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Abstract

Contextualized word embeddings provide bet-
ter initialization for neural networks that deal
with various natural language understanding
(NLU) tasks including question answering
(QA) and more recently, question generation
(QG). Apart from providing meaningful word
representations, pre-trained transformer mod-
els, such as BERT also provide self-attentions
which encode syntactic information that can
be probed for dependency parsing and POS-
tagging. In this paper, we show that the infor-
mation from self-attentions of BERT are use-
ful for language modeling of questions con-
ditioned on paragraph and answer phrases.
To control the attention span, we use semi-
diagonal mask and utilize a shared model for
encoding and decoding, unlike sequence-to-
sequence. We further employ copy mechanism
over self-attentions to achieve state-of-the-art
results for question generation on SQuAD
dataset.

1 Introduction

Automatic question generation (QG) is the task
of generating meaningful questions from text.
With more question answering (QA) datasets like
SQuAD (Rajpurkar et al., 2016) that have been re-
leased recently (Trischler et al., 2016; Choi et al.,
2018; Reddy et al., 2019; Yang et al., 2018), there
has been an increased interest in QG, as these
datasets can not only be used for creating QA mod-
els but also for QG models.

QG, similar to QA, gives an indication of ma-
chine’s ability to comprehend natural language text.
Both QA and QG are used by conversational agents.
A QG system can be used in the creation of arti-
ficial question answering datasets which in-turn
helps QA (Duan et al., 2017). It specifically can
be used in conversational agents for starting a con-
versation or draw attention to specific information
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Figure 1: CopyBERT architecture for conditional ques-
tion generation: Given a sequence of length n, with
question tokens {ql}?:1 paragraph tokens {p;}Z ;
with answer phrase {a;}#, and semi-diagonal mask
M (§3.2), the model explicitly uses H multi-headed
self-attention matrices from L layers of transformers
to create A € R™*"*LxH This matrix along with
S € R"*LXH_ obtained from the BERT sequence
output H € R™*” is used to learn copy probabil-
ity pc(q;|.) (§3.3.2). Finally, a weighted combination
p(g;|.) is obtained with simple generation probability
po(al.) (3.4,

(Mostafazadeh et al., 2016). Yao et al. (2012) and
Nouri et al. (2011) use QG to create and augment
conversational characters. In a similar approach,
Kuyten et al. (2012) creates a virtual instructor to
explain clinical documents. In this paper, we pro-
pose a QG model with following contributions:

e We introduce copy mechanism for BERT-
based models with a unified encoder-decoder
framework for question generation. We fur-
ther extend this copy mechanism using self-
attentions.

Without losing performance, we improve the
speed of training BERT-based language mod-
els by choosing predictions on output embed-
dings that are offset by one position.
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2 Related Work

Most of the QG models that use neural networks
rely on a sequence-to-sequence architecture where
a paragraph and an answer is encoded appropriately
before decoding the question. Sun et al. (2018)
uses an answer-position aware attention to enrich
the encoded input representation. Recently, Liu
et al. (2019) showed that learning to predict clue
words based on answer words helps in creating a
better QG system. With similar motivation, gated
self-networks were used by Zhao et al. (2018) to
fuse appropriate information from paragraph before
generating question. More recently, self-attentions
of a transformer has been shown to perform answer
agnostic question generation (Scialom et al., 2019).

The pre-training task of masked language mod-
eling for BERT (Devlin et al., 2019) and other such
models (Joshi et al., 2019) make them suitable for
natural language generation tasks. Wang and Cho
(2019) argues that BERT can be used as a genera-
tive model. However, only few attempts have been
made so far to make use of these pre-trained mod-
els for conditional language modeling. Dong et al.
(2019) and Chan and Fan (2019) use a single BERT
model for both encoding and decoding and achieve
state-of-the-art results in QG. However, both of
them use the [MASK] token as the input for pre-
dicting the word in place, which makes the training
slower as it warranties recurrent generation (Chan
and Fan, 2019) or generation with random masking
(Dong et al., 2019). Both models only consider
the output representations of BERT to do language
modeling.

However, Jawahar et al. (2019) and Tenney et al.
(2019) show that BERT learns different linguis-
tic features at different layers. Also, Hewitt and
Manning (2019) successfully probed for depen-
dency trees from self-attention matrices of BERT.
With this, we hypothesize that BERT can implic-
itly encode the different aspects of input for QG
(Sun et al., 2018; Zhao et al., 2018) within the self-
attentions across layers. As self-attention can learn
soft-alignments, it can be used explicitly for copy
mechanism (§3.3.2), and can yield better results
(§4.3) than a model that only implicitly use self-
attentions for QG (§3.3.1). Similar to Dong et al.
(2019), we also employ a shared architecture for
unified encoding-decoding but make an explicit use
of self-attentions across layers, leading to similar
or better results at a fraction of their training cost.
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3 Model

In sequence-to-sequence learning framework, a sep-
arate encoder and a decoder model is used. Such
an application to BERT will lead to high compu-
tational complexity. To alleviate this, we use a
shared model for encoding and decoding (Dong
et al., 2019). This not only leads to a reduced
number of parameters but also allows for cross at-
tentions between source and target words in each
layer of the transformer model. While such an ar-
chitecture can be used in any conditional natural
language generation task, here we apply it for QG.

3.1 Question Generation

For a sequence of paragraph tokens P
[p1, P2, -.., pp|, start and end positions of an answer
phrase s, = (as,a.) in the paragraph and ques-
tion tokens Q@ = [q1, ¢2, ..., qQ] With p; = bop,
pp = eop and gg = eoq representing begin of
paragraph, end of paragraph and end of question
respectively, the task of question generation is to
maximize the likelihood of @ given P and s,. To
this end, with m such training examples, we maxi-
mize the following objective:

maxz Z log p(g;

j=11i=1

pU),50))

!q@, , S¢

where q.; represents previous question tokens
[q1, G2, ..., ¢i—1]. A fixed length n sequence is cre-
ated by concatenating P and () with pad tokens
into S = [P;@]. Similar to Devlin et al. (2019),
each input token is accompanied by a segment id
to differentiate between the parts of the text. The
answer tokens in the paragraph and the question
tokens are given segment ids 1 and the rest 0, as
illustrated in Figure 1. We pass these as inputs to a
pre-trained BERT-based model.

3.2 Semi-diagonal Masking

To control the information flow, we employ a semi-
diagonal mask. A simple diagonal mask on the
self-attentions of the transformer decoder ensures
that each word only attends to the words that are
seen thus far (Vaswani et al., 2017). Self-attentions
of the encoder do not require such masking because
the input words should inform each other while en-
coding. Since we use a unified encoder-decoder
architecture, we ensure our masking is such that
each word in the paragraph attends to all other
words in the paragraph but not to any of the words



in the question and each word in the question only
attends to previous words in the question in addi-
tion to all the words in the paragraph. This results
in a semi-diagonal mask which is also proposed by
Dong et al. (2019) and shown in Figure 1.

Formally, from S in §3.1, we have I,
[1,2,..., P] as the sequence of paragraph indices
and I, = [P+1,P+2,.., P+ Q] as the sequence
of question indices with n = P + () (ignoring the
pad tokens). The semi-diagonal mask M € R™*"
is defined as:

(tel,Nje )V

M, ; (telyNj>i)

1, else

3.3 Copy Mechanism

Pre-trained transformer models not only yield bet-
ter contextual word embeddings but also give infor-
mative self-attentions (Hewitt and Manning, 2019;
Reif et al., 2019). We explicitly make use of
these pre-trained self-attentions into our QG mod-
els. This also matches with our motivation to use
the copy mechanism (Gu et al., 2016) for BERT, as
the self-attentions can be used to obtain attention
probabilities over input paragraph text which are
necessary for copy-mechanism.

For the input sequence S with the semi-diagonal
mask M € R™" and segment ids D, we first
encode with BERT (.S, M, D) to obtain hidden rep-
resentations of the sequence H = {h;}" , €
R™*", We then define copy probability p.(y;|.) :

pe(Yila<i, P, 54) as:

b

where p,(k|y;) € R is the attention probability of
copying token t;, € Y = {P} U {y; ;11 (set of
all the paragraph tokens and question predictions
thus far) from input position k to question posi-
tion ¢. The distribution p, € R"™ is set to zero
for tokens not appearing in Y, whereas we add
the corresponding attention probabilities for tokens
occurring multiple times. We summarize these
per position probabilities compactly in a matrix
P, € R Now, we define several methods to
obtain P, with different copy mechanisms.

3.3.1 Normal Copy

First, we employ a simpler way to obtain attention
probabilities, called normal copy:

P, = softmax(HW,H”) € R"*"

P+i—1

k=1wy;=tg Da tk ey

else

(klyi),

Pe(yil-)
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where W,, € R"*" is a parameter matrix.

3.3.2 Self-Copy

In a transformer architecture (Vaswani et al., 2017),
if there are L layers and H attention heads at each
layer, there will be M = L x H self-attention
matrices of size n X n. For example, in BERT-
Large model (Devlin et al., 2019), there would be
24 x 16 = 384 such matrices. Each of these self-
attention matrices carry unique information. In
this method for copy mechanism, called self-copy,
we obtain P, as a weighted average of all these
self-attentions'.

We obtain at each time step, a probability score
for each of the M self-attention matrices in A €
n x n X M signifying their corresponding impor-
tance. Given a parameter matrix W, € R"*M we
obtain:

S = softmax(HW,,) € R"™M
P, = [S1A];..; SpAL] € RMXT

where S € R"*1*M s a 3D tensor with added di-
mension 2 to S, AT € R"*MX7" is the transposed
tensor of 3D self-attention matrices A. S; € R1*M
and AiT € RMxn are the i-th slices of the tensors
S and A”. The final attention probabilities P,
are obtained by removing the dimension 2 from
P,. Thus, the final attention probabilities are ob-
tained as a weighted average over all self-attention
matrices.

3.3.3 Two-Hop Self-Copy

A self-attention matrix as mentioned above can be
considered as an adjacency matrix of a graph whose
nodes are words. The probability scores represent
soft edge between two words. A self-attention ma-
trix, thus, can be considered as 1-hop attention.
We would like to explore 2-hop attentions, i.e, we
look for neighbouring nodes of neighbouring nodes.
Note that if P, is an adjacency matrix, the nodes
that are connected in two hops are given by P2,
Both 1-hop attentions and 2-hop attentions can be
useful for copying mechanism. Let Pyop = Py
and Pypop = P’ i where P’, and P, are defined
as mentioned in §3.3.2 with different parameters,
then we define two-hop self-copy as follows:

P.(q:) = hiP1nop(qi) + (1 — hi)Ponop(qs)
where h; = a(thiWh) and Wy, € R” is a parame-
ter matrix.

"The semi-diagonal mask is applied to all such self-
attention matrices.



3.4 Copy-Generate Probability

Once the copy probability p. is obtained, the com-
bined probability is obtained as weighted combina-
tion with the generation probability p,:

p(gil.) = (1 = ci)pg(ail.) + cipe(qil.)

where ¢; is the likelihood to generate a token from
the vocabulary or copy a token from the source and
predicted tokens at position i:
T
ci =o(hy  w)
with h,, , € R"*! as the hidden representation for
the question token at position i — 1, w € R"*! is

a parameter vector and o is sigmoid non-linearity.
The generation probability is given by:

pg(qil.) = softmax(thFlV)

where V € RVl is a parameter matrix over input
vocabulary of size |V|.

4 Experiments

We apply the different variations of CopyBERT
model as mentioned in the previous section on
SQuAD vl.1 (Rajpurkar et al., 2016). For our ex-
periments?, we follow the training, validation and
test split as used in Du et al. (2017).

4.1 Training Setup

For training, we used a batch size of 6, learning rate
of 3e~5 with early stopping. The loss reaches its
minimum between 2 to 3 epochs. We also trained
with a batch size of 24 using gradient accumulation
and found it gave similar results after the same num-
ber of optimization steps. We fixed the maximum
sequence length as 384 and chose the part (doc-
ument stride) of the paragraph that contained the
answer phrase in case of exceeded sequence length.
We decoded using beam search with a beam width
of 5 and stopping at the generated token eoq. In
our experiments we used [CLS] as bop token,
[MASK] as eop token and [SEP] as eoq token.

4.2 Evaluation Metrics and Models

For evaluating our models, we report standard met-
rics of BLEU4, METEOR and ROUGE-L. As base-
lines, we take two of the non-BERT state-of-the-art
models (Du and Cardie, 2018; Zhang and Bansal,

>The code is available at https://github.com/
StalVars/CopyBERT
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Model

CorefNQG (Du and Cardie, 2018)
SemdriftQG (Zhang and Bansal, 2019)
Recurrent-BERT (Chan and Fan, 2019)
UniLM (Dong et al., 2019)

BERT + No Copy

BERT + Normal Copy

BERT + Self-Copy

BERT + Two-Hop Self-Copy
SpanBERT + Self-Copy

BLEU4 METEOR ROUGE-L
15.16 19.12
18.37 22.65
20.33 23.88
22.12 25.06
19.37 22.49
20.30 23.03
21.17 23.48
20.90 23.37
22.71 24.48

6.68
48.23
51.07
49.12
49.35
49.91
49.89
51.60

Table 1: Question generation results on SQuAD test
split from Du et al. (2017). BERT refers to BERT-
Large(cased) model (Devlin et al., 2019)

2019) and the two BERT-based QG models (Dong
et al., 2019; Chan and Fan, 2019). We experi-
mented with 4 settings: one without using any
copy mechanism (No Copy), one using normal
copy (Normal Copy; §3.3.1), one using self-copy
(Self-Copy; §3.3.2) and finally with two-hop self-
copy (Two-Hop Self-Copy; §3.3.3).

4.3 Results

Table 1 shows our results °. First, we note that
the baseline performance of BERT-Large (cased)
model with No Copy (19.37 BLEU4) is compa-
rable with the results reported by Chan and Fan
(2019) (20.33 BLEU4). We see a clear increase in
performance when Normal Copy is used (20.30
BLEU4). Further, we see considerable gain in
BLEU4 by using Self-Copy (41.8 over No Copy
and +-0.87 over Normal Copy), supporting the hy-
pothesis of using multi-layered, multi-headed self-
attentions for copy mechanism. UniLM, which
is a pre-trained model from BERT-Large check-
point with three sequence generation pre-training
tasks (Dong et al., 2019) and further fine-tuned
on SQuAD dataset for 10 epochs achieves 22.12
BLUE4 score. We achieve comparable perfor-
mance by only using self-copy mechanism. Figure
2 shows attention patterns of self-copy in question
generation.

To further validate the self-copy mechanism, we
also experimented by initializing with a variant
of BERT* called SpanBERT (Joshi et al., 2019),
which is pre-trained to predict longer masked spans
to encourage better entity masking and has already
shown to improve QA results when compared to
BERT (Joshi et al., 2019). Although, Two-Hop
Self-Copy did not improve upon the Self-Copy,

3

3We used the evaluation script from https: //github.
com/microsoft/unilm/tree/master/unilm-vl

“Note that Self-Copy mechanism can be applied with any
BERT-like pre-trained model


https://github.com/StalVars/CopyBERT
https://github.com/StalVars/CopyBERT
https://github.com/microsoft/unilm/tree/master/unilm-v1
https://github.com/microsoft/unilm/tree/master/unilm-v1
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Figure 2: CopyBERT attention visualizations of copy probability on SQuAD examples. Top: Attention focused
paragraph tokens on y-axis and generated question tokens on x-axis, where we see that the learnt copy probabilities
consistently extract words from the paragraph context. Bottom: Long-span attention pattern over the paragraph
words (z-axis), where the copy probability looks for question words (y-axis) even when most of the question
words are present in the local context around the answer phrase.

these attentions can serve as explainability of QG,
a good intuition behind copying different words,
which we plan to explore in our future work.

4.4 Training Speed

CopyBERT trains significantly faster than UniLM.
For UnilLM, to fine-tune further on QG task it
takes around 10 epochs to obtain its best perfor-
mance. This is because the model uses input token
[MASK] to predict a target question word and as
a result can only train with some percentage of
randomly chosen words to ensure that the proba-
bility is conditioned on previous question words.
CopyBERT, in contrast, takes only 2 to 3 epochs to
achieve its best performance. It took CopyBERT
around 14 hours on a single GPU with 12GB main
memory to train for 3 epochs, whereas UniLM took
around 45 hours on the same hardware to train for
10 epochs to achieve similar results as reported in
Dong et al. (2019). We expect Recurrent-BERT
(Chan and Fan, 2019) to take even longer time to
train due to its sequential nature.
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5 Conclusion

We showed that having a unified encoder-decoder
transformer model initialized with contextualized
word embeddings and further extended with copy
mechanism can already give state-of-the-art, with-
out additional pre-training on generation tasks
(Dong et al., 2019). We also sped up the training of
QG models that use BERT by choosing predictions
on output embeddings that are offset by one posi-
tion (§3.3). This work shows the significance of
explicitly using self-attentions of BERT like mod-
els. These models can further be used in other
tasks such as abstractive summarization and ma-
chine translation to see qualitative improvements.
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