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Abstract

In this paper, we explore a new approach based
on discourse analysis for the task of intent seg-
mentation. Our target texts are user queries
from a real-world chatbot. Our results show
the feasibility of our approach with an F1-
score of 82.97 points, and some advantages
and disadvantages compared to two machine
learning baselines: BERT and LSTM+CRF.

1 Introduction

Chatbots, a type of dialogue system, have been
widely deployed for commercial applications, such
as flight booking and troubleshooting support. One
key step of frame-based chatbots is to extract the
intent of the user, i.e. to recognize the goal of the
user’s query (Jurafsky and Martin, 2019). While
the task of single-intent prediction, when a query is
assumed to encode only one intent, can be tackled
as a multi-class classification problem (Wang et al.,
2018b), a more complex scenario arises when a
query encodes more than two intents–a multi-intent
query. In this case, a multi-class classification strat-
egy is applicable if single-intent labels are com-
bined together to form new intent labels; however,
this strategy may suffer from data sparsity prob-
lems (Xu and Sarikaya, 2013). Another option is
to treat multi-intent prediction as a multi-label task
where binary classifiers are trained for each single-
intent label, and so an arbitrary number of single-
intent labels can be predicted for any given query;
however, this strategy may not yield the best accu-
racy results (Xu and Sarikaya, 2013). A third strat-
egy is to segment a user query into intent segments
where each segment encodes a single-intent label;
these segments then are passed to a pre-trained in-
tent classifier. In this paper we explore this strategy
by focusing on the intent segmentation problem.

∗ Work done while doing an internship at Lenovo AI Lab.

To tackle this problem, we use real-world user
queries from our online chatbot Moli as our data.
Moli receives queries from Motorola cellphone
users related to troubleshooting, warranty and sales
issues. We use multi-intent queries which encode
from two up to six different intents. Each of these
intents may have the same importance as the rest,
so predicting a single-intent label for a multi-intent
query may lead to a poor user experience. This
situation motivates us to propose a segmentation
method that is able to find the boundaries among
intents in a given query; in this way, single-intent
classifiers from previous works can be used to pre-
dict the intent label for each segment of a query.

A possible option to segment a query into intent
segments are statistical models previously used for
sentence segmentation (Beeferman et al., 1999).
These models have been widely used in dialogue
systems to segment a user’s utterance into dia-
logue acts (Granell et al., 2010; Ang et al., 2005;
Martinez-Hinarejos, 2009), and also for intent seg-
mentation (Xu and Sarikaya, 2013). Even though
these models have achieved good results in the lit-
erature, in this paper we aim to explore a symbolic
approach. To the best of our knowledge, this is
the first work where discourse analysis is used for
intent-segmentation of user queries for chatbots.

Previous works in discourse analysis have pro-
posed different ways of structuring texts into sym-
bolic representations, being RST trees the most
popular one. An RST parser is a system that seeks
to find hierarchical relationships between adjacent
discourse units within a text (Mann and Thompson,
1988; Marcu, 2000). To do so, a text is segmented
into discourse units and then a tree structure is built
by finding the discourse relationships between ad-
jacent discourse units or sub-tree structures; the
final tree structure is a representation of the dis-
course information contained in the text. RST has
been widely used in NLP applications such as topic



39

segmentation (Cardoso et al., 2013), question an-
swering (Verberne et al., 2007), sentence compres-
sion (Sporleder and Lapata, 2005) and sentiment
analysis (Bhatia et al., 2015).

We propose to use an RST parser to segment
user queries into intent segments. We aim to an-
swer the research questions: How can we use an
RST parser for the task of intent segmentation of
user queries? To what extent discourse information
is useful for intent segmentation? What are advan-
tages and disadvantages of segmenting queries via
an RST parser? We hypothesize that discourse in-
formation is helpful to find tokens within a query
that are boundaries of intent segments. In other
words, we hypothesize that discourse information
is helpful to segment a user query into meaning-
ful pieces of text such that each of these pieces
encodes a single intent. Our results seem to sup-
port our hypothesis. Also, we compare our ap-
proach with two machine learning models, namely
BERT and LSTM+CRF. Furthermore, we care on
the accuracy-speed trade-off of the RST parser for
our intent segmenter to be used online; so, we pro-
pose a new RST parser that elaborates on top of a
well-known and fast parser in the literature, namely
HILDA (Hernault et al., 2010). Overall, our re-
sults on the task of intent segmentation–above 80%
F1-score–show the feasibility of our approach.

2 Background and Related Work

2.1 Rhetorical Structure Theory (RST)

RST is a formalism proposed by Mann and Thomp-
son (1988) to analyze the discourse structure of
texts of any length. To do so, a text is represented
as an RST parse tree where adjacent spans of text
are related to each other by discourse relations.
In any relationship, it is assumed that one of the
arguments (the nucleus) contains more relevant in-
formation than the other argument (the satellite).1

Thus, an RST tree accounts for the discourse in-
formation encoded in the text. One reason for the
popularity of RST is the feasibility of RST trees to
be processed by an NLP system or interpreted by a
human.

2.2 RST Parsing

The steps to induce an RST tree are: a) to segment
the text into elementary discourse units (EDUs),

1Except for some relations where both arguments act as
nucleus.

b) to identify adjacent EDUs to be composed un-
der an RST-relation, c) to identify the nuclearity
status of the arguments of a relation, and d) to pre-
dict the RST-relation type. While some previous
works consider problems b), c), and d) to be the ac-
tual tree-building problem (Feng and Hirst, 2014)
and assume that the correct segmentation is already
given, some works focus only on the task of dis-
course segmentation (Tofiloski et al., 2009; Wang
et al., 2018a). In this work, we assume that we
have the correct discourse segmentation of a query.

Previous works on discourse segmentation have
used both hand-crafted features (Hernault et al.,
2010; Joty et al., 2015) and learned-representations
(Wang et al., 2018a). We use the system from
(Wang et al., 2018a) to split a query into EDUs
which predicts either label boundary or not-
boundary for each token in a text. Each token
xi in a text x is encoded using the concatenation
of GloVe and ELMo embeddings; the resulting
vector is passed to both a Bi-LSTM layer and to
a restricted self-attention module to compute at-
tention vectors which are then passed to a second
Bi-LSTM to join both. Finally, the last hidden rep-
resentations are passed to a CRF layer to compute
the probability of a sequence of labels. We chose
this system due to its high accuracy on the RST-DT
dataset (F1 = 94.3).

A popular type of RST parser in the literature is
a CRF-based parser. It computes two conditional
probabilities, namely that of composing two EDUs
into a sub-tree and that of the type of discourse
relation (Joty et al., 2012, 2013; Feng and Hirst,
2014). To build the highest-scoring RST tree based
on the probabilities computed, previous works have
used either dynamic programming or greedy algo-
rithms. An advantage of this approach is that it can
capture probabilistic dependencies among adjacent
sub-structures. However, using CRFs involves ex-
pensive computations (Feng and Hirst, 2014). Due
to its popularity, we use a CRF-based baseline.

Another approach for RST parsing is the HILDA
parser (Hernault et al., 2010). It uses two SVM
classifiers to build the RST tree. The first clas-
sifier predicts the likelihood of two EDUs being
under a discourse relation for all pairs of adjacent
EDUs, and the highest-scoring pair is composed
into a sub-tree. Then, the second classifier predicts
both the RST relation type and nuclearity for the
sub-tree. This cycle continues until all EDUs and
sub-trees are composed into a single RST tree. We



40

draw inspiration from this approach due to both
its linear-time complexity and its simplicity. How-
ever, one drawback is that it uses a greedy search
to build the RST tree which is not optimal. Be-
sides, both classifiers require hand-crafted features.
We designed our parser to work similar to HILDA
but we enhance it by improving the search. Ad-
ditionally, we use only one classifier and we use
learned-representations. In this way, we obtained a
fast, simple and optimal parser.

3 A Working-Example

In this section we provide an example of the prob-
lem of segmenting a user query into intent seg-
ments. Consider the user query in Example 1 which
describes problems a user has with a cellphone.
The gold intent-segmentation of this query is shown
in Table 1. One possible way to segment this query
into intent-segments is by using punctuation marks
as splitting points (Kiss and Strunk, 2006). How-
ever, this would result in an over-segmentation (five
intent segments instead of three segments as in Ta-
ble 1) because there are four dots. Thus, it is im-
portant that the segmentation system learns when
punctuation marks (or keywords) are boundaries
and when they are not. Furthermore, since user
queries are a type of informal discourse, we can
expect some of them to miss punctuation marks,
which can make a harder case for the segmenter; in
this case, the segmenter should rely on other type
of information than just the tokens in the query. We
believe discourse information can help a segmenta-
tion system to overcome these issues. In order to
use RST parsing for intent segmentation, we anno-
tated a set of user queries with their corresponding
RST parses (Section 4.3). The RST parse of the
query in Example 1 is shown at the bottom of Table
2 and the tree representation is shown in Figure 1.
We will elaborate on this example to explain our
approach in subsequent sections.

Example 1. I am having a trouble with my power
button. It’s not functioning at all. it seems that my
phone has got switched off. I am trying to reboot
it. but no success so far

4 Our Approach: Discourse Analysis for
Intent Segmentation

In this section, we present our RST parser, our
datasets and our approach to segment chatbot’s
user queries into intent segments.

Gold Intent Segments
s1: I am having a trouble with my power
button. It’s not functioning at all.
s2: it seems that my phone has got switched
off.
s3: I am trying to reboot it. but no success so
far

Table 1: Gold intent segmentation of the query in Ex-
ample 1. The intent labels for segments s1, s2, and s3
are power button broken, random shut down, and can-
not power on, respectively.

Figure 1: RST tree of the query in Example 1. At the
bottom of the tree we see the EDUs A, B, C, D, E. As
we move upwards in the tree, we see the RST-relations
under which text spans are composed. For example, the
span A-B formed by the EDUs A and B is composed
with C under relation parallel.

4.1 Problem Definition

Given a user query Qi that encodes the set of intents
I = i1, ..., ik where k ≥ 2, i1 6= i2... 6= ik, and it
contains EDUs e1, ..., em where m ≥ 2, we define
the problem of intent segmentation as partitioning
query Qi into segments s1, ..., sk such that each
segment sj has a one-to-one correspondence to
each intent ij from set I . We note that a segment
sj may be formed by more than one EDU.

4.2 Our Discourse Parser

We follow a similar pipeline as that of the HILDA
parser for our parser. We first split a query by
EDUs; then we iteratively build a complete RST
tree by searching for the best-scoring sub-tree at
each iteration, i.e. we search for the RST-relation
rj ∈ R and the two arguments (EDUs or sub-trees)
in the form of text spans xi and xj that when com-
posed as rj(xi, xj) give the highest score. How-
ever, there are some differences between our parser
and HILDA (Section 2.2). First, we search for the
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Discourse Information
A. I am having a trouble with my power button.
B. It’s not functioning at all.
C. it seems that my phone has got switched off.
D. I am trying to reboot it.
E. but no success so far
(parallel,(parallel,(same unit n,A,B),C),(same unit n,D,E))

Table 2: Discourse information from the query in Ex-
ample 1. The first five rows show the discourse seg-
mentation where A, B, C, D, E are the EDUs. The last
row shows the RST parse of the query which was built
by composing the EDUs through RST relations.

highest-scoring tree using a policy that combines
a greedy search with an optimal search (Dijkstra
search). Second, we only use one classifier to pre-
dict the RST relation rj , the nuclearity structure,
and the probability of a pair of arguments to be
composed into a sub-tree under relation rj . Third,
we use dense vectors since our classifier is a neu-
ral network.2 In what follows, we describe the
components of our RST parser.

To obtain the EDUs of a query we used the state-
of-the-art system from (Wang et al., 2018a), which
was trained on the RST-DT dataset. However, since
the domain of the RST-DT (newspaper’s articles) is
different from our domain (user queries) we added
hand-crafted rules on top of this system to account
for possible mistakes in the discourse segmentation
due to the shift in domain.3 Thus, the EDUs gener-
ated from a query by this system pass through our
rules and are adjusted accordingly; after that, the
resulting adjusted EDUs are used to search for the
highest-scoring RST tree by our parser.

To do a search on the space of RST trees, we use
an RST-relation classifier, a search algorithm and
pre-computed probabilities of RST trees. We ob-
tain from our classifier both the most suitable RST-
relation type for two arguments and the confidence
of this prediction. Thus, inputs to this classifier
are two text spans and output is a confidence score
for each RST-relation label in our set of relations
R. We train this classifier using our data (Section
4.3). To find an RST tree for long queries, Dijkstra
algorithm may take an impractical amount of time,
thus we apply a policy to shift between Dijkstra
and a greedy search according to the number of

2We tried hand-crafted features and SVMs but our results
were not as good as when using neural networks.

3We could not re-train the system of Wang et al. (2018a)
due to the small size of our dataset.

EDUs the query is segmented into. For both al-
gorithms, Dijkstra and greedy, at each step in the
search, we call our RST-relation classifier and give
it as input a pair of adjacent spans of text, and in
turn we receive an RST label and the classifier’s
confidence. We then compose via a logarithm func-
tion the classifier’s confidence with the probability
of observing the current candidate sub-tree in our
training data.4 We use this composite function as
the score for the current candidate sub-tree. An
advantage of Dijkstra over the greedy algorithm
is that Dijkstra not only scores sub-trees indepen-
dently but also gets a score for the whole tree built
up to the current step.5 Thus, Dijkstra algorithm is
able to find an optimal RST tree.

4.3 Our Datasets

Due to data-confidentiality policies, we cannot re-
lease the user queries, but we provide an overview
of our data. We created three datasets, namely one
for the task of intent segmentation, and two for the
task of RST parsing. We note that the first step
for annotating the datasets is the same, namely to
segment each user query into EDUs. Then, we
annotate each dataset accordingly for each task.

Intent-segmentation dataset: It consists of
1356 user queries. Based on the discourse seg-
mentation of each query, annotators manually con-
catenated EDUs in order to obtain intent segments.
For example, based on the EDUs of the query in
Example 1 (see Table 2), annotators decided to
concatenate EDUs A and B to obtain the intent seg-
ment s1 (Table 1), and similarly for segments s2
and s3. We used 1037 queries for train, 206 queries
for test, and 113 queries for development data.

RST datasets: We used the same train, test, and
development sets as those used for creating our
intent-segmentation dataset. In our first dataset
each user query is manually annotated with its cor-
responding RST tree.6 Based on this dataset, we

4We pre-computed the probability for each type of sub-
tree. We used a Laplacian smoothing for sub-trees not seen
in the data. For example, if the current candidate sub-tree
is the composition of EDU e1 with the sub-tree (ri, e2, e3)
under the RST label rj : (rj , e1, (ri, e2, e3)), then we look
for the probability of a sub-tree with root node rj whose left
argument is an EDU and whose right argument is a sub-tree
with root node ri.

5To get the score for a whole tree we simply sum the scores
of the sub-trees contained in it.

6We use this dataset to test our RST parser; since our parser
uses search algorithms to generate a parse tree we do not need
to use train data.
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generated a dataset for our RST-relation classifier.
It consists of 5517 train, 951 test, and 543 develop-
ment instances; this figure is because the RST tree
of one query is decomposed into several sub-trees,
each of which has an RST-relation at the parent
node; in this way we obtained several instances
from one RST tree.7 This is a labeled dataset since
the input space is defined by text spans and the
output space is defined by RST relations.

To annotate queries with their RST trees, we
follow a similar annotation scheme and annotator
training to that from Carlson et al. (2001) where
each annotation is human-validated. We followed
the definitions of RST relations in (Carlson and
Marcu, 2001) as it is a well-known manual for RST
annotation. However, the domain of the data in this
manual (newspaper articles) differs from our data
domain; hence, we faced similar issues as those
in (Stent, 2000); for example, the definition of an
RST relation may not directly apply to a user query,
or the definitions of two RST relations seem to
overlap with each other. Since we optimized for
simplicity in our annotation, we decided to select
the fewest number of RST relations as possible.

RST-relation Nuclearity
background x1:satellite, x2:nucleus
elaboration x1:nucleus, x2:satellite

parallel x1:nucleus, x2:nucleus
same unit n x1:nucleus, x2:nucleus
same unit s x1:satellite, x2:satellite

Table 3: Our choice of RST relations. First column
indicates the name of the relations. Second column in-
dicates the nuclearity status of the first (x1) and second
(x2) arguments of a relation.

We chose |R| = 5 RST relations to label
our data. We took four of them from (Carlson
and Marcu, 2001), namely background, elabora-
tion, same unit s, same unit n relations, which we
slightly re-defined, and we proposed a new RST
relation, which we call parallel. We decided to
apply two constraints to our RST relations, namely
a nuclearity constraint and an arity constraint. We
fixed the position of the nucleus and the satellite for
every relation, so the nuclearity is implicitly pre-
dicted by our RST-relation classifier. And we chose
all our RST relations to be binary, following the
work in (Marcu, 2000), due to simplicity in parsing.

7See the query in Example 1 and its arrangement into 4
RST relations shown in the last row of Table 2; thus, from this
query we obtained 4 instances.

Table 3 shows the RST relations and their nuclear-
ity constraints. While both relations background
and elaboration aim to provide additional informa-
tion for the nucleus through the satellite, relations
same unit s and same unit n have the purpose of
joining the two arguments into a single piece of text
when the information in both arguments is closely
related. Finally, relation parallel serves to indicate
that two arguments are independent of each other,
i.e. they are equally important and the information
they contain is unrelated between them.

We computed F1-scores for inter-annotator
agreement, as in (Marcu, 2000), for both sub-tree
structures: Prec = 82.87%, Rec = 82.48%,
F1 = 82.67%, and for text spans: Prec =
87.50%, Rec = 87.09%, F1 = 87.29%. These
high agreements suggest that our RST dataset is
consistent.

4.4 Intent Segmentation Via RST Parsing

In this section, we explain our strategy to segment a
user query Qi into intent-segments s1, ..., sn. The
main idea is to use the RST-parse tree of the query
to decide which adjacent text spans form an in-
tent segment sj . We hypothesize that there is a
correlation between the information that RST re-
lations convey and the change in the type of in-
tent label across segments in a query. More con-
cretely, for each query and predicted RST tree, we
traverse the tree in a bottom-up fashion going from
leaf nodes up to the root node. Whenever we see
the application of the RST-relations same unit s
or same unit n on two arguments, we join the two
spans of text into a single piece of text based on
our hypothesis that these RST relations indicate a
continuity in intent-segment. On the other hand,
when we see the application of relations parallel,
background, or elaboration we place a boundary
symbol indicating that the text spans corresponding
to the two arguments of these RST relations pertain
to different intent segments.8

For example, consider the query in Example
1 as in Figure 1. We start our procedure with
the sub-tree (same unit n,D,E) where EDUs D
and E are concatenated into a single text span,
namely D-E. Next, EDUs A and B from sub-tree
(same unit n,A,B) are concatenated into A-B. The
next parse, due to the relation parallel, indicates

8We label the satellite arguments of background and elabo-
ration relations with a null intent label since we consider such
information to be irrelevant to the actual problem posed by
the user captured in the nucleus argument.
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that the text span A-B is independent from unit
C, and similarly with the text span D-E. In this
way, we obtain the intent segmentation: s1: A-B,
s2: C, and s3: D-E, and recovered the gold intent-
segmentation of this query (Table 1). Thus, we
segmented a query into intent segments using its
corresponding RST tree. As we will see in Section
6, discourse information helps us to better find the
boundaries of intent segments when compared to a
discourse segmenter and an LSTM+CRF.

5 Experiments

5.1 RST-Relation Classifier

In our RST parser, the only component that re-
quires training is the RST-relation classifier. We
used Keras (Chollet et al., 2015) with TensorFlow
(Abadi et al., 2016) and our RST-relations dataset
to train this classifier. We setup this problem as a
multi-class classification where each RST-relation
type is a label to be predicted. We used ELMO
word embeddings9 (Peters et al., 2018) as the rep-
resentation for each token in a query10 and we al-
lowed these representations to be updated at train-
ing time.11 We picked the best hyperparameters
based on performance on the development set.12

5.2 RST Parsing

Though our RST parser does not need to be trained
since it uses search algorithms to find a parse tree,
it requires the RST-relation classifier to be already
trained to score candidate sub-trees. We note that
our parser contains a hyperparameter which we
manually tuned on the development set, namely
the scoring function used by both greedy and Di-
jkstra search. We found the best-scoring function
among three functions: log(x ∗ y), log(x + y),

9Dimensionality d = 256.
10We also tried GloVe embeddings but our results were

slightly better with ELMO embeddings.
11We used a batch size of b = 32; we trained a BiLSTM

of size h = 100; we placed two dropout layers (both with
rate dr = 0.5), one after the embedding layer and another
one after the BiLSTM. On top of the BiLSTM we added
a densely-connected layer with a softmax activation. We
used a categorical cross-entropy loss function and Adagrad as
optimizer.

12We tried two more experiments that we do not report
because we did not improve accuracy score. In the first one,
we experimented with the minimum number of possible RST-
relation types for our approach to work, namely when there
are only two types of relations (parallel and same unit). In
the second experiment, we used |R| = 14 RST relation types.
For all our experiments we used the same setup for training,
but the best results were achieved with |R| = 5 RST relation
types.

log(x) where the term x is the RST-relation classi-
fier’s confidence and the term y is the probability
of observing a candidate sub-tree in training data.
We test our parser on our test set.

5.3 Intent Segmentation

We evaluate our intent-segmentation approach by
computing precision, recall, and F1 scores on the
number of tokens correctly found to be boundaries
of intent-segments (true positives) on test data. For
example, in the gold intent-segmentation of the
query in Example 1 (Table 1) we can see that there
are three intent segments, hence the number of gold
boundaries are three, namely the tokens at the end
of each intent segment.13

5.4 Baselines

We compare our intent-segmentation approach
against three baselines. The first is the discourse
segmenter from Wang et al. (2018a) where the out-
puts of the discourse segmenter are taken as intent
segments. We use this baseline to prove our hy-
pothesis. The second baseline is based on BERT
(Devlin et al., 2019). We apply the standard BERT
implementation for a sequence labeling problem
where boundary tokens in a query are labeled as 1
while non-boundary tokens are labeled as 0. The
input (a text sequence) is tokenized by BERT tok-
enizer and is embbeded by BERT embeddings. Af-
ter that, it passes through a 12-layers Transformer
model; then, encoding sequences corresponding
to each token are obtained. A linear layer with
softmax over the top-layer outputs a sequence of
distribution over classification results with given
encodings (Fig. 2). Finally, the classification re-
sults are converted into separate marks and the
whole sequence of tokens is transformed back to a
text sequence. We train over each batch, backprop-
agating into BERT’s parameters. We maximize
the log-likelihood of boundary classification specif-
ically.14 The third baseline is a BiLSTM+CRF
model which has a full-connection layer between
the BiLSTM and CRF layers.15 We trained both
models BERT and BiLSMT+CRF on our intent-

13The dot after the word ”all” in s1, the dot after the word
”off” in s2, and the word ”far” in s3

14The learning rate is r = 2e− 5; batch size is b = 16; we
set the max length of an input sequence to be L = 256 which
is wrapped by the symbol [CLS] at the beginning and the
symbol [SEP] at the end; embedding dimension is d = 768.

15The size of the BiLSTM is h = 300, the full-connection
embeddings size is d = 600, we use Adam optimzer, a learn-
ing rate of lr = 0.001 and dropout rate of dr = 0.5.
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Figure 2: BERT Baseline.

segmentation dataset. We use these two baselines
as a point of comparison for the generalization abil-
ity of our approach.

6 Results

In this section, we report the results of our experi-
ments. The accuracy score of our RST-relation clas-
sifier is Acc = 74.22% across the 5 RST-relation
types on test data.

In Table 5, we see the results of our approach
against the baselines for the task of intent segmen-
tation. The results from the first and the second
rows seem to confirm our hypothesis. Our strategy
is more accurate (by 5 points) than the approach
based only on discourse segmentation. This figure
seems to show that our RST parser captures the
continuity and shift in intent between adjacent text
spans within a query. We see that the discourse
segmenter achieves a higher recall score than our
approach, but this is simply due to the fact that this
baseline over-segments a query and thus is more
likely to correctly hit most of the tokens which are
boundaries. Nevertheless, we see that our approach
achieves a high recall score by surpassing the 80%
threshold by 4 points. Overall, the scores that our
approach obtains show the advantage of using an
RST-parser on top of a discourse segmenter: The
trade-off between precision and recall is in a sweet-
spot which means that probably neither of both
will be ”sacrificed” for the other as more data is
collected and used for re-training the RST-relation
classifier. This figure does not seem to occur in
the case of the baseline; the F1-score is justified
only by the high recall rate due to the query’s over-
segmentation.

From the first and third rows of Table 5 we

now compare our approach with the BERT base-
line. Even though our approach achieves 82%
F1-points, this baseline obtains a higher score by
slightly more than 2 points. A similar figure arises
when we compare precision and recall scores from
both approaches. These figures seem to show that
this baseline has also found a sweet-spot in the
precision-recall trade-off, similar to our approach.
Surprisingly, the LSTM+CRF model achieves the
lowest F1-score from all the approaches, which
may be explained by this baseline overfitting on
the training data. Furthermore, we also note that
the difference in F1-score between our approach
and the discourse segmenter is more than twice the
difference in score between BERT and our RST
parser. This figure may suggest that our approach
is considerably closer in terms of performance to
an state-of-the-art system than to a system based
on an over-segmentation strategy.

We now turn to Table 4 where we see the ef-
fect of different scoring functions for the search
algorithms on the results of our RST parser on test
data.16 We can see that depending on the form of
the scoring function we obtain a particular trade-
off among different indicators of performance. For
example, if we aim to optimize running time, we
may choose the scoring function log(x+ y) which
allows our RST parser to achieve the lowest time
at the cost of minimally sacrificing F1-score on the
intent-segmentation task with respect to the highest-
scoring function (log(x)). On the other hand, if we
aim for the best-scoring parser in terms of recover-
ing RST trees, we may choose the scoring function
log(x ∗ y) which allows our RST parser to recover
the highest rate of sub-trees (F1 = 46.16%) and
text spans (F1 = 63.89%) from test data while
minimizing the number of illegal parses.17

7 Discussion and Conclusions

We worked on the task of intent segmentation of
user queries posed to a real-world chatbot. We
explored an approach based on discourse analysis

16We setup the policy that if the number of EDUs in a query
is |EQi | ≤ 7 then we resort to Dijkstra search, else we resort
to greedy search. We optimized this policy on the development
set.

17An illegal parse is when the RST tree contains at least
one illegal sub-tree; for example, the sub-tree (same unit n,
(parallel, A, B), C) is illegal because the most internal sub-
tree indicates that EDUs A and B are parallel, therefore the
attempt to concatenate them with EDU C results in an illegal
action because this implies that A and B must be concatenated
beforehand.
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Function Intent Segmentation Average Time Illegal Parses No Split F1-scores
Prec Rec F1 Dijkstra Greedy Sub-tree Span

log(x ∗ y) 81.7 79.6 80.6 0.37 0.21 1 15 46.16 63.89
log(x+ y) 83.6 81.7 82.7 0.14 0.19 4 11 43.30 61.75
log(x) 81.5 84.4 82.9 0.18 0.19 7 11 42.86 60.33

Table 4: Effect of scoring functions in our RST parser. In column Function, x is the RST-relation classifier’s
confidence, and y is the probability of the candidate sub-tree. Column Intent Segmentation shows the Precision,
Recall, and F1 scores on the task of intent segmentation. Column Average Time shows the average running-time
in seconds to find the RST tree of a query. Column Illegal Parses shows the number of predicted RST trees
that contain an illegal sub-tree. Column No Split shows the number of incorrectly built RST trees due to only
containing RST relation same unit s or same unit n and thus not having any split point. Column F1-scores shows
the performance of our RST parser for correctly recovering sub-trees and text spans from the test data.

Model Precision Recall F1
Our approach 81.53 84.47 82.97

DS 63.97 98.39 77.53
BERT 85.11 86.01 85.55

LSTM+CRF 68.28 72.70 70.42

Table 5: Scores for the task of intent segmentation for
four models: our approach, a discourse segmenter (DS),
a BERT model, and an LSTM+CRF model.

where we built an RST tree for any given query
and based on this symbolic representation we seg-
mented the query into intent segments. We built
our RST parser inspired on the HILDA parser: Our
RST parser builds an RST tree using a search on
the space of parse trees. However, we improved our
parser by combining Dijkstra and greedy search.
Furthermore, our parser uses only one RST-relation
classifier to inform the search algorithm.

We hypothesized that discourse information
could inform a text segmenter the tokens where
there is a change or a continuity in intent label.
Our results seem to support our hypothesis. Com-
pared to a pure discourse segmentation approach,
our RST parser seems to find correlations between
RST-relation types and intents. Given two adja-
cent text spans, our parser can accurately decide
whether these spans should be concatenated into
one intent segment or should remain independent
of each other. We note that if the discourse infor-
mation was not helpful, the score of our approach,
in the best scenario, would be the same as that of
the baseline (it would have no effect), and in the
worst scenario the score would drop lower than
the baseline’s score by incorrectly concatenating
adjacent EDUs.

We compared our system’s generalization abil-
ity against two ML approaches: BERT and

LSMT+CRF. We found that BERT achieves better
scores than our approach by 2.58 F1-points; we
think this gap is mainly due to the pre-training of
BERT on a large amount of data. However, our ap-
proach surpasses the LSMT+CRF model by a large
margin; we believe the LSTM+CRF may overfit-
ted the training data due to its small size. Our
approach does not seem to overfit the data because
it uses search algorithms, which poses another ad-
vantage of our approach over ML models: These
algorithms have parameters that function as a type
of knob which allows us to tweak the parser to a
desired configuration without the need of training.
For example, we can tweak our search algorithm
to favour for running-time just by changing the
scoring function. This clear but sometimes forgot-
ten advantage of symbolic models comes in handy
when we want to have a manual control over the
behavior of our model. Another advantage of our
approach over the BERT baseline is the simplicity
in training; we did not require to use any GPU to
train our RST-relation classifier. Nevertheless, a
clear disadvantage of our approach is the need to
create an RST dataset which requires an annotation
scheme and annotator training.

In conclusion, we believe our approach is suit-
able as an end-to-end application for intent seg-
mentation of user queries posed to a chatbot. We
believe future work should focus on better models
for the RST-relation classifier. Also, due to the
symbolic nature of the RST trees obtained from
user queries, we propose to explore to what ex-
tent we can analyse and interpret them in order to
better understand what knowledge the parser has
captured, what types of mistakes it has made, and
how to further improve it based on error analysis.



46

References
Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng

Chen, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Geoffrey Irving, Michael Isard,
Manjunath Kudlur, Josh Levenberg, Rajat Monga,
Sherry Moore, Derek G. Murray, Benoit Steiner,
Paul Tucker, Vijay Vasudevan, Pete Warden, Mar-
tin Wicke, Yuan Yu, and Xiaoqiang Zheng. 2016.
Tensorflow: A system for large-scale machine learn-
ing. In Proceedings of the 12th USENIX Confer-
ence on Operating Systems Design and Implementa-
tion, OSDI’16, pages 265–283, Berkeley, CA, USA.
USENIX Association.

Jeremy Ang, Yang Liu, and Elizabeth Shriberg. 2005.
Automatic dialog act segmentation and classification
in multiparty meetings. In Proceedings. (ICASSP

’05). IEEE International Conference on Acoustics,
Speech, and Signal Processing, 2005., volume 1,
pages I/1061–I/1064 Vol. 1.

Doug Beeferman, Adam Berger, and John Lafferty.
1999. Statistical models for text segmentation. Ma-
chine Learning, 34(1):177–210.

Parminder Bhatia, Yangfeng Ji, and Jacob Eisenstein.
2015. Better document-level sentiment analysis
from RST discourse parsing. In Proceedings of
the 2015 Conference on Empirical Methods in Nat-
ural Language Processing, pages 2212–2218, Lis-
bon, Portugal. Association for Computational Lin-
guistics.

Paula Cardoso, Maite Taboada, and Thiago Pardo.
2013. On the contribution of discourse structure to
topic segmentation. In Proceedings of the SIGDIAL
2013 Conference, pages 92–96, Metz, France. Asso-
ciation for Computational Linguistics.

Lynn Carlson and Daniel Marcu. 2001. Discourse Tag-
ging Reference Manual. ISI. Technical Report. ISI-
TR-545.

Lynn Carlson, Daniel Marcu, and Mary Ellen
Okurovsky. 2001. Building a discourse-tagged cor-
pus in the framework of rhetorical structure theory.
In Proceedings of the Second SIGdial Workshop on
Discourse and Dialogue.

François Chollet et al. 2015. Keras. https://keras.
io.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Vanessa Wei Feng and Graeme Hirst. 2014. A linear-
time bottom-up discourse parser with constraints

and post-editing. In Proceedings of the 52nd An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 511–
521, Baltimore, Maryland. Association for Compu-
tational Linguistics.

Ramón Granell, Stephen Pulman, Carlos D. Martı́nez-
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