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Abstract

There is increasing interest in assessing the lin-
guistic knowledge encoded in neural represen-
tations. A popular approach is to attach a diag-
nostic classifier — or “probe” — to perform su-
pervised classification from internal represen-
tations. However, how to select a good probe
is in debate. Hewitt and Liang (2019) showed
that a high performance on diagnostic classifi-
cation itself is insufficient, because it can be
attributed to either “the representation being
rich in knowledge”, or “the probe learning the
task”, which Pimentel et al. (2020) challenged.
We show this dichotomy is valid information-
theoretically. In addition, we find that the
methods to construct and select good probes
proposed by the two papers, control task (He-
witt and Liang, 2019) and control function (Pi-
mentel et al., 2020), are equivalent — the errors
of their approaches are identical (modulo irrel-
evant terms). Empirically, these two selection
criteria lead to results that highly agree with
each other.

1 Introduction

Recently, neural networks have shown substantial
progress in NLP tasks (Devlin et al., 2019; Rad-
ford et al., 2019). To understand and explain their
behavior, a natural question emerge: how much
linguistic knowledge is encoded in these neural
network systems?

An efficient approach to reveal information en-
coded in internal representations uses diagnostic
classifiers (Alain and Bengio, 2017). Referred to
as “probes”, diagnostic classifiers are trained on
pre-computed intermediate representations of neu-
ral NLP systems. The performance on tasks they
are trained to predict are used to evaluate the rich-
ness of the linguistic representation in encoding
the probed tasks. Such tasks include probing syn-
tax (Hewitt and Manning, 2019; Lin et al., 2019;
Tenney et al., 2019a), semantics (Yaghoobzadeh

et al., 2019), discourse features (Chen et al., 2019;
Liu et al., 2019; Tenney et al., 2019b), and com-
monsense knowledge (Petroni et al., 2019; Poerner
etal., 2019).

However, appropriate criteria for selecting a
good probe is under debate. The traditional view
that high-accuracy probes are better is challenged
by Hewitt and Liang (2019), who proposed that the
high accuracy could be attributed to either (1) that
the representation contains rich linguistic knowl-
edge, or (2) that the probe learns the task. To cir-
cumvent this ambiguity, they proposed to use the
improvement of probing task performance against
a control task (predicting random labels from the
same representations), i.e., the “selectivity” crite-
rion. Recently, Pimentel et al. (2020), challenged
this dichotomy from an information theoretic view-
point. They proposed to use an “information gain”
criterion, which empirically is the reduction in
cross entropy from a “control function task” prob-
ing from randomized representation.

In this paper, we show the “non-exclusive-or’
dichotomy raised by Hewitt and Liang (2019) is
valid information-theoretically. There is a differ-
ence between the original NLP model learning the
task and the probe learning the task.

In addition, we show that the “selectivity” crite-
rion and the “control function” criterion are com-
parably accurate. Pimentel et al. (2020) formu-
lated their errors with the difference in a pair of
KL divergences. We show that the error of the
“selectivity” criterion (Hewitt and Liang, 2019), if
measured from cross entropy loss, can be formu-
lated in the difference in a pair of KL divergences
as well. When randomizations are perfect, these
two criteria differ by only constant terms.

Empirically, on a POS tag probing task on En-
glish, French and Spanish translations, we show
that the “selectivity” and the “control function” cri-
teria highly agree with each other. We rank experi-
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ments with over 10,000 different hyperparameter
settings using these criteria. The Spearman correla-
tion of the Hewitt and Liang (2019) vs. Pimentel
et al. (2020) criteria are on par with the correla-
tions of “accuracy vs. cross entropy loss” — two
very strong baselines.

Overall, we recommend using control mecha-
nisms to select probes, instead of relying on merely
the probing task performance. When randomiza-
tion is done well, controlling the target or represen-
tations are equivalent.

2 Related work

Diagnostic probes were originally intended to ex-
plain information encoded in intermediate represen-
tations (Adi et al., 2017; Alain and Bengio, 2017;
Belinkov et al., 2017). Recently, various prob-
ing tasks have queried the representations of, e.g.,
contextualized word embeddings (Tenney et al.,
2019a,b) and sentence embeddings (Linzen et al.,
2016; Chen et al., 2019; Alt et al., 2020; Kassner
and Schiitze, 2020; Maudslay et al., 2020; Chi et al.,
2020).

The task of probing is usually formulated as a
classifier problem, with the representations as in-
put, and the features indicating information as out-
put. A straightforward method to train a classifier
is by minimizing cross entropy, which is the ap-
proach we follow. Note that Voita and Titov (2020)
derived training objectives from minimum descrip-
tion lengths, resulting in cross entropy loss and
some variants.

3 Information theoretic probes

3.1 Formulation

We adopt the information theoretic formulation of
linguistic probes of (Pimentel et al., 2020), and
briefly summarize as follows.

We want to probe true labels 7" from representa-
tions . An ideal probe should accurately report
the code-target mutual information I (7'; R), which
is unfortunately intractable. We will write I(7'; R)
in an alternative form.

Let p(T'| R) be the unknown true conditional
distribution, and a diagnostic probe, according to
the setting in literature (Alain and Bengio, 2017;
Hewitt and Manning, 2019; Maudslay et al., 2020),
is an approximation gg (7" | R) parameterized by 6,
then:

I(T;R) = H(T) — H(T|R)

H(T|R) = —Ey|g) log p(T'| R)
p(T|R)ge(T | R)
a0 (T | R)

— —E, log g — E, log -
a0

= H(p,q9) — KL(p|| gn),

where p and gy stand for p(T'| R) and ¢p(T | R)
respectively. We also use H(p, qp) = —E,, log gy
to represent the cross entropy for simplicity.

= —Epr|r) log

3.2 The source of probing error

A valid dichotomy Traditionally, people use the
cross entropy loss of the diagnostic probe H (p, gg)
to approximate [ (7"; R). We can derive a source of
error by rewinding the above formulations:

H(p,q9) = H(T) — I(T; R) + KL(p || q0)

The first term on RHS, H(T), is independent
of either R or §. Therefore, a low cross entropy
loss H(p, qp) can be caused by either of the two
scenarios:

e High code-target mutual information I(7’; R),
indicating the representation I contains rich
information about the target 7'

e Low KL-divergence between p(7'| R) and
¢o(T' | R), indicating the probe learns the task.

The two scenarios exactly correspond to the di-
chotomy of Hewitt and Liang (2019).

A good probe To get a good probe, we want
Hg, (T | R) to approximate I(7; R) as much as
possible. This means a good probe should min-
imize KL(p|| o), as proposed by Pimentel et al.
(2020).

However, empirically Pimentel et al. (2020) (as
well as many previous articles) used the cross en-
tropy loss Hy, (T'| R) to select good probes, which
is insufficient, as described above. Alternatively,
Hewitt and Liang (2019) and Pimentel et al. (2020)
proposed control tasks and control functions, re-
spectively.

3.3 The control task

The control task (Hewitt and Liang, 2019) sets ran-
dom targets for the probing task. Let us use ¢(7")
to indicate a “control function” applied on a token
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v that originally has label 1. The control func-
tion could nullify the information of the input, if
necessary.

If we measure the difference between
cross entropy in the control task and prob-
ing task  H(p(c(T)| R),qu.(c(T)|R) —
H(p(T|R),q9(T| R)), we can derive a form of
error margin in their measurements'. Let us use
a short-hand notations H (p., gp,) — H(p, qo) for
clarity. Now, what does the diff between cross
entropy on control task and probing task actually
contains?

+ (KL(pc || go.) — KL(p || g0))

We already knew that H(7T") = Const. According
the definition of control function, the output ¢(7")
would be independent of R. Then:

H(ce(T)) = Const
p(e(T), R) = p(c(T))p(R)
p(e(T), R)

(e(T)
HAT) R) =B ot

= Const

Therefore:
H(pe,qs.) — H(p,qp) = I(T; R) — Ay,

where A\, is a short-hand notation for the measure-
ment error in the control task criteria:

Ap =KL(p|l go) — KL(pc || go.) + Const (1)

When the probe fits the true distribution to a similar
extent on both the control task and probing task,
the error Ay, would be small. Unfortunately, both
KL terms are intractable.

3.4 The control function

Control function (Pimentel et al., 2020) introduces
a random processor c(-) on the representation R.
To measure the information gain, they used an “in-
formation gain” criterion:

G(T,R,c) =I(T;R) — I(T;c(R))

'Note that Hewitt and Liang (2019) used accuracy instead
of cross entropy. We discuss cross entropy so as to compare
the errors against the control function (Pimentel et al., 2020)

Noticing that mutual information terms are in-
tractable, they approximated the objective with
the difference between cross entropy in the con-
trol function task (we refer to as “control function”
henceforth) and the probing task:

g(Ta R7 C) = H(p07 q¢c) - H(pa q¢)

To compute the error of this approximation, they
reformulated the terms as following:

G(T,R,c)
=H(T)-H(T|R)— H(T)+ H(T |c(R))

The two H(T') terms cancel out, then:

H(T'|R) =H(p(T|R),q4(T | R))
—KL(p(T'| R) | ¢4(T'| R))
= H(p, q5) — KL(p, ¢¢)
H(T|e(R)) =H(p(T'|c(R)), q.(T'| c(R)))
—KL(p(T'|c(R)) || 44, (T' | c(R)))
= H(pec, qp.) — KL(pc || g4.)

Where we abbreviate similarly as we did for the
control task. Specifically, we write ¢ for the probe
parameters of control function to tell apart from
in the control task.

Pimentel et al. (2020) showed that the error
of their approximation, A, = G(T,R,c) —

G(T, R, c), can be expressed as:

Ap =KL(p | g4) — KL(pc | 9¢.) (2)

Again, when the probe fits the true distribution
to a similar extent on both the target labels distri-
bution and the probing task, the A, will be small.
Unfortunately, both KL terms are intractable too.

3.5 Control task vs control function

From Equations 1 and 2, we showed that the selec-
tivity criterion of Hewitt and Liang (2019) and the
information gain criterion of Pimentel et al. (2020),
if both measured in cross entropy loss, have very
similar errors in approximating information gains.
These errors, Ay, and A, respectively, appear
in very similar forms?. The probes selected from
these two criteria should be highly correlated to
each other, and our experiments will confirm.

>When the two ¢(-) are ideal, Ay, and A,, differ by only
irrelevant terms — we include the derivations in Supplementary
Material.
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Language # POS .# Tokens Correlations
train / dev / test  (t_acc,f_ent) (t_acc,t_ent) (f_accf_ent)
English 17 177k / 22k / 22k 0.1615 0.1334 0.1763
French 15 303k / 31k / 8k 0.0906 0.0606 0.1295
Spanish 16 341k / 33k / 11k 0.1360 0.0560 0.1254

Table 1: Spearman correlations between t_acc (the “selectivity” criterion (Hewitt and Liang, 2019)) and f_ent (the
“gain” criterion (Pimentel et al., 2020)) are on par with two “accuracy vs. cross entropy’ correlations.

4 Experiments

4.1 Setup

We use the same family of probes as Hewitt and
Liang (2019) and Pimentel et al. (2020), multiple
layers perceptrons with ReLU activations, to show
the correlations of their “good probe” criteria (con-
trol task and control function, respectively).

Overall, we sweep the probe model hyper-
parameters with a unified training scheme on three
tasks (probe, control task, control function). The
control task (function) setting includes labels (em-
beddings) drawn from a uniform random sample
once before all experiments. In each training, we
follow the setting of (Hewitt and Liang, 2019). We
save the model with the best dev loss, report the
test set loss and accuracy, and average across 4
different random seeds.

Data We use the Universal Dependency (Zeman
et al., 2019) dataset loaded with the Flair toolkit
(Akbik et al., 2018). We examine three languages:
English, French, and Spanish. For the probing task,
we use POS with labels provided by SpaCy>. We
use the embedding of multilingual BERT (mBERT)
implemented by huggingface (Wolf et al., 2019).
If a word is split into multiple word pieces, we
average its representations.

4.2 The “good probes” are good for both

When measuring the qualities of probes using the
“selectivity” (Hewitt and Liang, 2019) or “informa-
tion gain” (Pimentel et al., 2020) criterion, we show
that the rules-of-thumb for training good probes
largely agree.

e Early stopping before 24,000 gradient steps
(approximately 4 epochs) could inhibit probe
quality, but longer training procedures do not
improve the probe qualities considerably.

o Smaller probes are better in general, but excep-
tions exist. For example, when weight decay

*https://spacy.io

is set to 0, probes with one hidden layer and
40 hidden neurons are better in both criteria.
o A small weight decay is beneficial.
We include more descriptions, including compre-
hensive experiment configurations and plots in the
Supplementary Material.

4.3 The high correlation between criteria

In addition to the qualitative correlations shown
above, we compute the correlations between
the two criteria over a grid-search style hyper-
parameter sweep of over 10,000 configurations.
For each “probe, control task, control function” ex-
periment set, we record the following four criteria:

o t_acc: Difference between probing task and
control task accuracy. This is the “selectivity”
criterion of Hewitt and Liang (2019).

o f ent: Difference between control function
and probing task cross entropy. This is the
“gain” criterion of Pimentel et al. (2020).

o t_ent: Difference between the control task and
the probing task cross entropy. B

e f.acc: Difference between the probing task
and control function accuracy.

We collect all experiments of each language accord-
ing to these criteria, and use Spearman correlation
to test three pairs of correlations. As is reported in
Table 1, the (t_acc, f_ent) correlations are compara-
ble to two strong baselines, (t_acc, t_ent) and (f_acc,
f_ent), the correlations between measurements in
accuracy and cross entropy losses.

5 Conclusion

When selecting probes that better approximate
I(T; R), we recommend measuring with a control
mechanism instead of relying on the traditional
cross entropy on probing task. We show both
information-theoretically and empirically, that con-
trolling the targets and representations are equiva-
lent, as long as the control mechanism is random-
ized.
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A Difference between the two criteria

In Section 3 we show that the error of the two cri-
teria can both be written as difference between a
pair of KL divergence (modulo a constant term).
Here we further simplify the terms when we as-
sume the control task and functions take perfectly
random distributions (i.e., independent of the task
and representations, respectively).

Ay — A, = Const+
KL(p(c(T)|R) || go. (c(T)|R)) — KL(p|| g0)
— KL(p(T'|e(R)) || g¢.(T'|c(R))) + KL(p|| g4)

When we use the same hyperparameter setting,
¢o(T'| R) and ¢4 (T | R) should be able to approx-
imate p(7 | R) to the same extent, so KL(p || ¢p)
and KL(p || ¢4) cancel out. Additionally, following
the definitions of the control function and control
tasks, we can simplify as follows:

P(T|e(R)) = p(T). a5, (T|e(R)) = o, (T)
c(T
KL(p(c(T)|R) || g5, (c(T)|R)) = Ep(c(T»qif(é(T);)
B p(T)
KL(p(T1e(R) | go. (T1e(R))) = Byt =5

Therefore, the difference between errors of crite-
ria of Hewitt and Liang (2019) and Pimentel et al.
(2020) are:

Ap — A, = Const — KL(p(T) || 45, (T))

3)
+ KL(p(c(T)) [ g0 (e(T))

In short, these two criteria differ by terms depen-
dent only on the randomization functions and the
inherent distributions of task labels, i.e., irrelevant
terms.

B Experiments details

Hewitt and Liang (2019) proposed some rules-of-
thumb to select good probes, including a “simple
probe” suggestion. We sweep the hyper parameters
to test whether these rules also apply when mea-
suring probe qualities using the control function
(Pimentel et al., 2020).
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Hyper-parameter ranges We sweep hyper pa-
rameters from the following ranges:
e Learning rate: {10745 x 107°,3 x
107°,107%,5 x 1076,3 x 1076}

e Maximum gradient steps:

{1500, 3000, 6000, 12000, 24000, 96000, co}.

Their effects are shown in Figure 1.

e Weight decay: {0,0.01,0.1,1.0}. Their ef-
fects are shown in Figures 2, 3 and 4. When
sweeping weight decay, max gradient step is
set to 24000.

In any configuration mentioned above, we run four
experiments with random seeds 73, 421, 9973,
361091, and average the reported results (i.e., ac-
curacy and loss).

Early stopping could inhibit probe quality
Early stopping, if stopped before 24,000 gradient
steps (approximately 4 epochs) may inhibit the
quality of probes. In addition, we Figure 1 shows
high correlation between the “selectivity” (Hewitt
and Liang, 2019) and “information gain” (Pimentel
et al., 2020) criteria.

Small weight decay is beneficial We find that
smaller weight decays (e.g., 0.01) are more benefi-
cial for probes than larger weight decays. While the
two criteria rank the capacity of probes similarly,
the most simple probes tend to stand out more dis-
tinctively with the “selectivity” criterion (Pimentel
et al., 2020), as are shown on Figures 2, 3, and 4.

Smaller probes are not necessarily better We
find that while smaller probes have higher “selec-
tivity” and “information gain” for mBERT repre-
sentations, probes with one hidden layer and 40-
80 hidden neurons are better than more simplistic
probes, as shown in Figures 5, 6 and 7. The plots
show consistency between the two criteria. For
example, larger models and more layers do not
necessary lead to better results. Neither are the
smallest probes with 0 hidden layers.

Note that we also swept hyperparameters for
FastText, where probes with less parameters do
not always outperform more complex probes in
either accuracy, loss, selectivity, or information
gain. Figures 8 and 9 illustrate these observations.

C Reproducibility

On a T4 GPU card, training one epoch takes
around 20 seconds. Without setting maximum gra-
dient steps, 98.6% of experiments finish within

400 epochs. We open source our codes at https:
//github.com/SPOClab-ca/InfoProbe.
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Figure 1: Max gradient step vs accuracy, t_acc, f_acc (blue) and loss, t_ent, f_ent (green) on English. The “t” refers
to control task (Hewitt and Liang, 2019), and “h” refers to control function (Pimentel et al., 2020). In these set of
experiments, we look for the best learning rate and zero weight decay in each configuration.
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Figure 2: The “difference of accuracy” (Hewitt and Liang, 2019) and the “difference of loss” (Pimentel et al., 2020)
criteria against weight decay on model configurations, on UD English. For each configuration, the learning rate
leading to the highest accuracy is selected.
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Figure 3: The “difference of accuracy” (Hewitt and Liang, 2019) and the “difference of loss” (Pimentel et al.,
2020) criteria against weight decay on model configurations, on UD French. For each configuration, the learning
rate leading to the highest accuracy is selected.
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Figure 4: The “difference of accuracy” (Hewitt and Liang, 2019) and the “difference of loss” (Pimentel et al., 2020)
criteria against weight decay on model configurations, on UD Spanish. For each configuration, the learning rate
leading to the highest accuracy is selected.
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Figure 5: The “difference of accuracy” (Hewitt and Liang, 2019) and the “difference of loss” (Pimentel et al., 2020)
criteria with different learning rates on model configurations, on UD English. The weight decay is set to 0.
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Figure 6: The “difference of accuracy” (Hewitt and Liang, 2019) and the “difference of loss” (Pimentel et al., 2020)
criteria with different learning rates on model configurations, on UD French. The weight decay is set to 0.
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Figure 7: The “difference of accuracy” (Hewitt and Liang, 2019) and the “difference of loss” (Pimentel et al., 2020)
criteria with different learning rates on model configurations, on UD Spanish. The weight decay is set to 0.
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FastText: Accuracy vs initial learning rate (en) FastText: Loss vs initial learning rate (en)
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Figure 8: The accuracy and cross entropy loss of probes on FastText. These performances are much worse than
those on mBERT, indicating the richness of information encoded in contextuality of mBERT.
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Figure 9: The selectivity (Hewitt and Liang, 2019) and information gain (Pimentel et al., 2020) of probes on
FastText. Probes with different capacities are ranked similarly using these two criteria.
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