Abstract
We took part in the offline End-to-End English to German TED lectures translation task. We based our solution on our last year’s submission. We used a slightly altered Transformer architecture with ResNet-like convolutional layer preparing the audio input to Transformer encoder. To improve the model’s quality of translation we introduced two regularization techniques and trained on machine translated Librispeech corpus in addition to iwslt-corpus, TEDLIUM2 andMust_C corpora. Our best model scored almost 3 BLEU higher than last year’s model. To segment 2020 test set we used exactly the same procedure as last year.- Anthology ID:
- 2020.iwslt-1.9
- Volume:
- Proceedings of the 17th International Conference on Spoken Language Translation
- Month:
- July
- Year:
- 2020
- Address:
- Online
- Editors:
- Marcello Federico, Alex Waibel, Kevin Knight, Satoshi Nakamura, Hermann Ney, Jan Niehues, Sebastian Stüker, Dekai Wu, Joseph Mariani, Francois Yvon
- Venue:
- IWSLT
- SIG:
- SIGSLT
- Publisher:
- Association for Computational Linguistics
- Note:
- Pages:
- 89–94
- Language:
- URL:
- https://aclanthology.org/2020.iwslt-1.9
- DOI:
- 10.18653/v1/2020.iwslt-1.9
- Cite (ACL):
- Tomasz Potapczyk and Pawel Przybysz. 2020. SRPOL’s System for the IWSLT 2020 End-to-End Speech Translation Task. In Proceedings of the 17th International Conference on Spoken Language Translation, pages 89–94, Online. Association for Computational Linguistics.
- Cite (Informal):
- SRPOL’s System for the IWSLT 2020 End-to-End Speech Translation Task (Potapczyk & Przybysz, IWSLT 2020)
- PDF:
- https://preview.aclanthology.org/landing_page/2020.iwslt-1.9.pdf