
Findings of the Association for Computational Linguistics: EMNLP 2020, pages 3266–3277
November 16 - 20, 2020. c©2020 Association for Computational Linguistics

3266

Regularization of Distinct Strategies for Unsupervised Question
Generation

Junmo Kang∗ Giwon Hong∗ Haritz Puerto San Roman∗ Sung-Hyon Myaeng
School of Computing, KAIST
Daejeon, Republic of Korea

{junmo.kang, gch02518, haritzpuerto, myaeng}@kaist.ac.kr

Abstract

Unsupervised question answering (UQA) has
been proposed to avoid the high cost of cre-
ating high-quality datasets for QA. One ap-
proach to UQA is to train a QA model with
questions generated automatically. However,
the generated questions are either too sim-
ilar to a word sequence in the context or
too drifted from the semantics of the context,
thereby making it difficult to train a robust
QA model. We propose a novel regulariza-
tion method based on teacher-student architec-
ture to avoid bias toward a particular question
generation strategy and modulate the process
of generating individual words when a ques-
tion is generated. Our experiments demon-
strate that we have achieved the goal of gener-
ating higher-quality questions for UQA across
diverse QA datasets and tasks. We also show
that this method can be useful for creating a
QA model with few-shot learning.

1 Introduction

Machine Reading for Question Answering
(MRQA) is the task of answering questions from
a context that contains the answer. This field
has seen remarkable progress in recent years,
with QA models outperforming humans on a
question answering (QA) benchmark like SQuAD
(Rajpurkar et al., 2016).

Training a QA model requires a large amount
of data, and constructing such a dataset is usu-
ally laborious or sometimes even impossible for
some domains and languages. Because of this,
Lewis et al. (2019) explored unsupervised ques-
tion answering (UQA), a setting where manually
constructed triples, (context, question, answer), are
not available for training. They approached the
problem with unsupervised question generation

∗Equal contribution.

Context

... Level 1 of DDM Architecture was
formally published in 1986. ...

Generated Question

LM-type Copy-type
When did the first level 1
of DDM Architecture

come out?

When level 1 of DDM
Architecture was

formally published?

Figure 1: An example of LM-type (left) and copy-type
(right) questions generated from a context. Newly gen-
erated tokens are in italics and copied tokens in bold.

(UQG), where answers are first extracted from con-
texts, and then questions are generated from (con-
texts, answers) pairs. Such questions are combined
into (contexts, questions, answers) triples to form a
training dataset for a QA model.

Another approach to UQG is based on language
models (LM). Radford et al. (2019) proposed an
LM approach, GPT-2, that shook the natural lan-
guage processing (NLP) research community with
its remarkable capability of automatically generat-
ing high-quality text. Naturally, GPT-2 was shown
to generate high-quality questions from contexts
(Klein and Nabi, 2019; Puri et al., 2020).

Despite the recent progress made by these efforts,
UQG remains to be an open problem. For exam-
ple, the method proposed by Lewis et al. (2019)
generates a question that is often so similar to a
word sequence in the given context that QA models
are trained with only straightforward questions and
thus hampered from solving more challenging prob-
lems. We refer these questions to copy-type. The
drawback of copy-type questions can be mitigated
by generative LM like GPT-2 as they can generate
tokens that are not in the context but semantically
plausible. However, they can generate questions
semantically drifted from the context which may
not be answerable even by humans. Figure 1 shows

3267

Figure 2: Comparison between instance-level and token-level regularization. The entire questions are selected for
question generation at the instance-level whereas individual tokens are selected at the token-level.

an example for LM-type and copy-type questions.
Inspired by the knowledge distillation approach

with teacher-student interactions (Hinton et al.,
2015), we propose a pipeline architecture where a
student module learns from a teacher how to gener-
ate higher quality questions that mitigate the draw-
backs of both strategies of questions. The teacher
employs two QG models1 (assistants), LM-type
and copy-type, and adopts a semantic-level regu-
larization process newly designed to avoid a bias
toward a particular question generation strategy
(i.e., either copy-type or LM-type). The student
module learns how to make a balance between the
two extreme types of questions generated by the
assistants. The regularization helps suppress the
copying behavior and semantic drifts of the existing
QG models and generate more versatile questions
that are compatible with the given contexts.

Our contributions are i) a novel generation
method based on the teacher-student architecture
that regularizes two generation models in an unsu-
pervised setting. ii) adopting this method for un-
supervised question generation to create a higher-
quality QA dataset2 compared to existing UQG
models without manual labeling. iii) using this
QA dataset to train a QA model and demonstrate
the robustness and effectiveness of our genera-
tion method thorough experiments in low QA data
regimes.

2 Preliminary Study

In order to ensure that using the two somewhat
conflicting types of questions can result in a QA
improvement, we set out to run a preliminary ex-
periment. We simply combine the two datasets,

1The proposed model can be easily extended to more than
two strategies.

2https://github.com/HaritzPuerto/UQA

copy-type and LM-type (question creation details
are provided in Section 4.1) to train a QG model to
see if the regularization idea would be beneficial at
all. We posit that a positive result would not only
justify a more sophisticated regularization process
but also serve as a baseline for the experiments.

Since the dataset used for training the QG model
contains two types of questions, we use the follow-
ing batch loss:

Lbatch = αLLM + (1− α)Lcopy (1)

where the hyperparameter α controls the loss in-
curred by each question type in the batch. Assum-
ing that learning the patterns of copy-type questions
would be easier than LM-type questions, due to the
simplicity of the former, we enforce that reducing
the total loss is influenced more by the LM-type
rather than the copy-type.

Model EM F1

Copy-type QG 40.1 49.4
LM-type QG 42.0 50.9

QG trained on copy and LM 44.4 53.9

Table 1: A result of the preliminary experiment with
QA on the SQuAD 1.1 dev set.

To test the quality of this naive QG approach,
we have trained three QA models based on three
different QG models: i) a QG model trained on 10K
copy-type questions, ii) a QG model trained on 10K
LM-type questions, iii) a QG model trained on the
combination of 5K copy-type questions and 5K
LM-type questions. To ensure a fair comparison,
the three models use the same contexts and answers.
As shown in Table 1, the combination of the two
types of questions yields better performance. This

3268

Figure 3: Overall structure of the proposed approach. At time step t, the pre-trained LM-type and copy-type
assistants produce each probability distribution over vocabulary for the token qt. Then, the regularization module
selects the probability distribution P (w) for the token qt such that the generated question is not biased to either
type, and P (w) is used as the soft target to train the student module.

positive result sets the stage for the main thrust
of this work: design and application of token-level
regularization for training a QG model to overcome
the drawbacks of two styles of questions.

3 Proposed Approach

In an unsupervised setting, it is difficult to solve
the problems related to the LM-type and copy-type
QG models, primarily because the gold standard
questions are not provided. However, the prelimi-
nary study (Section 2) shows there is evidence that
using two QG models, LM-type and copy-type, in
an interleaving way has the potential to solve the
problems of each model. Instead of simply merging
two datasets (as in the Preliminary Study), we pro-
pose a finer-grained approach of using token-level
regularization rather than instance-level that selects
full questions. Figure 2 illustrates the difference.

We posit that generated questions should not be
easily classified into either LM-type or copy-type if
the two styles were to be inter-mixed in a balanced
way. In other words, the style of the questions
should not be highly biased toward either side. In
short, our unsupervised QG problem is reduced
to devise a token-level regularization method that
generates questions indistinguishable between the
two question types and eventually mitigates their
drawbacks.

3.1 Problem Formulation

The goal of the QG model is to generate the
most probable question Q = (q1, ..., q|Q|) given
a context C = (c1, ..., c|C|) and an answer A =
(a1, ..., a|A|), which is a subspan of C, (i.e., a1 =
ci and a|A| = cj where 1 ≤ i ≤ j ≤ |C|).

Q̂ = argmax
Q

P (Q|C,A) (2)

As discussed in Section 2, Q̂ should be discour-
aged from being biased toward either LM-type or
copy-type. To enforce this property, we define a
function F that returns the probability of the ques-
tion following a specific type (LM for LM-type
or CP for copy-type), given the context and the
generated question tokens up to t.

F : Q× C × type −→ [0, 1] (3)

whereQ and C represent the infinite set of possible
questions and contexts, respectively.

Question tokens are generated sequentially by
considering the sub-sequence of up to t− 1 tokens
at time step t (denoted as q<t) that have been gener-
ated so far. With the binary function defined above,
we can constrain the next token q̂t to satisfy the
following condition: if the question generated up
to t − 1 is of LM-type, q̂t should maximize the

3269

score of the copy-type, or vice versa.

q̂t =

argmaxw F(q<t : w,LM), if F(q<t, LM)

< F(q<t, CP)

argmaxw F(q<t : w,CP), otherwise

(4)

where w is a token over the vocabulary V and “:”
represents the concatenation operation.

3.2 Overall Architecture
As a way to implement the aforementioned idea of
generating each token q̂t sequentially based on the
nature of the sub-question up to t − 1, we take a
teacher-student structure as a pipeline inspired by
Hinton et al. (2015). The teacher is composed of
two types of “assistants” (LM-type QG and copy-
type QG models), and a regularization module,
whereas the student is a single QG model that re-
ceives the knowledge transferred from the teacher.
In this way, the student model can learn the regu-
larization process of the teacher and generalize it
even without golden labels.

The pipeline system works as follows. Given a
context as the only input, it first randomly selects a
named-entity as the answer and predicts wh-word
to input to the two assistants (i.e., the two QG
models). This wh-word prediction is needed for a
performance boost as shown in (Kang et al., 2019).
Each of the two assistants predicts a new token,
and the regularization module subsequently selects
the one to accept. The selected token is input again
to the two assistants with the previously generated
tokens to generate the next ones and so on until a
question mark is generated. At each time step t,
we also store the probability distribution over all
the tokens in the vocabulary, from the selected as-
sistant. These distributions, rather than the tokens,
help generalize the knowledge of the teacher and
hence allow the student to learn the probabilities of
selecting particular tokens at individual time steps
in a more reliable way. This entire procedure is
illustrated in Figure 3, as well as in Algorithm 1 in
Appendix A.3.

3.3 Question Generation Module
One of the benefits of our architecture is that the
modules are not bounded by any specific model.
For the current work, we employ the QG model
proposed by Chan and Fan (2019) for the two as-
sistants of the teacher and for the student, taking
advantage of BERT (Devlin et al., 2019).

The essence of this QG model is to input a con-
text, an answer, generated question tokens at each

time step, and a [MASK] token at the end. The
embedding of the last token (i.e., [MASK]) at the
output layer is used to predict the next generated
token, q̂t ∈ V , where V is the vocabulary.

The QG model works as follows. First, the con-
text C and the answerA, which is a sub-span of the
context, are integrated into C ′ with the special to-
kens [HL] to signal the start and end of the answer.

C ′ =
[
c1, c2, ..., [HL], a1, ..., a|A|, [HL], ..., c|C|

]
(5)

Then the question tokens generated so far (prior to
the current time step t) are added to complete the
input to BERT, which is used to generate H:

Xt−1 = ([CLS], C ′, [SEP], q̂1, ..., q̂t−1, [MASK]) (6)

H = BERT (Xt−1) (7)

where H ∈ R|Xt|×h is the matrix of BERT token
embeddings and h is the hidden size of a BERT
token embedding.

In order to generate a token from the BERT
output, the embedding of the [MASK] token,
H[MASK], is transformed into the vocabulary space
using the linear layer W ∈ Rh×|V |. This gives a
probability distribution over the vocabulary given
the input:

P (w|Xt−1) = softmax(H[MASK] ·W + b) (8)

The next token, q̂t, is the word, w ∈ V , with the
highest probability:

q̂t = argmax
w

P (w|Xt−1) (9)

3.4 Teacher Module

The teacher module consisting of two assistant
modules and the regularization module provides
soft targets to the student module. The assistant
modules are pre-trained with cross-entropy to im-
plement the question generators and serve as the
source of knowledge to the regularization module.

Inspired by GAN (Goodfellow et al., 2014), we
set the goal of the regularization module to pre-
venting the generated question from being easily
detected as either LM type or copy type. By mak-
ing a generated question indistinguishable between
the LM and copy types, we attempt to make the
student mitigate the drawbacks of either type.

We implement the regularization module as a
discriminator,D, that takes as input the context and

3270

the list of generated tokens up to t− 1, and decides
which of the LM-type, θLM , and copy-type, θCP ,
assistants should generate the next token. More
formally, the next token is selected as follows:

D : C ×Q −→ {LM,CP} (10)

q̂t =

{
argmaxw P (w|Xt−1, θLM), if D(C, q<t) = LM

argmaxw P (w|Xt−1, θCP), if D(C, q<t) = CP
(11)

This discriminator is implemented using BERT.
Its input,Xt−1, is the concatenation of the question
tokens with the context:

Xt−1 = ([CLS], q̂1, ..., q̂t−1, [SEP], C, [SEP]) (12)

The BERT embedding of the token [CLS] is then
input to the binary classifier WD ∈ Rh×2 to select
the type.

H = BERT (Xt−1) (13)

type = argmax(σ(H[CLS] ·WD + bD))) (14)

where σ is the sigmoid function.
The training dataset for the regularization mod-

ule consists of a list of (context, question from
either LM-type or copy-type assistant) pairs serv-
ing as input and class, either LM-type or copy-type,
as a label. Each question is truncated to a random
length to simulate the use case of sequentially gen-
erating question tokens.

This module achieves a regularization effect be-
cause it predicts the class of a question: if the class
of the generated question up to some time step t is
predicted to be an LM-type, the next token of the
question is generated from the copy-type assistant.
This regularization process will be reflected in the
questions used to train the student, which in turn
learns how to generate questions that are regular-
ized between the LM style and the copy style.

3.5 Student Module
Following Hinton et al. (2015), the student is
trained using the probability distributions of gen-
erating tokens by either one of the assistants as
soft targets. This allows the student to learn more
information from the teacher than using hard tar-
gets (i.e., tokens) because it can learn even a small
probability of generating a token. Since we regu-
larize the probability distribution to be given to the
student module at each time step, the student ends
up learning how to generalize the regularization
process.

We use KL-divergence loss to minimize the dif-
ference between the teacher’s (i.e. from one of the
assistants) and student’s probability distributions
as follows.

Lstudent = DKL(P (ŵ|Xt−1; θstudent) || (15)

P (w|Xt−1; θteacher))

It is worth noting that the training with soft tar-
gets is possible because the same architecture and
thus, the same vocabulary is used for the assistants
and the student.

To avoid repeated tokens, the penalized sampling
technique as in Keskar et al. (2019) is applied for
the calculation of the probability distribution. This
technique is also applied to prevent from generating
special tokens and the answer, which should not
be included in a question. Details of the penalized
tokens are provided in Appendix A.2.

4 Experiments

The primary goal of our experiments is to demon-
strate that the method of regularizing copy-type and
LM-type questions yields questions that overcome
the drawbacks of the two types. By measuring the
QA performance on several QA datasets, we estab-
lish the generalizability of the proposed approach.

4.1 Experimental Setting

Figure 4: LM-based QG Filtering.

Dataset Creation All our models use contexts
from the dataset of Lewis et al. (2019)3. In the case
of the copy-type dataset, it also uses the questions
and answers from the original dataset to train a
QG model to create the copy-type questions. On
the other hand, the QG-type dataset uses Stanza
(Qi et al., 2020) to extract named-entities to obtain

3https://github.com/facebookresearch/UnsupervisedQA

3271

Model SQuAD NewsQA TriviaQA SearchQA HotpotQA Natural Questions

Lewis et al. (2019) 54.3 27.4 31.5 34.6 31.8 25.2
LM-type QG 50.9 28.2 31.0 17.0 31.7 36.9
Copy-type QG 49.4 22.6 26.5 31.2 25.6 20.7

Teacher 58.2 29.8 33.1 12.6 34.5 36.7
Student 60.2 30.4 36.8 18.3 33.2 37.3

Table 2: F1 scores of the baselines including SOTA on SQuAD and the two QG models, and our proposed approach
(Teacher and Student) on the in-domain MRQA shared task datasets. The Student is our final QG model.

answers and GPT-2 to create the questions. Fig-
ure 4 illustrates the process of LM-type question
generation. Since GPT-2 is not optimized to gen-
erate questions (Klein and Nabi, 2019), we add a
question filter to eliminate potentially unanswer-
able questions as a way to maximize its QA perfor-
mance. The filter accepts a (C,A,Q) iff the ques-
tion generated by GPT-2 is answerable by itself.
A further explanation is in Appendix A.1. All the
generated datasets, i.e. intermediate datasets to re-
produce LM-type, Copy-type, teacher and student
QGs, and the dataset to train the final QA model,
are publicly available in our GitHub repository.

Implementation The hyperparameter α used in
Eq. (1) is set to 0.8. The QG models are based
on BERT-HLSQG (Chan and Fan, 2019), with the
hyperparameters provided by the authors and minor
modifications to apply penalized sampling as in
Keskar et al. (2019).

The discriminator model and the QA model for
the evaluation are based on the BERT-base and
BERT-large (Devlin et al., 2019), respectively, im-
plemented by Hugging Face (Wolf et al., 2019).
Their default hyperparameters are used without
dropout. A detailed description of the hyperparam-
eters is in Appendix A.4.

Training The copy-type and LM-type assistants
are pre-trained on 10K instances. The discrimina-
tor model is trained on a fully balanced training
set of 70K instances. The student QG model is
trained on 10K instances generated by the teacher
module. The QA models for the experiments are
trained with 10K instances.4 The contexts for the
training datasets are randomly sampled without
replacement.

4The training of the discriminator, QG, and QA models
takes 4, 9, and 0.6 hours on a Tesla P100, respectively.

Evaluation The in-domain MRQA shared task
(Fisch et al., 2019)5 including modified SQuAD 1.1
(Rajpurkar et al., 2016), NewsQA (Trischler et al.,
2017), TriviaQA (Joshi et al., 2017), SearchQA
(Dunn et al., 2017), HotpotQA (Yang et al., 2018),
and Natural Questions (Kwiatkowski et al., 2019)
is used for the experiments in Sections 4.2, 4.3,
and 4.5. The SQuAD 1.1 dev set6 is used for the
experimental results in Section 4.4.

4.2 Overall Performance
For a fair and extensive comparison with the pre-
vious work from Lewis et al. (2019) on MRQA
datasets, a QA model was trained using the dataset
provided by Lewis et al. (2019). In addition, to
understand the effect of each module in the entire
system, we trained the QA models with the datasets
generated by the two assistants, the teacher module,
and the student module.

As can be seen in Table 2, our model signif-
icantly outperforms the baselines on all the QA
datasets but SearchQA. This result validates the
proposed approach, suggesting it alleviates the
drawback of the copy-type questions generated by
(Lewis et al., 2019) as well as those generated by
the single QG models. The proposed approach
clearly creates a more challenging and yet semanti-
cally less deviating QA dataset that ends up training
a more robust and reliable QA model. The Exact
Match (EM) scores are provided in the appendix
A.5.

The reason for the low performance of our ap-
proach on SearchQA appears to lie in the nature of
this dataset. Considering that the LM-type QG is
significantly interior to the copy-type QG on the
dataset only, it is clear that copy-type questions are
much more useful for SearchQA than the LM-type.
Given that our models (“Teacher” and “Student”)

5https://github.com/mrqa/MRQA-Shared-Task-2019
6https://rajpurkar.github.io/SQuAD-explorer/

3272

Module EM F1

Random 46.6 56.5
Frequency-based 47.7 57.8
Discriminator 49.8 60.2

Table 3: Comparison among different regularization
schemes that affect the student QG.

attempt to deviate from the copy-type questions
by design, the generated questions end up making
the QA model less effective in handling copy-type
questions. The student model performs better than
the teacher module due to the student’s capability
to generalize the discriminator, which is based on
our heuristic assumption (Eq. 11).

4.3 Roles of the Modules

Since the teacher module can generate questions by
itself, we show its performance in Table 2. Across
most of the datasets, it outperforms the baselines in-
cluding the two QG models in the assistants, show-
ing the clear value of the regularization module
that effectively combines them. By comparing its
performance on SQuAD against the result in the
preliminary study (Table 1), we confirm that the
token-level regularization (58.2 in F1) is more ef-
fective than the instance-level regularization (53.9)
implemented by the “QG trained on copy and LM”
model, as suggested in Section 3.

Table 2 also witnesses the value of the student
module or the teacher-student architecture as it
helps improve the performance over the teacher
module; the student learned and generalized the
regularization process from the teacher.

4.4 Effect of Regularization Module

The discriminator model was trained on 35K LM-
type questions and 35K Copy-type questions (70K
in total, as mentioned in section 4.1). After the
training, the discriminator model achieves an ac-
curacy of 95.53% on a 10K dev set (5K for each
type). To further study the effect of the discrimi-
nator model in regularizing the two styles of ques-
tions, we replace it with simpler models and ana-
lyze the performance of the generated questions.
The simpler models are i) random, i.e., at each
time step, an assistant is selected randomly, and ii)
frequency-based, i.e., the probability of selecting
an assistant is proportional to the number of times
the other assistant has been selected. As a result,

three different sets of questions are used for train-
ing a QA model and evaluated on the dev set of
SQuAD 1.1.

As shown in Table 3, the discriminator model
outperforms the other two models. This indicates
that the context information and the previously gen-
erated question tokens are essential to correctly
determining the question type, which in turn af-
fects the quality of the regularization. This result
is coherent with the intuition that the context must
be essential to deciding whether or not a question
is a copy from itself.

Also noteworthy is that the frequency-based
model performs better than the random model, im-
plying that frequency plays a role in the regulariza-
tion task. It appears that striking a balance between
the two styles in the generating tokens at each step
helps in generating higher quality questions. The
random model is likely to generate a less balanced
list of tokens, e.g., the first half of the tokens bi-
ased towards one type. The result reaffirms that the
generated question should not be heavily biased
toward a question type.

4.5 Potential for Few-shot Learning

Although our main goal is to improve unsupervised
QA through a dataset generated in an unsupervised
way, it is instructive to consider a few-shot learning
setting, in which a limited number of pre-labeled
training instances are used instead of the entire set.
To investigate the potential of the proposed method
for improved QA performance with few-shot learn-
ing, we pre-train the BERT-large QA model with
a synthetic QA dataset generated from the student
module. The QA model is then fine-tuned with
increasing numbers of pre-labeled instances, start-
ing from 0 (zero-shot learning) to all the available
training instances. Figure 5 shows the result on the
in-domain MRQA shared task.

As can be seen, UQG is remarkably useful in
the no-data or small-data regimes. The proposed
QG method added to the BERT-large QA model
enjoys a performance boost of about 10 to 20 points,
depending on the datasets, with an addition of only
about 100 pre-labeled instances. On the other hand,
it is sufficient to add only 1K pre-labeled instances
to reach the performance level of the supervised
models, where its performance begins to level off.
While BERT-large alone can reach the levels with
slightly more instances, this analysis gives a hope
that UQA can serve as a strong method with no or

3273

Figure 5: F1 scores on the MRQA datasets for progressively larger training dataset sizes.

a very small number of pre-labeled instances for
comparable effectiveness.

4.6 Error Analysis

The analysis result in Table 4 is intended to give
an insight into where our method fails. The first
example shows that the question deviates from the
context, perhaps due to the heavy use of LM-type.
The second example suggests that our model suf-
fers from the problem of handling pronouns. In
the last example, we can see that the end of the
question is not natural, indicating that our model
should improve on learning how to end a question.
A common problem we observe from these cases
is the overuse of “you” when it is unnecessary.

Context Generated Question

The final was a one-sided af-
fair, with Suburbs proving too
strong for the southerners.

Where did you get the fi-
nal of this round in ade-
laide?

... Later he went to New Col-
lege, Oxford, where he com-
pleted an M.A. and D.Phil. in
Indian history ...

What was he doing in new
college of oxford and did
you study history ?

In general case, the HJB equa-
tion does not have a classical
(smooth) solution.

What is general case of
the equation in general
case : ” if you say that

Table 4: Examples of incorrectly generated questions
using our student module. Answers in italics.

5 Related Work

Lewis et al. (2019) proposed the task of UQA and
modeled it with an unsupervised question genera-
tion (UQG) task. They make use of named entities
and noun phrases as answers and create “fill-in-the-
blank” cloze questions as a way to achieve UQG.
Their scheme is to identify a sentence that contains
an answer, which is then masked to create a cloze
question. Since these questions do not look natural,
they use back-translation to convert cloze questions
into more natural-looking ones. We argue that the
resulting questions are so similar to the contexts
that it is hard to train a robust QA model.

Puri et al. (2020) propose to create questions
by training GPT-2 on the SQuAD training set (Ra-
jpurkar et al., 2016) and show there is a huge perfor-
mance gap between a trained QG model based on
GPT-2 and the non-trained version. Klein and Nabi
(2019) argue that since GPT-2 is trained for general
text prediction, the result is not appropriate for the
QG task. Consequently, the questions generated as
such are not guaranteed to be answerable. To over-
come this problem, they propose to leverage the
connection between QA and QG so that GPT-2 is
trained for QG, resulting in a QG-optimized GPT-2
model. Unlike these two approaches, our work uses
a pre-trained version of GPT-2, which is not trained
on a QG dataset, and demonstrates that we can
improve the quality of questions in a completely

3274

unsupervised way and narrow the performance gap
between the supervised and unsupervised QA.

Hinton et al. (2015) propose the teacher-student
architecture for knowledge distillation. This
method allows compressing the knowledge of a
large model, the teacher, into a smaller model, the
student, which is also able to generalize the knowl-
edge of the teacher. Unlike the original purpose
of this architecture, we devise a teacher module
that regularizes two question generation models,
while the role of the student is to generalize this
regularization process.

6 Conclusion and Future Work

We have proposed a novel method for unsupervised
question generation (QG), where the questions are
generated with a teacher-student architecture. The
teacher is composed of two distinctive QG mod-
els as assistants and a regularization module that
attempts to stay unbiased between the two styles
of QG. As the main thrust of this structure, the
regularization scheme takes a novel approach of se-
lecting the next tokens in a probabilistic way when
a question is generated. This knowledge is im-
plicitly transferred to the student module so that it
can mitigate the drawbacks of the two QG models
in the teacher module and generate higher quality
questions. To encourage further development of
unsupervised question answering, we release the
QA dataset generated by our student model.

With a series of experiments across the in-
domain MRQA shared tasks, we demonstrate the
effectiveness of the proposed method as well as its
generalizability. We also provide an insight as to
how the proposed method can help progress toward
zero-shot and few-shot learning.

As reflected in the qualitative analysis, the cur-
rent method still generates unreasonable questions
that, for example, deviate too much from the con-
text, end unnaturally, and fail to handle pronouns
appropriately. To handle those cases, we need to
look into what other types of QG can serve as new
teachers and how the regularization needs to evolve.
We leave it as future work in addition to the general-
ization of this approach to other generative models
besides QG.

Acknowledgments

This research was supported by Next-Generation
Information Computing Development Program
through the National Research Foundation of Ko-

rea (NRF) funded by the Ministry of Science and
ICT (2017M3C4A7065962).

References
Ying-Hong Chan and Yao-Chung Fan. 2019. A recur-

rent BERT-based model for question generation. In
Proceedings of the 2nd Workshop on Machine Read-
ing for Question Answering, pages 154–162, Hong
Kong, China. Association for Computational Lin-
guistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186.

Matthew Dunn, Levent Sagun, Mike Higgins, V Ugur
Guney, Volkan Cirik, and Kyunghyun Cho. 2017.
Searchqa: A new q&a dataset augmented with
context from a search engine. arXiv preprint
arXiv:1704.05179.

Adam Fisch, Alon Talmor, Robin Jia, Minjoon Seo, Eu-
nsol Choi, and Danqi Chen. 2019. MRQA 2019
shared task: Evaluating generalization in reading
comprehension. In Proceedings of 2nd Machine
Reading for Reading Comprehension (MRQA) Work-
shop at EMNLP.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza,
Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. 2014. Generative ad-
versarial nets. In Advances in neural information
processing systems, pages 2672–2680.

Dan Hendrycks and Kevin Gimpel. 2016. A baseline
for detecting misclassified and out-of-distribution
examples in neural networks. arXiv preprint
arXiv:1610.02136.

Geoffrey Hinton, Oriol Vinyals, and Jeffrey Dean.
2015. Distilling the knowledge in a neural network.
In NIPS Deep Learning and Representation Learn-
ing Workshop.

Mandar Joshi, Eunsol Choi, Daniel S Weld, and Luke
Zettlemoyer. 2017. Triviaqa: A large scale distantly
supervised challenge dataset for reading comprehen-
sion. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 1601–1611.

Junmo Kang, Haritz Puerto San Roman, and Sung-
Hyon Myaeng. 2019. Let me know what to ask:
Interrogative-word-aware question generation. In
Proceedings of the 2nd Workshop on Machine Read-
ing for Question Answering, pages 163–171, Hong
Kong, China. Association for Computational Lin-
guistics.

https://doi.org/10.18653/v1/D19-5821
https://doi.org/10.18653/v1/D19-5821
http://arxiv.org/abs/1503.02531
https://doi.org/10.18653/v1/D19-5822
https://doi.org/10.18653/v1/D19-5822

3275

Nitish Shirish Keskar, Bryan McCann, Lav R Varshney,
Caiming Xiong, and Richard Socher. 2019. Ctrl: A
conditional transformer language model for control-
lable generation. arXiv preprint arXiv:1909.05858.

Tassilo Klein and Moin Nabi. 2019. Learning to an-
swer by learning to ask: Getting the best of gpt-2
and bert worlds. arXiv preprint arXiv:1911.02365.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-
field, Michael Collins, Ankur Parikh, Chris Alberti,
Danielle Epstein, Illia Polosukhin, Matthew Kelcey,
Jacob Devlin, Kenton Lee, Kristina N. Toutanova,
Llion Jones, Ming-Wei Chang, Andrew Dai, Jakob
Uszkoreit, Quoc Le, and Slav Petrov. 2019. Natu-
ral questions: a benchmark for question answering
research. Transactions of the Association of Compu-
tational Linguistics.

Patrick Lewis, Ludovic Denoyer, and Sebastian Riedel.
2019. Unsupervised question answering by cloze
translation. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,
pages 4896–4910.

Raul Puri, Ryan Spring, Mostofa Patwary, Mohammad
Shoeybi, and Bryan Catanzaro. 2020. Training ques-
tion answering models from synthetic data. arXiv
preprint arXiv:2002.09599.

Peng Qi, Yuhao Zhang, Yuhui Zhang, Jason Bolton,
and Christopher D. Manning. 2020. Stanza: A
Python natural language processing toolkit for many
human languages. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics: System Demonstrations.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383–2392.

Adam Trischler, Tong Wang, Xingdi Yuan, Justin Har-
ris, Alessandro Sordoni, Philip Bachman, and Ka-
heer Suleman. 2017. Newsqa: A machine compre-
hension dataset. In Proceedings of the 2nd Work-
shop on Representation Learning for NLP, pages
191–200.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, R’emi Louf, Morgan Funtow-
icz, and Jamie Brew. 2019. Huggingface’s trans-
formers: State-of-the-art natural language process-
ing. ArXiv, abs/1910.03771.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio,
William Cohen, Ruslan Salakhutdinov, and Christo-
pher D. Manning. 2018. Hotpotqa: A dataset for
diverse, explainable multi-hop question answering.
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing.

A Appendix

A.1 Question Generation with GPT-2

The dataset used to train the LM-type QG from
Section 2 and the LM-type assistant is generated
using GPT-2 (Radford et al., 2019). The input
to GPT-2 is the concatenation of the context, the
string “A:”, the answer, and the string “Q:” for a
given instance. “A:” is used to let GPT-2 know
that the following text is the answer, whereas “Q:”
must be followed by a question, the text that the
model has to generate. The question filter (Figure
4) eliminates potentially unanswerable questions.
As shown in (Radford et al., 2019), if we input the
context, question, and the string “A:” into GPT-2,
the generated text is the answer to the question.
Following this setting, we input the context and the
generated question into GPT-2 to obtain a text that
should serve as the answer. If this text is indeed the
same as the answer that was employed to generate
the question, then it passes the test of the filter.

A.2 Extended Penalized Sampling

In order to penalize repeated tokens from the output
distribution of the QG modules, penalized sampling
(Keskar et al., 2019) has been applied. Given a
list of generated tokens g, each token is penalized
by discounting with the penalty score α only if a
token w ∈ V has been previously generated. We
additionally use softmax-temperature (Hinton et al.,
2015) to control the smoothness of the distribution.
Formally:

P (w|Xt−1) =
exp(wi)/(T · I(wi ∈ g))∑
j exp(wj)/(T · I(wj ∈ g))

I(c) = α if c == True else 1

where T denotes temperature. If T goes higher, the
distribution gets smoother. For all the experiments,
we set α and T to 1.5 and 1.0, respectively.

We similarly applied this technique to prevent
from generating wh-words and the answer, which
might not be useful for a question. For each time
step of generating a token, we forced probabilities
of answer tokens and all wh-words (only after a
first wh-word is generated) to be zero.

Since LM-type QG tends to produce a shorter
question, regularized questions by the teacher can
be too short, resulting in meaningless questions. To
address this, we controlled the length of generated
tokens by penalizing some special tokens ws ∈
[period (.), comma (,), quote (’), question mark (?),

https://doi.org/10.18653/v1/d18-1259
https://doi.org/10.18653/v1/d18-1259

3276

[SEP]], which cause the question to be shortened.

P ′(ws) =
P (ws)

L/(|g|+ 1)

where L is a hyperparameter to control the length.
The penalty becomes smaller as the number of the
generated tokens gets larger. We used 15 for L
during all the experiments.

Due to the computational cost, only the top-10
probabilities were used as soft target distribution
to train the student module. We believe that top-
10 is enough to transfer the teacher’s knowledge
as the probabilities except the top-10 are almost
negligible.

A.3 Student Training Algorithm

Algorithm 1: Train the student using soft
target distributions produced by the teacher.

1 Input: Contexts, pre-trained D, pre-trained
θLM , pre-trained θCP

2 Output: θStu
3 Initialize θStu
4 foreach Context C ∈ Contexts do
5 t←− 1
6 A, wh-word←− Preprocessing(C)
7 C ′ ←− [c1, c2, ..., [HL], A, [HL], ..., c|C|]

8 q̂1←− wh-word
9 while q̂t 6= “?” and t ≤ max len do

10 t←− t + 1
11 Xt−1 ←− ([CLS], C ′, [SEP], ˆq<t, [MASK])

// Teacher Module
12 type←− D(C, q<t) ∈ {LM,CP}
13 target←− P (w|Xt−1, θtype) w ∈ V

// Student Module
14 pred←− P (ŵ|Xt−1, θStu) w ∈ V
15 LStu←− DKL(pred || target)
16 grad←− backward(LStu)
17 θStu ←− update(θStu, grad)
18 q̂t←− argmaxw(target)
19 end
20 end
21 return θStu

Algorithm 1 shows the proposed pipeline sys-
tem to train the student module. The inputs are the
pre-trained copy-type (θCP) and LM-type (θLM)
assistants, the discriminator (D), and the contexts.
The output of the pipeline system is a trained stu-
dent model (θStu). In line 6, Preprocessing refers

to the process of outputting an answer A and a
wh-word from an input context.

A.4 Detailed Hyperparameters
For all the models we used, we did not perform an
exhaustive hyperparameter search. In fact, most
of the hyperparameters are from Hugging Face’s
Transformers library 7 (Wolf et al., 2019) for BERT-
QA (Devlin et al., 2019) and the discriminator
schemes, or provided by Chan and Fan (2019) for
BERT-HLSQG model. Although a hyperparameter
tuning may achieve a performance boost, we opt
for a complete in-detail analysis of our proposed
method rather than attempting to achieve the high-
est possible performance.

QA Model We train the pre-trained bert-large-
uncased-whole-word-masking model and fined-
tuned on 10K training instances with 2 epochs and
batch size of 8. We use the Adam optimizer with
the learning rate of 3e-5, β1 = 0.9, β2 = 0.999 and
epsilon of 1e-8, without a weight decay. We use a
GELU (Hendrycks and Gimpel, 2016) as an acti-
vation, 384 for max sequence length, 128 for doc
stride, and 1e-12 for epsilon in the layer normaliza-
tion. We do not apply dropout for better analyses
on other models that are part of our proposed ap-
proach. The number of parameters is 340 million.

Discriminator We train the pre-trained bert-
base-uncased model on 70K training instances
(35K instances for each question type, copy-type
and LM-type) with batch size of 10 and 5 epochs.
All the other hyperparameters are the same as
the QA model, except for the dropout probability,
which is set to 0.1 on all the layers. The number of
parameters is 110 million.

QG Model The QG models are based on BERT-
HLSQG. We train the models on 10K training in-
stances with batch size of 6 and 2 epochs. The
BERT-HLSQG model is based on the BERT-base,
and the max length for questions is 42. All other
hyperparameters are the same as the discriminator
model. The number of parameters is 110M.

A.5 EM Scores on MRQA shared task
datasets

The Exact Match (EM) scores of our model and the
baselines in the MRQA shared tasks datasets are
shown in Table 5.

7https://github.com/huggingface/transformers

3277

Model SQuAD NewsQA TriviaQA SearchQA HotpotQA Natural Questions

Lewis et al. (2019) 45.2 19.1 26.2 29.1 20.9 17.7
LM-type QG 42.0 18.8 26.6 14.0 22.1 26.6
Copy-type QG 40.1 15.6 21.5 26.8 17.0 12.8

Teacher 47.5 20.1 26.6 8.5 23.0 26.2
Student 49.8 21.2 30.7 14.1 22.7 27.2

Table 5: EM scores of the baselines including SOTA on SQuAD and the two QG models, and our proposed
approach (Teacher and Student) on the in-domain MRQA shared task datasets. The Student is our final QG model.

