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Abstract

Recent studies have proven that the training of
neural machine translation (NMT) can be fa-
cilitated by mimicking the learning process of
humans. Nevertheless, achievements of such
kind of curriculum learning rely on the quality
of artificial schedule drawn up with the hand-
crafted features, e.g. sentence length or word
rarity. We ameliorate this procedure with a
more flexible manner by proposing self-paced
learning, where NMT model is allowed to 1)
automatically quantify the learning confidence
over training examples; and 2) flexibly govern
its learning via regulating the loss in each it-
eration step. Experimental results over multi-
ple translation tasks demonstrate that the pro-
posed model yields better performance than
strong baselines and those models trained with
human-designed curricula on both translation
quality and convergence speed.1

1 Introduction

Neural machine translation (NMT) has achieved
promising results with the use of various optimiza-
tion tricks (Hassan et al., 2018; Chen et al., 2018;
Xu et al., 2019; Li et al., 2020; Yang et al., 2020).
In spite of that, these techniques lead to increased
training time and massive hyper-parameters, mak-
ing the development of a well-performed system
expensive (Popel and Bojar, 2018; Ott et al., 2018).

As an alternative mitigation, curriculum learn-
ing (CL, Elman, 1993; Bengio et al., 2009) has
shown its effectiveness on speeding up the con-
vergence and stabilizing the NMT model train-
ing (Zhang et al., 2018; Platanios et al., 2019). CL
teaches NMT model from easy examples to com-
plex ones rather than equally considering all sam-
ples, where the keys lie in the definition of “diffi-

∗Baosong Yang and Derek F. Wong are co-corresponding
authors. Work was done when Yu Wan was interning at
DAMO Academy, Alibaba Group.

1Our codes: https://github.com/NLP2CT/SPL for NMT.

culty” and the strategy of curricula design (Krueger
and Dayan, 2009; Kocmi and Bojar, 2017). Ex-
isting studies artificially determine data difficulty
according to prior linguistic knowledge such as sen-
tence length (SL) and word rarity (WR) (Platanios
et al., 2019; Zhang et al., 2019; Zhou et al., 2020),
and manually tune the learning schedule (Liu et al.,
2020; Fomicheva et al., 2020). However, neither
there exists a clear distinction between easy and
hard examples (Kumar et al., 2010), nor these hu-
man intuitions exactly conform to effective model
training (Zhang et al., 2018).

Instead, we resolve this problem by introducing
self-paced learning (Kumar et al., 2010), where
the emphasis of learning can be dynamically deter-
mined by model itself rather than human intuitions.
Specifically, our model measures the level of confi-
dence on each training example (Gal and Ghahra-
mani, 2016; Xiao and Wang, 2019), where an easy
sample is actually the one of high confidence by
the current trained model. Then, the confidence
score is served as a factor to weight the loss of its
corresponding example. In this way, the training
process can be dynamically guided by model itself,
refraining from human predefined patterns.

We evaluate our proposed method on IWSLT15
En⇒Vi, WMT14 En⇒De, as well as WMT17
Zh⇒En translation tasks. Experimental results re-
veal that our approach consistently yields better
translation quality and faster convergence speed
than TRANSFORMER (Vaswani et al., 2017) base-
line and recent models that exploit CL (Platanios
et al., 2019). Quantitative analyses further confirm
that the intuitive curriculum schedule for a human
does not fully cope with that for model learning.

2 Self-Paced Learning for NMT

As mentioned above, translation difficulty for hu-
mans may not match that for neural networks. Even

https://github.com/NLP2CT/SPL_for_NMT
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Figure 1: Illustration of the proposed self-paced learn-
ing. The black components compose the vanilla NMT
training process, while our model (red) assigns confi-
dence scores for each input to weight its loss.

if these artificial supervisions are feasible, the long
sequences or rare tokens are not always “difficult”
as the model competence increases. From this
view, we design a self-paced learning algorithm
that offers NMT the abilities to 1) estimate the con-
fidences over samples appropriated for the current
training state; and 2) automatically control the fo-
cus of learning through regulating the training loss,
as illustrated in Fig. 1.

2.1 Confidence Estimation
We propose to determine the learning emphasis
according to the model confidence (Ueffing and
Ney, 2005; Soricut and Echihabi, 2010), which
quantifies whether the current model is confident
or hesitant on translating the training samples. The
model confidence can be quantified by Bayesian
neural networks (Buntine and Weigend, 1991; Neal,
1996), which place distributions over the weights
of network. For efficiency, we adopt widely used
Monte Carlo dropout sampling (Gal and Ghahra-
mani, 2016) to approximate Bayesian inference.

Given current NMT model parameterized by θ
and a mini-batch consisting of N sentence pairs
{(x1,y1), · · · , (xN ,yN )}, we first perform M
passes through the network, where the m-th pass
θ̂m randomly deactivates part of neurons. Thus,
each example yields M sets of conditional prob-
abilities. The lower variance of translation prob-
abilities reflects higher confidence that the model
has with respect to the instance (Dong et al., 2018;
Wang et al., 2019). We propose multi-granularity
strategies for confidence estimation:

Sentence-Level Confidence (SLC) A natural
choice for measuring the confidence of sentence
pair (xn,yn) is to assess the variance of translation
probability Var{P (yn|xn, θ̂m)}Mm=1. Accordingly,
confidence score α̂n can be formally expressed as:

α̂n = (1− Var{P (yn|xn, θ̂m)}Mm=1)
k, (1)

Here, we assign a hyper-parameter k to scale the
gap between scores of confident and unconfident

examples. The larger absolute value of k represents
higher discriminative manner and vice versa. In
some extreme cases, all the confidence scores in
a mini-batch may tend to small or big value, e.g.
the estimation at the early stage of the training.2

In order to stabilize the training process and main-
tain the same loss scale as conventional model, we
normalize the confidence scores by softmax:

αn =
exp(α̂n)∑N
t=1 exp(α̂

t)
. (2)

Token-Level Confidence (TLC) Intuitively,
confidence scores can be evaluated at more
fine-grained level. We extend our model into
token-level so as to estimate the confidence on
translating each element in target sentence yn. The
confidence β̂nj of the j-th token yn

j is:

β̂nj = (1− Var{P (yn
j |xn,yn

<j , θ̂
m)}Mm=1)

k, (3)

where Var{P (yn
j |xn,yn

<j , θ̂
m) denotes the vari-

ance of the translation probability with respect to
yn
j . Similar to sentence-level strategy, the confi-

dence scores of tokens are normalized as:

βnj =
exp(β̂nj )∑J
t=1 exp(β̂

n
t )
, (4)

where J indicates the length of target sentence yn.

2.2 Training Strategy

A larger confidence score indicates that the cur-
rent model is confident on the corresponding exam-
ple. Therefore, the model should learn more from
the predicted loss. In order to govern the learning
schedule automatically, we leverage the confidence
scores as factors to weight the loss, thus control-
ling the update at each time step. To this end, the
sentence log-likelihood can be defined as:

Ln =
J∑

j=1

βnj logP (yn
j |xn,yn

<j , θ), (5)

Finally, the loss of a batch is calculated as:

L =

N∑
n=1

αnLn. (6)

2When implementing the computation of SLC&TLC
scores, we use negative log-likelihood values instead of con-
ventional probabilities. Besides, we use the maximum value
to refactorize them within [0, 1] by division.
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At the early stage of the study, the model learns
more from confident samples, thus accelerating the
training. The hesitant samples are not completely
ignorant, but relatively few can be learned. As
training proceeds, the loss of high-confidence sam-
ples gradually reduce, and the model will pay more
attention on “complex” samples with low predic-
tion accuracy, thus raising their confidence. In this
way, the loss of different samples are dynamically
revised, eventually balancing the learning.

Contrast to related studies (Zhang et al., 2018,
2019; Kumar et al., 2019; Platanios et al., 2019)
which adopt CL into NMT with predefined pat-
terns, the superiority of our model lies in its flexi-
bility on both learning emphasis and strategy. Sev-
eral researchers may concern about the processing
speed when integrating Monte Carlo Dropout sam-
pling. Contrary to prior studies which estimate
confidence during inference (Dong et al., 2018;
Wang et al., 2019), we only perform forward propa-
gation M = 5 times in training time, which avoids
the auto-regressive decoding for efficiency.

3 Experiments

We evaluate our method upon TRANSFORMER-
Base/Big model (Vaswani et al., 2017) and conduct
experiments on IWSLT15 English-to-Vietnamese
(En⇒Vi), WMT14 English-to-German (En⇒De)
and WMT17 Chinese-to-English (Zh⇒En) tasks.
For fair comparison, we use the same experimental
setting as Platanios et al. (2019) for En⇒Vi and
follow the common configuration in Vaswani et al.
(2017) for En⇒De and Zh⇒En.

During training, we apply 0.3 dropout ratio and
batch size as 4,096 for En⇒Vi task, and experi-
ments are conducted upon one Nvidia GTX1080Ti
GPU device. For En⇒De and Zh⇒En task, we
use 32,768 as batch size, and use four Nvidia V100
GPU devices for experiments. We use beam size
as 4, 5, 10, and decoding alpha as 1.5, 0.6, 1.35 for
each task, respectively (Vaswani et al., 2017). We
compare our models with two baselines:

• Base and Big represent the vanilla TRANS-
FORMER (Vaswani et al., 2017) models.

• +CL is the recent NMT model that exploits
CL (Platanios et al., 2019). Difficulty of each
training sample is estimated according to its
sentence length (SL) or averaged word rarity
(WR). The curriculum schedule depends on
the number of training step.
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Figure 2: Affects of k on best performance after cer-
tain training steps upon En⇒De dev set. At the early
stage of the training, a higher k yields better translation
quality, denoting a faster convergence speed.

3.1 Confidence/Unconfidence Balancing

As mentioned in Sec. 2.1, we assign k to bal-
ance the extent of discrimination between confi-
dent and unconfident examples. We first conduct
experiments on En⇒De to evaluate the impact of
k. Fig. 2 shows that, the larger k, the faster con-
vergence speed. However, the final performance
slightly decreases when k > 2. We believe that the
overlarge k leads to overfit on confident samples
and ignore initial hesitated samples. This demon-
strates that an appropriate balance on the discrimi-
native manner contributes to both convergence ac-
celeration and final performance.

Besides, when k is negative, models will pay
more attention to unconfident examples. This cir-
cumstance is identical to reverse-CL (Zhang et al.,
2019), where training is advised to offer examples
in a hard-to-easy order. Our results confirm that
unconfidence-first strategy (k < 0) performs worse
than baseline, which is similar with previous find-
ings on CL (Zhang et al., 2018). We attribute this to
the fact that the heuristic design forces NMT model
to unceasingly learn more from unconfident exam-
ples, and finally leads to the strait of catastrophic
forgetting (Goodfellow et al., 2014). Therefore, we
set k = 2 for subsequent experiments.

3.2 Main Results

As shown in Tab. 1, our baseline models outper-
form the reported results (Vaswani et al., 2017;
Platanios et al., 2019) on the same data, making the
evaluation convincing. The proposed self-paced
learning method (SPL) achieves better results than
existing CL approaches that artificially determine
the difficulty (SL or WR), demonstrating the ef-
fectiveness of our method. Specifically, removing
either SLC or TLC decreases the translation quality,
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Model IWSLT15 En⇒Vi WMT14 En⇒De WMT17 Zh⇒En Acc.
TRANSFORMER-Base 30.05 ± 0.14 27.90 ± 0.24 24.11 ± 0.10 -

+CL-SL 29.91 ± 0.13 27.99 ± 0.22 24.10 ± 0.08 1.02
+CL-WR 30.05 ± 0.17 28.02 ± 0.24 24.25 ± 0.09 1.06

SPL 31.21 ± 0.15↑ 28.87 ± 0.19↑ 24.86 ± 0.12↑ 1.46
w/o TLC 30.91 ± 0.17↑ 28.51 ± 0.21↑ 24.62 ± 0.12↑ 1.17
w/o SLC 31.14 ± 0.14↑ 28.73 ± 0.24↑ 24.79 ± 0.10↑ 1.28

TRANSFORMER-Big 30.61 ± 0.12 28.72 ± 0.23 24.57 ± 0.14 -
SPL 31.45 ± 0.15↑ 29.68 ± 0.25↑ 25.26 ± 0.15↑ 1.21

Table 1: Overall experimental results of all approaches upon three translation tasks. Each cell contains the mean
value and standard variance of BLEU scores derived from 5 independent experimental runs. “SPL”: proposed
self-paced learning model. “Acc.”: Acceleration ratio of training time required to achieve the best performance of
baseline. “↑”: the improvement is significant by contrast to TRANSFORMER-Base/Big baseline model (p < 0.01).
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Figure 3: Learning curves of models on validation set.
Our model achieves reductions in iterations of 2.43x.

indicating that two confidence estimations are com-
plementary to each other. TLC outperforms its SLC
counterpart, which confirms that more fine-grained
information benefits to the training. Moreover, our
method consistently improves the translation qual-
ity with around 1 BLEU score across all involved
tasks and multiple model settings. This shows the
universality and effectiveness of SPL on different
scales of training data and model sizes.

4 Analysis

In this section, we further investigate how the pro-
posed method exactly affects the NMT model train-
ing by conducting experimental analyses on 1) con-
vergence speed, 2) self-paced adjustment and 3)
sequential bucketing.

4.1 Convergence Speed
As aforementioned, one motivation of exploiting
self-paced learning is to accelerate the convergence
of model training. We visualize the learning curve
of examined models on En⇒De dev set in Fig. 3.
As seen, the vanilla NMT model reaches its con-
vergence at step 120k, while the proposed one gets
the same performance at step 47k, yielding 2.43
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Figure 4: The ratios between averaged SLC scores
gained by our model and baseline. Obviously, the
model confidence on training samples with different
lengths change constantly during model training.

times faster. Although Monte Carlo Dropout sam-
pling requires extra time to forward-pass the neural
network at each iteration step, our method can still
reach comparable result on dev set with shorter
training time, achieving 1.46x faster training speed
(column “Acc.” in Tab. 1). Besides, we also ob-
serve that two methods proposed by Platanios et al.
(2019) reveal a comparable tendency with baseline.
We explain this with the view that Platanios et al.
(2019) examined these approaches with a batch
of 5,120 tokens, much smaller than that used in
our experiments (32,768). Since larger batch size
can considerably facilitate the training (Popel and
Bojar, 2018; Ott et al., 2018), the benefits of their
models may be marginal with this change.

4.2 Self-Paced Adjustment

It is interesting to investigate how our model ad-
justs its learning. We randomly extract 300 En⇒De
training examples, which then be categorized into 3
subsets according to their sentence lengths. Fig. 4
shows the ratios of averaged SLC scores between
our method and vanilla NMT system at different
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checkpoints. As seen, at the beginning of the train-
ing, the ratio of confidence score with respect to
short sentences is greater than 1, indicating our
model pays more attention to shorter examples than
baseline. This is identical with human intuition
that the short sentences seem easier and should
be learned earlier (Zhang et al., 2019; Zhao et al.,
2020). However, as training continues, our model
focuses on short and long sentences simultaneously
and hesitates on sentences with medium length,
which goes against human intuition and indicates
that long sentences may easier than its medium
counterparts for current model. From then on, the
curves fluctuate and interlace continuously, reveal-
ing that SPL automatically regulates its learning
emphasis. These phenomena show the flexibility
of our model, and confirm that predefined data dif-
ficulty and learning schedule is insufficient to fully
match the model learning.

4.3 Sequential Bucketing

Conventional model training sorts examples with
similar lengths into buckets to keep efficiency. This
may introduce bias when estimating confidence
scores, because longer sequence may gain far less
attention due to the productive multiplication of
probabilities for SLC estimation. Generally, larger
window size for bucketing increases the diversity of
length within each batch, but reduce the efficiency
of training due to extra padding tokens.

To investigate whether the diversity of sequen-
tial lengths within each batch may introduce bias
to SLC score computation, we conduct a series of
experiments with different settings of sequential
bucketing. As shown in Fig.5, we explore the ef-
fect of this on En⇒De task, revealing that both
baseline and our approach can gain improvement
from larger bucket range. Nevertheless, the per-
formance of baseline model decreases along with
lower diversity of sequential lengths, whereas that
of our model does not diminish. Our model gives
better performance with smaller window size com-
pared to baseline. Here we can conclude, that the
performance of TRANSFORMER baseline model
is bothered by close sequence lengths within each
batch, whereas our model shows its flexibility of
adjusting its learning to avoid such effect.

For fair comparison as well as keeping the
training efficiency, we follow the default setting
from Vaswani et al. (2017) by determining 20 as
the number of buckets across all experiments.
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Figure 5: Performance upon WMT14 En⇒De dev set
with different bucketing strategy. With window size for
sequence bucketing being smaller, the number of buck-
ets accordingly increases, and our model can maintain
its performance whereas baseline drops.

5 Conclusion

In this paper, we propose a novel self-paced learn-
ing model for NMT in which the learning schedule
is determined by model itself rather than being intu-
itively predefined by humans. Experimental results
on three translation tasks verify the universal ef-
fectiveness of our approach. Quantitative analyses
confirm that exploiting self-paced strategy presents
a more flexible way to facilitate the model conver-
gence than its CL counterparts. It is interesting
to combine with other techniques (Li et al., 2018;
Hao et al., 2019) to further improve NMT. Besides,
as this idea is not limited to machine translation,
it is also interesting to validate our model in other
NLP tasks, such as low-resource NMT model train-
ing (Lample et al., 2018; Wan et al., 2020) and
neural architecture search (Guo et al., 2020).
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Tom Kocmi and Ondřej Bojar. 2017. Curriculum
Learning and Minibatch Bucketing in Neural Ma-
chine Translation. In RANLP.

Kai A Krueger and Peter Dayan. 2009. Flexible Shap-
ing: How Learning in Small Steps Helps. Cognition,
110(3):380–394.

Gaurav Kumar, George Foster, Colin Cherry, and
Maxim Krikun. 2019. Reinforcement Learning
based Curriculum Optimization for Neural Machine
Translation. In NAACL:HLT.

M Pawan Kumar, Benjamin Packer, and Daphne Koller.
2010. Self-Paced Learning for Latent Variable Mod-
els. In NIPS.

Guillaume Lample, Myle Ott, Alexis Conneau, Lu-
dovic Denoyer, and Marc’Aurelio Ranzato. 2018.
Phrase-Based & Neural Unsupervised Machine
Translation. In EMNLP.

Jian Li, Zhaopeng Tu, Baosong Yang, Michael R. Lyu,
and Tong Zhang. 2018. Multi-Head Attention with
Disagreement Regularization. In EMNLP.

Jian Li, Xing Wang, Baosong Yang, Shuming Shi,
Michael R Lyu, and Zhaopeng Tu. 2020. Neuron
Interaction Based Representation Composition for
Neural Machine Translation. In AAAI.

Xuebo Liu, Houtim Lai, Derek F. Wong, and Lidia S.
Chao. 2020. Norm-Based Curriculum Learning for
Neural Machine Translation. In ACL.

Radford M Neal. 1996. Bayesian Learning for Neural
Networks, volume 118. Springer Science & Busi-
ness Media.

Myle Ott, Sergey Edunov, David Grangier, and
Michael Auli. 2018. Scaling Neural Machine Trans-
lation. In WMT.

Emmanouil Antonios Platanios, Otilia Stretcu, Graham
Neubig, Barnabas Poczos, and Tom Mitchell. 2019.
Competence-based Curriculum Learning for Neural
Machine Translation. In ACL.
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