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Abstract

Automatic speech recognition systems usually
require large annotated speech corpus for train-
ing. The manual annotation of a large corpus is
very difficult. It can be very helpful to use un-
supervised and semi-supervised learning meth-
ods in addition to supervised learning. In this
work, we focus on using a semi-supervised
training approach for Bangla Speech Recogni-
tion that can exploit large unpaired audio and
text data. We encode speech and text data in
an intermediate domain and propose a novel
loss function based on the global encoding dis-
tance between encoded data to guide the semi-
supervised training. Our proposed method re-
duces the Word Error Rate (WER) of the sys-
tem from 37% to 31.9%.

1 Introduction
1 An annotated speech corpus is an essential com-
ponent for the development of an automatic speech
recognition system (ASR). Speech corpus is a col-
lection of audio files with corresponding text tran-
scriptions. Manually developing a speech corpus of
required size is a time consuming and monotonous
task. It also requires some prerequisites like a
recording environment, clear utterance, and addi-
tional information such as gender of speakers, etc.
For achieving a large vocabulary continuous speech
recognition we need approximately several hun-
dred to few thousands of hours of speech corpus.
Semi-supervised training can be a useful solution
to tackle the hurdles related to speech corpus de-
velopment. Semi-supervised training can provide
us a way to exploit a huge collection of publicly
available text as well as audio resources to improve
the performance of an ASR.

In this work, we focus on improving an end-
to-end speech recognition system for Bangladeshi
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Bangla using semi-supervised training. There are
very few publicly available large speech corpora for
Bangladeshi Bangla. Google released 229 hours of
speech corpus for Bangladeshi Bangla (Kjartansson
et al., 2018). But there are huge amounts of pub-
licly available news audio files, audiobooks, record-
ings in Youtube and other media sources. There
are a lot of text sources too like news websites,
blogs, e-books, etc. Considering the abundance of
unpaired audio and text data for Bangla language,
a semi-supervised training method that can exploit
both unpaired audio and text is very useful. Proper
use of the unpaired data along with existing paired
speech corpus can boost the performance of the
Bangla ASR system.

Different researchers have tried different ways
of incorporating this unlabelled, unannotated data
for speech recognition. Our approach is similar
to the approach used by Karita et al. (2018). We
utilize an intermediate representation of speech
and text data using a shared encoder network for
semi-supervised training of the ASR system. Our
contributions in this work are as follows:

• We propose a novel inter-domain loss function
based on global encoding distance (GED loss)
of speech and text data.

• Our proposed Global Encoding Distance
(GED) loss for inter-domain features performs
better than both the Gaussian KL-divergence
loss proposed in Karita et al. (2018) and Max-
imum Mean Discrepancy (MMD) loss pro-
posed in Karita et al. (2019). Our loss func-
tion is more meaningful and intuitive in the
context of unpaired audio and text data. The
performance of the GED loss is more robust
to minibatch size compared to Gaussian KL-
divergence and MMD loss.

• To our best knowledge, this is the first work
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on Bangla language that incorporates semi-
supervised training into deep learning based
end-to-end ASR architecture.

• Using our semi-supervised training, we are
able to exploit 1000 hours of unpaired au-
dio data and 800K unpaired Bangla sen-
tences. Our experiments show that our semi-
supervised training with GED loss achieves
WER of 31.9%, outperforming both the base-
line end-to-end system with an external lan-
guage model and semi-supervised method
with MMD loss.

The paper is organized in the following man-
ner. We discuss the related works in section 2,
the system architecture in section 3, details of our
inter-domain loss in section 4, corpus description
in section 5, experimental results in section 6, and
conclusion in section 7.

2 Related Works

Researchers have explored different methods of
semi-supervised training for speech recognition.
Long et al. (2019) investigate large-scale semi-
supervised training to improve acoustic models for
automatic speech recognition. They provide an em-
pirical analysis of semi-supervised training with re-
spect to transcription quality, data quality, filtering,
etc. Fan et al. (2019) pre-train the encoder-decoder
network with unpaired speech and text. They use a
large amount of unpaired audio to pre-train the en-
coder and synthesized audio from the unpaired text
to pre-train the decoder. Drugman et al. (2019),
Yu et al. (2010) integrate active learning jointly
with semi-supervised training in speech recogni-
tion system. Thomas et al. (2013) use transcribed
multilingual data and semi-supervised training to
circumvent the lack of sufficient training data for
acoustic modeling. They train deep neural net-
works as data-driven feature front ends.

Veselỳ et al. (2013) use utterance-level and
frame-level confidences for data selection during
self-training. They find it beneficial to reduce the
disproportion in amounts of paired and unpaired
data by including the paired data several times
in semi-supervised training. Liu and Kirchhoff
(2014) describe the combination of deep neural
networks and graph-based semi-supervised learn-
ing for acoustic modeling in speech recognition.
Dhaka and Salvi (2017) use a sparse auto-encoder
to take advantage of both unlabelled and labeled

data simultaneously through mini-batch stochastic
gradient descent.

Guo et al. (2018) try to improve the performance
of a code-switching speech recognition system for
Mandarin-English using semi-supervised training.
They apply semi-supervised learning for lexicon
learning as well as acoustic modeling. Similarly,
Veselỳ et al. (2018) & Lileikytė et al. (2016) use un-
transcribed data for Luxembourgish & Lithuanian
ASR respectively. Šmı́dl et al. (2018) use a two-
step training method to generalize the air traffic
control speech recognizer. First, a baseline speech
recognition system is trained using a paired speech
corpus and it is used to transcribe publicly available
unlabeled data. The transcribed data is then filtered
based on confidence scores and is used to retrain
the acoustic model.

Recently, semi-supervised training has been pro-
posed in the context of end-to-end ASR. Karita
et al. (2018) propose a shared encoder architecture
for speech and text inputs that can encode both
data from their respective domain to a common
intermediate domain. They combine speech-to-text
and text-to-text mapping by using the shared net-
work to improve speech-to-text mapping. They
propose an inter-domain loss function based on
Gaussian KL-divergence which represents the dis-
similarity between the encoded features of speech
and text data. They later proposed an inter-domain
loss function based on Maximum Mean Discrep-
ancy (Karita et al., 2019). In both cases, they as-
sume that the encoded speech features in the cur-
rent minibatch are sampled from one distribution
and encoded text features in the current minibatch
are sampled from a second distribution. The inter-
domain loss is calculated based on the discrepancy
of these two distributions. This approach has some
weaknesses. The performance of this system varies
based on the chosen minibatch size. Moreover,
this approach does not take into account the vari-
ance of the current encoded features in the global
context. We solve both problems by introducing
a new inter-domain loss function based on global
encoding distance.

3 Our System

In this section, we describe our baseline end-to-end
architecture as well as semi-supervised architec-
ture.
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Figure 1: Baseline System

3.1 Baseline System

Our baseline system is an end-to-end ASR sys-
tem based on the work of Watanabe et al. (2017).
The architecture is shown in Figure 1. CTC and
attention networks are combined in this architec-
ture. Both networks share an encoder network.
The shared encoder network has 6 layers of Bi-
directional Long Short Term Memory (BLSTM)
units. Each layer has 320 BLSTM units. A linear
projection layer is connected to each BLSTM layer.
The linear projection layer consists of 320 units.
The decoder has 1 layer of unidirectional LSTM
units. The number of LSTM units in this layer is
300. The scores from the attention network and
the CTC network are combined during decoding.
Let p(ct) be the probability of output label ct at
position t, given previous output labels and let w
be the CTC weight.

log p(ct) = w log pctc(ct) + (1− w) log patt(ct)
(1)

As for the audio feature, we use 40 Mel-
frequency cepstral coefficients (MFCC) per audio
frame. We also consider their first and second-order
temporal derivatives. So, we have 120 speech fea-
tures per audio frame. These features are fed to the
shared encoder and the attention decoder generates
the character sequence.

We use a Recurrent Neural Network (RNN),
based language model, in shallow fusion (Hori
et al., 2017) with the baseline end-to-end archi-
tecture. We use both character level and word level
RNN in our experiments. The character level RNN
has 2 layers of LSTM, with each layer having 650
LSTM units. The word-level RNN has 1 hidden
layer and this layer has 1000 LSTM units. For
the word level RNN, we use most frequently used
65000 Bangla words as our vocabulary set.

Text 
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Text 
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Figure 2: Semi-Supervised System

3.2 Semi-supervised System

Our semi-supervised end-to-end speech recogni-
tion system for Bangla is based on the work of
Karita et al. (2018). The semi-supervised archi-
tecture is shown in Figure 2. We use a shared en-
coder that encodes speech and text input sequences
into a common intermediate domain. Speech fea-
ture sequences and text character sequences are
very different in length. Also, speech features are
continuous-valued vectors while text characters are
discrete. We use a pyramid BLSTM network that
performs sub-sampling on the speech feature se-
quence. The sub-sampling process shortens the
length of the speech feature sequence. We use an
embedding layer that converts the text character ids
to continuous domain vectors. Thus, the speech
and the text inputs become compatible with each
other and they are both passed through a shared
encoder containing BLSTM units.

Our encoder network has 6 layers of BLSTM
cells. The size of each layer is 320 units. The
decoder network has 1 layer of LSTM cells. The
size of this layer is 300 units. First, this architecture
is trained in a supervised manner using the paired
speech corpus. Then, we perform retraining using
both paired and unpaired corpus. We use 3 different
loss to guide semi-supervised retraining. They are
the following:

Speech-to-text loss This is a conventional speech-
to-text loss during supervised learning, which
consists of a negative log-likelihood of the
ground-truth text given by the encoded speech
features. This loss is the combination of CTC
and attention loss similar to the baseline sys-
tem. We denote this loss as Lsup. The calcu-
lation of speech-to-text loss is shown in Equa-
tion 2. We use CTC weight w1 to control the
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relative importance of CTC and attention loss.

Text-to-text auto-encoder loss This is the nega-
tive log-likelihood that the encoder-decoder
architecture can reconstruct the output text
from an unpaired text corpus. We denote this
loss as Lae

Inter-domain loss This is the dissimilarity be-
tween distributions of the encoded speech fea-
tures and the encoded text features. We use
global encoding distance as a measurement
for our inter-domain loss. We denote this loss
as Lid. More on this is described in section 4.

Lsup = w1Lctc + (1− w1)Latt (2)

Luns = w2Lid + (1− w2)Lae (3)

Ltot = w3Lsup + (1− w3)Luns (4)

Equation 3 shows how the text auto-encoder loss
and the inter-domain loss are combined to generate
the unsupervised loss. We use speech text ratio
parameter w2 to control the relative importance
of the text auto-encoder loss and the inter-domain
loss. Then both the supervised loss Lsup and the
unsupervised loss Luns are combined to calculate
the total loss Ltot (shown in Equation 4). Here,
w3 is the supervised loss ratio which controls the
relative importance between the supervised and the
unsupervised loss.

4 The Inter-Domain Loss

In this section, we describe our proposed inter-
domain loss function.

4.1 Encoding Procedure
First, we pre-process the speech and text data in a
way that they become compatible with each other.
We reduce the length of the speech data by perform-
ing sub-sampling with a pyramid BLSTM unit. We
also transform the text sequences into a continuous
domain vector with an embedding layer. The pre-
processed speech and text data are then absorbed
by an encoder unit. The output of the encoder unit
is considered as the inter-domain representation
of the speech and text data. The overview of the
encoding process is shown in Figure 3. Figure 4
shows the visualization of the encoded data using t-
distributed stochastic neighbor embedding (t-SNE)
(Maaten and Hinton, 2008).

 

 Speech Text 

Pyramid BLSTM Embedding 

Shared Encoder 

Intermediate Domain 

Figure 3: Overview of Encoding

Figure 4: t-SNE Visualization of Encoded Data

4.2 Maximum Mean Discrepancy Loss

Here, we describe the MMD loss proposed by
Karita et al. (2019) and some of its limitations.
A minibatch is formed by sampling the encoded
features from unpaired speech and text data. All
encoded speech features in this minibatch are con-
sidered to be from one underlying distribution. Sim-
ilarly, all encoded text features from this minibatch
are considered to be from another underlying dis-
tribution. Then Maximum Mean Discrepancy be-
tween these two distributions is calculated. A sim-
ilar MMD calculation is repeated for the paired
minibatch. Then the inter-domain loss is calculated
by combining the MMD loss from the paired and
the unpaired set, as shown in Algorithm 1.

This approach has some limitations because the
distribution assumption is made only considering
the unpaired data in the current minibatch. This
loss calculation lacks the knowledge about global
distribution, density, and variance of the unpaired
data. Also, assuming a distribution based on the
current minibatch makes the system unstable with
respect to changing batch size. In other words, the
system is not guaranteed to converge to the optimal
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Algorithm 1 Computation of the MMD loss
1: N ← Number of samples
2: D ← dimension of encoded vector
3: HSP ← encoded speech, paired minibatch
4: HTP ← encoded text, paired minibatch
5: HSU ← encoded speech, unpaired minibatch
6: HTU ← encoded text, unpaired minibatch
7: HSP ∈ RNsp×D, HTP ∈ RNtp×D

8: HSU ∈ RNsu×D, HTU ∈ RNtu×D

9: function LOSS(HSP , HTP , HSU , HTU )
10: lp = MMD(HSP , HTP )
11: lu = MMD(HSU , HTU )
12: return lp+ lu

13: function MMD(HS , HT )

14: ms =
Ns∑
i=1

Ns∑
j=1

D∑
k=1

HS
i,kH

S
j,k

15: mt =
Nt∑
i=1

Nt∑
j=1

D∑
k=1

HT
i,kH

T
j,k

16: ks =

Ns∑
i=1

Ns∑
j=1

exp (
D∑

k=1
HS

i,kH
S
j,k−ms)

N2
s

17: kt =

Nt∑
i=1

Nt∑
j=1

exp (
D∑

k=1

HT
i,kH

T
j,k−mt)

N2
t

18: ks,t =

Ns∑
i=1

Nt∑
j=1

exp (
D∑

k=1

HS
i,kH

T
j,k−

ms
2

−mt
2
)

NsNt

19: return ks + kt − 2ks,t

solution for all minibatch sizes.

4.3 Global Encoding Distance (GED) Loss

We have found that a significant performance gain
can be made by exploiting the global distribution
and variance of the encoded unpaired data. We
pre-calculate the encoding for our entire unpaired
dataset and generate a representative matrix X for
our unpaired set. X is calculated as follows. A
set of neighboring points are repeatedly sampled
from the encoded unpaired data. A representative
mean is calculated for these neighboring points. X
is the concatenation of all such neighboring means.
Here, X ∈ RNx×D where Nx is the number of
representative means and D is the dimension of an
encoded feature. The representative mean is used
to reduce the size of the matrix X . This matrix
X now functions as a global representing matrix
for the unpaired set. Now the global encoding
distance for an encoded vector vi with respect to X

Figure 5: GED Loss

Algorithm 2 Computation of the GED loss
1: N ← Number of samples
2: D ← dimension of encoded vector
3: HSP ← encoded speech, paired minibatch
4: HTP ← encoded text, paired minibatch
5: HSU ← encoded speech, unpaired minibatch
6: HTU ← encoded text, unpaired minibatch
7: HSP ∈ RNsp×D, HTP ∈ RNtp×D

8: HSU ∈ RNsu×D, HTU ∈ RNtu×D

9: function LOSS(HSP , HTP , HSU , HTU )

10: lsp =
Nsp∑
i=1

GED(H i
SP |X)

11: ltp =
Ntp∑
i=1

GED(H i
TP |X)

12: lsu =
Nsu∑
i=1

GED(H i
SU |X)

13: ltu =
Ntu∑
i=1

GED(H i
TU |X)

14: return lsp+ltp+lsu+ltu
Nsp+Ntp+Nsu+Ntu

is defined as follows:

di = GED(vi|X) =
Nx

min
j=1
‖ei − vi‖ (5)

Here, ei is the ith row of the matrix X (ei ∈
R1×D) and it represents the ith representing mean
of the unpaired set.The global encoding distance
for four sample points is shown in Figure 5. For
each point, the global encoding distance is the dis-
tance from this point to the closest representing
mean in matrix X . The pseudocode for calculat-
ing inter-domain loss based on global encoding
distance is shown in Algorithm 2.

Unlike MMD loss, our proposed loss function
captures the dissimilarity between the encoded



1880

speech and text features with respect to the global
representing matrix X . In addition to capturing the
dissimilarity between the data in current minibatch,
GED based loss also captures the variance of the
encoded data in the global context. This system is
less likely to suffer from any potential shortsighted-
ness introduced by the assumption based on a few
samples within a minibatch. Also, our system is
more likely to converge to the optimal solution for
any given minibatch size.

5 Corpus Description

In this section, we describe the corpus used for our
experiments.

5.1 Paired Speech Corpus
We use the corpus provided by Kjartansson et al.
(2018) as our paired speech corpus. This corpus
has around 229 hours of annotated speech data.
The total number of utterances is around 217000
and the number of speakers is 505.

5.2 Unpaired Audio Data
The news recordings from a lot of Bangladeshi TV
channels are available in the public domain. We
mostly use these public domain news recordings
as our audio source. After crawling the data, we
split the audio files based on silence. We use 0.5
seconds as minimum silence duration and 0.0001
(between 0.0 and 1.0) as silence energy threshold.
After silence based segmentation, we discard all
audio files shorter than 3 seconds and longer than
9 seconds. Encoding audio files in the intermediate
domain becomes easier when all audio files have
a similar duration. After this, we have 1000 hours
worth of unpaired audio corpus.

5.3 Unpaired Text Data
We use Bangla newspaper websites for preparing
unpaired text corpus. We crawl around 40 Bangla
websites. We use text cleaning on the collected
data to remove non-Bangla symbols, punctuation,
special characters, etc. We then perform text nor-
malization. We convert all numbers to their textual
form, elaborate abbreviations, convert dates, etc.
We apply the same text normalization on the text
transcription of the paired dataset to maintain ho-
mogeneity among paired and unpaired corpus. Af-
ter text cleaning and normalization, we discard all
Bangla sentences that have fewer than 4 or greater
than 10 words. Our text corpus has around 800K
Bangla sentences.

Parameter Value
Initialization Uniform Distr

Encoder layers 6
Encoder layer size 320 (BLSTM)

Encoder projection layer size 320
Decoder layers 1

Decoder layer size 300 (LSTM)
Learning Rate 0.5

Batch size 24
CTC weight 0.3

Speech text ratio 0.1
Supervised loss ratio 0.9

Table 1: Hyper-parameter Description

6 Evaluations

In this section, we describe the experimental re-
sults.

6.1 Test Set
We separate 2000 utterances from the Google
speech corpus as our test set. The test set has 5
speakers and covers various domains.

6.2 Training Details
At first, we train the CTC-attention network with
the paired speech corpus. It takes around 10 hours
in our setup. Then we retrain the model using the
unpaired speech and text corpus along with the
paired corpus. It takes around 20 hours. All exper-
iments are performed on a hardware with a Core
i7 processor, 16 GB Memory, NVIDIA GeForce
GTX 1070 GPU. The important hyper-parameters
of our system are shown in Table 1.

The training graph for the initial supervised train-
ing is shown in Figure 6. In this step, the system
learns to minimize the CTC and the attention loss,
effectively minimizing the supervised speech to
text loss. The training graph for the retraining
stage is shown in Figure 7. In this step, the system
learns to minimize the text auto-encoder loss, as
shown in Figure 7. The CTC and attention loss do
not go through a big change in the retraining step
because they have already been minimized. The
inter-domain loss is calculated in an unsupervised
manner, so the loss graph for the inter-domain loss
remains steady throughout retraining.

6.3 Performance Comparison with External
Language Model

To maintain fairness, we use the same unpaired
text corpus to train the RNN language model in
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Figure 6: Supervised Training
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Figure 7: Semi-supervised Retraining

the baseline ASR model and the semi-supervised
model. The only difference is, the semi-supervised
model exploits the additional unpaired audio cor-
pus. The RNN language model is used in shallow
fusion with the baseline end-to-end system. Table
2 compares the Phoneme Error Rate (PER), Word
Error Rate (WER), and Sentence Error Rate (SER)
of our system with the baseline system with an
external language model.

When we do not use any language model, the
baseline end-to-end system achieves WER of 37%.
Adding a word-level RNN language model im-
proves the WER to 33.8%. The best accuracy in
the baseline setup is achieved by the character level
RNN where the WER is 32.5%. The character level

Model Language PER WER SER
Type Model (%) (%) (%)

Baseline
None 12.6 37.0 64.6
Word 12 33.8 60.2
Char 11.4 32.5 58.5

Semi-
None 11.3 31.9 58

Supervised

Table 2: Performance Comparison with Baseline

Inter-Domain PER WER SER
Loss (%) (%) (%)

Guassian KL 11.9 34.0 60.8
MMD 11.4 32.7 59.1
GED 11.3 31.9 58

Table 3: Performance of Inter-Domain Loss
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Figure 8: Effect of CTC Weight w1

RNN performs better than the word level RNN
probably due to the presence of out-of-vocabulary
words in the test set. The semi-supervised end-to-
end system that exploits unpaired audio and text
data outperforms all baseline setup and achieves
WER of 31.9%. It is important to note that we
do not use any separate language model with the
semi-supervised system. The semi-supervised sys-
tem already exploits the unpaired text data to some
extent using text-to-text auto-encoder. But the per-
formance of the semi-supervised system can be
further improved by combining a language model
during decoding.

6.4 Performance Comparison of
Inter-domain Loss

Table 3 shows the performance of the semi-
supervised system for different inter-domain loss.
Our proposed inter-domain loss based on global
encoding distance achieves WER of 31.9% and
SER of 58%, outperforming both Gaussian KL and
MMD loss.

6.5 Effect of CTC Weight

Figure 8 shows the effect of the CTC weight w1

(Equation 2) on the performance of our system.
We found the best results when using CTC weight
of 0.3. The tuning of the hyper-parameters is per-
formed on a separate validation set.
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Figure 10: Effect of Supervised Loss Ratio w3

6.6 Effect of Speech Text Ratio

Figure 9 shows the effect of the speech text ratio
w2 (Equation 3) on the performance of our system.
We found the best results when using speech text
ratio of 0.1.

6.7 Effect of Supervised Loss Ratio

Figure 10 shows the effect of the supervised loss
ratio w3 (Equation 4) on the performance of our
system. We found the best results when using su-
pervised loss ratio of 0.9.

6.8 Effect of Batch Size

Figure 11 shows the performance of the semi-
supervised system with respect to batch size. The
performance of the semi-supervised system with
MMD loss decreases with smaller batch sizes. Our
proposed GED loss is more robust to batch size
and more likely to converge to the optimal solution
even for small batch size.
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Figure 11: Effect of Batch Size

7 Conclusions

In this paper, we present a semi-supervised ap-
proach for the incorporation of unpaired audio
data to boost the performance of a Bangla ASR
system. Our proposed inter-domain loss function
based on global encoding distance performs better
than the Gaussian KL divergence and MMD loss
proposed previously. We exploit 1000 hours worth
of unpaired audio and a similar amount of text
data in our semi-supervised training to optimize
our speech recognition system. Our ASR which is
trained on publicly available paired speech corpus
and unpaired data resources outperforms the ASR
trained only on the paired speech corpus with lan-
guage models. In the future, we will try to improve
the performance of the semi-supervised system fur-
ther by fusing an additional language model during
decoding.
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