Through connecting the en-

coded output of the BERT model to the BiLSTM 

layer, the model can further improve its ability to 

capture the long-term dependencies of the input se-

quence. We conduct an experimental comparison 

of the model with and without the connected 

BiLSTM layer. For this experiment, 4 single mod-

els use a BERT-CRF architecture, and 4 single 

models connect the BERT output to a BiLSTM 

(BSGED). The two single model groups use the 

same parameter settings. The comparison result is 

shown in Table 5. As can be seen, the control group 

with the addition of the BiLSTM achieves F1 value 

improvements of 0.0159, 0.0316, and 0.0265 at the 

detection level, identification level, and position 

level, demonstrating the effectiveness of the 

BiLSTM layer. 

4.6 Case Study 

We found that different optimizations enable 

BSGED to solve different types of errors better. 

Among them, the gating mechanism directly re-

tains the partial-order relationships of the original 

score-based features, so it has an improved ability 

for recognizing errors at character- or word-level. 

Some examples are shown in Table 6. For example, 

in the first sentence in Table 6, "多爱" (meaning 

Single 

Models 

Num 

Type 

Avg. Detection Level  Avg. Identification Level Avg. Position Level 

Pre Rec F1 Pre Rec F1 Pre Rec F1 

7 
embed 0.8416 0.694 0.7599 0.6609 0.4344 0.5238 0.4204 0.2249 0.2927 

gating 0.8264  0.7342  0.7772  0.6468  0.4958  0.5609  0.4164  0.2703  0.3275  

Table 4: The influence of the gating mechanism on the model's results on the validation set. The value is the 

average of 7 models. 

Single 

Models 

Num 

Type Avg. Detection Level Avg. Identification Level Avg. Position Level 

Pre Rec F1 Pre Rec F1 Pre Rec F1 

4 

BERT 

-CRF 0.8298  0.7171  0.7691  0.6487  0.4575  0.5361  0.4093  0.2380  0.3006  

BSGED 0.8174  0.7556  0.7850  0.6344  0.5141  0.5677  0.4010  0.2765  0.3271  

Table 5: The influence of the BiLSTM layer in the BSGED on the model's results on the validation set. The 

value is the average of 4 models 
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"much love") should be identified as being incor-

rect, with the correct phrase being "最爱" (mean-

ing "favorite"). Similarly, "沿" (meaning "along") 

and "没" (meaning "no") are words formed with 

similar strokes. In the second example sentence,  "

沿" should be replaced with "没", because the PMI 

score of "沿有" is extremely low. In the third sen-

tence, "速度减速" is a word-level error, and the 

correct expression should be "速度减慢". 

The addition of the BiLSTM layer enables the 

model to better capture the long-term dependencies 

of the input sequence so that the model has stronger 

processing capabilities for error samples that rely 

on semantic understanding and long-term depend-

encies. Some examples are shown in Table 7. For 

example, in the first sentence, "在…去" should be 

identified as an incorrect expression in Chinese, 

with the correct structure being "到…去". Identi-

fying this error that requires judging long-term de-

pendencies of the text. Finally, the phrase "首歌" 

in the second example is a common collocation, 

but in the example, through the semantic under-

standing of the last clause, "首" should be identi-

fied as an R type error.

 

5 Conclusion and Future Work 

This paper describes our novel BSGED model for 

the CGED2020 shared task, which uses only a few 

and simple features, greatly reducing the workload 

of feature engineering for CGED; a gating mecha-

nism is also proposed to retain the original partial-

order relationships between score-based features 

and at the same time reduce the amount of model 

training parameters. In addition, we connect the se-

quence encoding result of the BERT model to the 

BiLSTM layer, which improves the BSGED mod-

el's ability to capture long-term dependencies of 

the input sequence. BSGED achieves the best F1 

score at the detection level and the third highest F1 

score at the identification level. 

In the future, we intend to use the MLM model 

to build a model that includes grammatical error 

correction, and apply the natural language genera-

tion capabilities of the pre-trained language model 

to the task of correcting Chinese grammatical er-

rors. In addition, we will also integrate more ex-

plicit grammatical rules, which will also greatly 

help the improvement of model performance. 
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Original Sentence Detect Result 

我的多爱的画家也画抽象的画儿。 3, 3, S (多) 

在前面，故事沿有什么特别，就是在音乐学校一个男生和一个女生交朋友。 7, 7, S (沿) 

12回合结束后，就速度减速。 12, 13, S (减速) 

世界里有很多挑选新能源。最主要的生态学的能源有是：太阳能，风能，潮

汐能，还有地热能。 

3, 3, S (里) 

首开先我们应该自问什么是成熟。对我来说，成熟就是成为负责的人，对生

活的情况和问题发展自己的思考。 

2, 2, R (开) 

Table 6: Some examples of errors that the gating mechanism can identify but the baseline model cannot 

Original Sentence Detect Result 

去年我们决定在挪威去。我们已经乘船去过一次挪威了。很喜欢这次航行的

起点是阿姆斯特丹。 

7, 7, S (在) 

再说，我认为愚公当英雄，因为我们对他很尊重。香港的音乐组，他叫张

华，写了一个愚公首歌。 

41, 41, R (首) 

星期二上午我去在大学。我学习、和我上课。下午我休息和学习在家里。星

期三早上我上汉语果。 

8, 8, R (在) 

Table 7: Some examples of errors that the model with BiLSTM layer can identify but the baseline model can-

not 
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