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Abstract

Existing research for question generation en-
codes the input text as a sequence of tokens
without explicitly modeling fact information.
These models tend to generate irrelevant and
uninformative questions. In this paper, we ex-
plore to incorporate facts in the text for ques-
tion generation in a comprehensive way. We
present a novel task of question generation
given a query path in the knowledge graph con-
structed from the input text. We divide the
task into two steps, namely, query representa-
tion learning and query-based question genera-
tion. We formulate query representation learn-
ing as a sequence labeling problem for identi-
fying the involved facts to form a query and
employ an RNN-based generator for question
generation. We first train the two modules
jointly in an end-to-end fashion, and further
enforce the interaction between these two mod-
ules in a variational framework. We construct
the experimental datasets on top of SQuAD
and results show that our model outperforms
other state-of-the-art approaches, and the per-
formance margin is larger when target ques-
tions are complex. Human evaluation also
proves that our model is able to generate rel-
evant and informative questions.1

1 Introduction

Question Generation (QG) from text aims to au-
tomatically construct questions from textual in-
put (Heilman and Smith, 2010). It receives increas-
ing attentions from research communities recently,
due to its broad applications in scenarios of dia-
logue system and educational reading comprehen-
sion (Piwek et al., 2007; Duan et al., 2017). It can
also help to augment the question set to enhance
the performance of question answering systems.

∗Corresponding author
1Our code is available at https://github.com/

WangsyGit/PathQG.

(a) Machine generated questions (Qs) for an input text together
with human generated ones (GTQs). Phrases underlined are the
answers to ground-truth questions.

(b) Knowledge graph constructed based on the input text shown
in top sub-figure. Two colored ellipsoid are two query paths re-
lated to two ground truth questions in sub-figure (a) respectively.
Nodes in green are covered by ground-truth questions.

Figure 1: A sample paragraph from SQuAD with
machine generated questions (Zhou et al., 2017) (a),
ground truth questions (a) and corresponding knowl-
edge graph (b).

Current QG systems mainly follow the sequence-
to-sequence structure with an encoder for modeling
the textual input and a decoder for text genera-
tion (Du et al., 2017). These neural-based models
have shown promising performance, however, they
suffer from generating irrelevant and uninformative
questions. Figure 1a presents two sample questions
generated by a nueral QG model. Q2 contains ir-
relevant information “Everton Fc”. Although Q1
is correct, it is a safe play without mentioning any

https://github.com/WangsyGit/PathQG
https://github.com/WangsyGit/PathQG
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specific information in the input text. One possible
reason causing the problem is that current sequence-
to-sequence models learn a latent representation for
the input text without explicitly modeling semantic
information included. We therefore argue that mod-
eling facts in the input text can help to alleviate the
problem of existing neural QG models.

Some researchers explore to incorporate the an-
swer entity (Zhou et al., 2017) or a so called ques-
tion worthy phrase (Wang et al., 2019) as the fact
to guide the generation of target question and make
some progresses. However, a complex question
usually involves multiple facts. Therefore, a single
word piece or phrase is not able to provide enough
information for the generation. In this paper, we
propose to represent facts in the input text as a
knowledge graph (KG) and present a novel task of
generating a question given a query path from the
KG. More specifically, a KG contains a set of fact
triples, and a query path is an ordered sequence
of triples in the KG. A fact triple consists of two
entities and their relationship.

Figure 1b shows the KG of the input text in Fig-
ure 1a and it includes two query paths. We can see
that not all facts in a query path are mentioned in
a specific target question (see Path 2 and GTQ2).
Therefore, the model needs to extract the involved
facts to form a query before it generates a question.
Intuitively, we divide the task of question genera-
tion from a query path into two steps, namely, query
representation learning and query-based question
generation. We formulate the former step as a
sequence labeling problem for identifying the in-
volved facts to form a query. For query-based ques-
tion generation, an RNN-based generator is used to
generate the question word by word. We first train
the two modules jointly in an end-to-end fashion
(PathQG in Section 3). In order to further enforce
the interaction between theses two modules, we
employ a variational framework to train the two
modules (Chen et al., 2018; Zhang et al., 2018) that
treats query representation learning as an inference
process from the query path taking the generated
question as the target (PathQG-V in Section 4).

For model evaluation, we build the experimen-
tal environment on top of the benchmark dataset
SQuAD (Rajpurkar et al., 2016). In specific, we
automatically construct the KG for each piece of
input text, and pair ground-truth questions with cor-
responding query paths from the KG. Experimental
results show that our generation model outperforms

other state-of-the-art QG models, especially when
the questions are more complicated. Human evalu-
ation also proves the effectiveness of our model in
terms of both relevance and informativeness.

2 Task Definition

We first introduce some notations in our task:

- x = (x1, ..., xn): an input text with n tokens,
where xi is the ith token;

- G: a knowledge graph constructed from x, which
is a set of fact triples {(e1, r, e2), ...}, where ei
is an entity and ri is the relation between ei and
ei+1;

- s = (e1, r1, e2, ..., em): a query path in the
knowledge graph, which is an ordered sequence
of triples, and it’s a subset of the G;

- y = (y1, ..., y|y|): the generated question based
on the x and s, where yi is a token.

The task is described as following: given an input
text x and its corresponding knowledge graph G,
our model aims to generate a question yi based on
a query path si from G.

3 Path-based Question Generation

We divide the task of question generation from
a given query path into two steps, namely, query
representation learning and query-based question
generation. A Query Representation Learner and a
Query-based Question Generator are designed for
the two steps separately. We directly combine these
two modules into a unified framework PathQG and
the overall architecture is illustrated in Figure 2.

3.1 Query Representation Learner
Query (representation) learner takes a query path
s as input and learn the query representation L.
Considering entities and relations in a query path
have different contributions to generate the target
question, we calculate their contribution weights
for query representation learning.

3.1.1 Contribution Weight Calculation
We treat the task of contribution weight calculation
as a sequence labeling task on the query path s =
(e1, r1, e2, r2, ..., em) taking entities and relations
as tokens.

Context Encoding Considering the input text x
can be useful to identify the weights of components
in the path, we first encode the input text via a
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Figure 2: The overall architecture of PathQG.

context encoder. Following (Zhou et al., 2017), we
use additional entity information (e.g., start, end
entity of the query path) to improve the encoding of
x. We use two BIO tags ba = (ba1, ..., b

a
n) and be =

(be1, ..., b
e
n) to mark the positions of start and end

entities in x. Then we concatenate the embeddings
of x and two BIO tags as the input of the context
encoder and use a bi-directional LSTM (Huang
et al., 2015) to get the context states hci as Eq. 1,
where Ew and Eb are word embedding and tag
embedding matrix respectively.

hci = BiLSTM([Ewxi; Ebb
a
i ; Ebb

e
i ], h

c
i−1) (1)

Contribution Weighting Since each entity or re-
lation in the path is also a sequence of tokens, we
take the average pooling of their word embeddings
as input fi = average(Ewsi) where

si =

{
e(i+1)/2 i mod 2 = 1

ri/2 i mod 2 = 0
(2)

The encoding process of the path sequence labeling
is as hsi = BiLSTM(fi, h

s
i−1). And the encoding

state hsi at each step i will attend to hc and the
attention output is computed as ci. Then ci will be
concatenated with hidden state hsi to calculate the
sigmoid probability of ith component si in path as
its contribution weight wi where

wi = Pθ1(si|x, s) = σ(FFN2([h
s
i ; ci])) (3)

where σ(·) is the sigmoid activation function and
FFNl is a l-layers feed-forward network.

3.1.2 Query Representation Learning
With the contribution weights of entities and their
relations as w = (w1, w2, ..., w2m−1), we encode
the query path s in a weighted manner to learn
the query representation. First we also utilize the
average embeddings of entities and relations to
compose the whole weighted query path as Eq. 4.

fw = (w1 · f1, w2 · f2, ..., w2m−1 · f2m−1) (4)

Considering a path has two different types of
elements: entity and relation appearing in an alter-
nating order, and the basic structural units consti-
tuting a path are triples, an RNN encoder is not
able to capture these special structural informa-
tion. Thus we adopt the recurrent skipping network
(RSN) (Guo et al., 2019) instead of BiLSTM to en-
code the weighted path sequence and form a query
representation as Eq. 5, 6,

−→
hLi =

−−−−→
LSTM(fwi ,

−−→
hLi−1)

←−
hLi =

←−−−−
LSTM(fwi ,

←−−
hLi+1), f

w
i ∈ fw (5)

Li =

{
[
−→
hLi ;
←−
hLi ] i mod 2 = 1

FFN1([
−→
hLi ; f

w
i−1;
←−
hLi ; f

w
i+1]) i mod 2 = 0

(6)

where L = (L1, ..., L2m−1) is the learned query
representation.

3.2 Query-based Question Generator
Taking the query representation L as input, we
generate the corresponding question. Follow-
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ing the sequence-to-sequence paradigm of NQG
model (Du et al., 2017), we take the concatenation
of final query representation L2m−1 and final hid-
den state hcn of the input text from Eq. 1 as the
initial state of the decoder and generate the ques-
tion word by word. For the decoder, a LSTM is
applied with attention mechanism and both sen-
tence context and learned query L are utilized in
the attention module.

The decoder attends to the learned query L =
(L1, ..., L2m−1) and gets an attention-based query
representation d1t . Besides, it also attends to the
textual context states hc = (hc1, ..., h

c
n) and com-

putes an attended context d2t . The ht, d1t and d2t are
concatenated to calculate the softmax probability
distribution over the whole vocabulary,

P (yt|y<t, L, x) = softmax(FFN2([ht; d
1
t ; d

2
t ]))

(7)

where the yt is the prediction at time t, and the
generated question is y = (y1, ..., y|y|).

4 Variational Path-based Question
Generation

The query representation learning can be treated
as an inference process from the query path with
the input text as the condition. Motivated by the
variational models for KG reasoning, we propose
a variational inference model PathQG-V to train
the query learner and question generator to further
enforce the interaction between them. Additionally,
it introduces a posterior query learner to infer a
posterior query distribution assuming the target
question provided.

Compared with the original objective of PathQG
as Eq. 8, the variational model aims to minimize its
negative evidence lower bound (ELBO) as Eq. 9,

logP (y|x, s) = log
∑
L

Pθ1(L|x, s)Pθ2(y|L, x)

(8)

−ELBO =KL(Pθ3(L|y, x, s)||Pθ1(L|x, s))
−EPθ3

(L|y,x,s)[logPθ2(y|L, x)] (9)

where Pθ1(L|x, s), Pθ3(L|y, x, s) and Pθ2(y|L, x)
are prior and posterior query distribution, and the
likelihood of question y respectively. The structure
of the variational model PathQG-V is shown in
Figure 3. Note that the prior query learner and the
query-based question generator are the same with
query learner and question generator in Section 3.

Figure 3: Overview of the PathQG-V model. x, s and
y are the input text, query path and the question respec-
tively.

4.1 Posterior Query Learner

The posterior query learner is designed in a similar
manner as the query learner in Section 3.1, except
that the target question is given. We incorporate the
target question y in the same way as the input text
x, where we employ a BiLSTM to encode the ques-
tion y and get their hidden states hq = (hq1, ..., h

q
t ).

In the decoder of contribution weighting process,
those question states are attended as same as con-
text states hc and get the attention output qi at each
step i. Then qi together with ci are concatenated
with the encoding hidden state hsi to compute the
posterior contribution weight of ith component si
in path as

w′i = Pθ3(si|y, x, s) = σ(FFN2([h
s
i ; ci; qi]))

(10)

Then following Eq. 4, 5, 6, the posterior query
representation L′ = (L′1, ..., L

′
2m−1) can be

learned.

4.2 Optimization and Inference

During training period the posterior learned query
representation L′ is fed to the question generator,
and the objective is to minimize the negative ELBO
as Eq. 9. And the first term of negative ELBO can
be viewed as Eq. 11:

L1 = KL(Pθ3((s1, ..s2m−1)|y, x, s)||
Pθ1((s1, ..s2m−1)|x, s)) (11)



9070

Then the Pθ2(y|L, x) is the generation proba-
bility of question y and the log-likelihood can be
rewritten as Eq. 12. We use the weighted path to
form a query representation instead of sampling
from the query distribution, therefore the second
term of negative ELBO can be formulated as Eq. 13
where the expectation over posterior distribution
EPθ3

(L|y,x,s)[·] is omitted.

logPθ2(y|L, x) =
|y|∑
t=1

logPθ2(yt|y<t, L, x)

(12)

L2 = − logPθ2(y|L, x, s) (13)

To ensure the performance of query representa-
tion learner, we also add a contribution weighting
loss defined as Eq. 14:

L3 = − logPθ1(L|x, s) (14)

We combine all losses in a weighted manner as
L = λL1+L2+βL3 to jointly train the framework,
where λ and β are weighted hyper-parameters.

For the inference, only the prior query learner
and the question generator are involved. The pro-
cess is the same as PathQG.

5 Experiments

5.1 Experimental Dataset

Our experiments are conducted on SQuAD (Ra-
jpurkar et al., 2016) consisting of 61,623 sentences.
Each sentence is annotated with several questions
together with their answers extracted from the input
text. We build our experimental dataset on top of
SQuAD. We construct knowledge graph for each
sentence automatically and identify query paths for
ground truth questions for evaluation. The resulted
dataset consists of 89,976 tuples (input sentence x,
query path s, ground truth question y).

KG construction We employ the scene graph
parser (Schuster et al., 2015) for KG construction
from a textual description. It identifies entities and
their relationships from a text and build a scene
graph. It turns out that the generated scene graph
usually misses some key information in the text,
thus we employ the part-of-speech tagger to extract
verb phrases between entities to further enrich rela-
tionship labels. The extended scene graph is used
as the knowledge graph for the input text. The aver-
age quantities of entities and facts in each KG are

6.53 and 4.68 respectively. The average informa-
tion coverage rate of the input text by constructed
KG is 68.52%. Note that our question generation
models are compatible with KGs constructed by
other methods.

Complex question set construction Our setting
is motivated by the scenario where questions are
related to multiple facts. We are then curious about
the effectiveness of our model for complex ques-
tion generation. Therefore we further construct a
complex question set. A question is treated as com-
plex if the corresponding query path contains more
than 3 triples. The resulted complex question set
contains 16,578 samples2. The detailed statistics of
complex and whole datatset can be seen in Table 1.
The datasets are split following Du et al. (2017).

dataset train valid test
len. of
ques.

complex 12,828 1,895 1,855 14.7
whole 68,704 10,313 10,959 13.3

Table 1: Statistics of complex and whole datasets. len.
of ques. is the average number of tokens in questions.

Query path and question pairing We then iden-
tify corresponding query paths from the KG for
ground truth questions. In practice, a path can be
determined by a start node and an end node. We
thus use answer entity of the question as the start
node and use the entity identified in the question
as the end node. If the question contains multiple
entities, we take the one farthest to the start node
in the KG as the end node. We ignore the edge
directions to simplify the modeling of query path.

5.2 Implementation Details

We construct different vocabularies for input texts
and questions respectively by keeping words which
appear more than twice. Glove (Pennington et al.,
2014) is used to initialize word embedding with
dimension 300 and the embedding for BIO tag is
randomly initialized of size 20. The size of hidden
units in LSTM cell in all encoders is 300 while the
size of the generation decoder is 1200. The hyper-
parameters to balance weights of losses are chosen
as λ = 0.5 and β = 0.1. We evaluate our model
on validation set to choose parameters. During test

2The constructed KGs and complex question index can
be downloaded from https://www.disc.fudan.edu.
cn/data/fudan_pathqg_data.zip.

https://www.disc.fudan.edu.cn/data/fudan_pathqg_data.zip
https://www.disc.fudan.edu.cn/data/fudan_pathqg_data.zip
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Model BLEU 1 BLEU 2 BLEU 3 BLEU 4 METEOR ROUGEL SPICE(×100)
NQG+ 49.89 32.84 23.54 17.25 18.90 43.17 31.19
AFPA 50.05 33.14 23.95 17.68 19.04 43.29 31.52
ASs2s 50.45 33.37 24.06 17.88 19.38 43.52 31.78

NQG+(pl) 50.87 33.65 24.18 17.81 19.33 43.61 32.10
PathQG 51.15 34.14 24.60 18.24 19.59 43.60 32.21

PathQG-V 52.46 34.91 25.19 18.48 20.04 43.79 32.41
NQG++ 53.98 36.32 26.39 19.59 20.80 45.70 34.91

Table 2: Evaluation results on complex dataset. (Bold: best performance of each column.)

Model BLEU 1 BLEU 2 BLEU 3 BLEU 4 METEOR ROUGEL SPICE(×100)
NQG+ 48.66 31.23 21.71 15.44 18.23 43.17 28.30
AFPA 48.70 31.25 21.76 15.49 18.32 43.02 28.18
ASs2s 49.40 31.71 22.00 15.64 18.56 43.33 28.57

NQG+(pl) 49.43 31.64 21.92 15.56 18.44 43.27 28.63
PathQG 49.45 31.95 22.22 15.79 18.56 43.44 28.69

PathQG-V 50.14 32.25 22.48 15.98 18.85 43.46 28.88
NQG++ 50.39 32.63 22.85 16.35 18.88 43.92 29.13

Table 3: Evaluation results on whole dataset. (Bold: best performance of each column.)

process, we use beam search of beam size 5. Refer
to Appendices A for further information of training
details and parameter numbers.

5.3 Models for Comparison
We compare our approach with some state-of-the-
art models. For fair comparison, the start and the
end nodes of the query path are provided for all
models.

- NQG+ follows Zhou et al. (2017), which is an
attention-based encoder-decoder model with the
sentence as input and uses BIO tagging scheme
to incorporate additional entity information (start
and end nodes) to generate questions.

- AFPA (Sun et al., 2018) combines answer-
focused model and position-aware model for
question generation. For fair comparison, the
model is re-trained with rich features including
NE and POS removed and end entity provided.

- ASs2s (Kim et al., 2019) utilizes additional an-
swer information via answer separation. For fair
comparison, we do not implement the retrieval
style word generator and the model is re-trained
in our setting with the end entity supplied.

- NQG+(pl) is an extension of NQG+. Instead of
learning a continuous latent query L, we sample
entities and relations from the path via sequence
labeling. Together with the start and end entities,

those identified extra information are all encoded
using BIO scheme for question generation.

- PathQG is our proposed generation framework
consisting of a query representation learner and
a query-based question generator. PathQG-V
is the variational version of PathQG with an
additional posterior query learner.

- NQG++ is an oracle model that is aware of all
path information contained in the target question
and encode them via BIO scheme. It can be
treated as the upper bound of NQG+(pl). We
present this result for reference.

5.4 Automatic Evaluation Results

For the automatic evaluation, we utlize some
widely adopted metrics including BLEU 1-4 (Pap-
ineni et al., 2002), METEOR (Banerjee and Lavie,
2005) and ROUGEL (Lin and Hovy, 2003). Be-
sides, we also compare results in the semantic con-
tent level by using a metric named SPICE (An-
derson et al., 2016). It evaluates the similarity of
scene graphs generated from candidate and refer-
ence questions. Evaluation results on both whole
and complex datasets are shown in the Table 2 and 3.
We have several findings:

- PathQG-V outperforms other models in terms
of all metrics on both datasets by a considerable
margin. This indicates the effectiveness of our
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variational inference framework for modeling the
query path for better question generation.

- PathQG identifying involved entities and rela-
tions along the path performs better than NQG+,
AFPA and ASs2s, which demonstrates the ef-
fectiveness of introducing more related facts for
question generation. And the improvement of
PathQG compared to NQG+(pl) shows the ne-
cessity of joint training.

- Our model generates larger improvement on the
complex dataset compared to the whole dataset.
This follows our intuition that questions related to
longer query path are more complicated and our
model has more advantage on these cases. Using
length of query path to control the difficulty of
questions is also a novel design (Gao et al., 2018).

- NQG+, AFPA and ASs2s utilize answer for QG
in different ways and our model PathQG-V fol-
lows the way of NQG+ for simplicity. From the
improvement of AFPA and ASs2s compared to
NQG+, our model can further be adapted to fol-
low them and performs better.

- Although good performance is achieved by
PathQG-V, there is still a certain gap between it
and the oracle model NQG++. It shows the query
learning from the path still has potential to be
improved.

5.5 Human Evaluation Results
To better evaluate the quality of the generated ques-
tions, we conduct human evaluation through Ama-
zon Mechanical Turk (AMT). We randomly choose
100 instances and 3 crowd annotators are invited
to compare the questions generated by PathQG-V
with NQG+, AFPA and ASs2s in pair-wise . For
each instance, the annotators are asked to read the
text with the answer, and compare two candidate
questions to determine which one is better in terms
of three aspects respectively. (1) Fluency: the ques-
tion is fluent. (2) Correctness: the question is con-
sistent to the text and the answer. (3) Informative-
ness: the question contains specific information of
the input text. The comparison results are shown
in Figure 4. We can see that our model outper-
forms others in terms of all characteristics. This
further proves that our model can generate more
informative and consistent questions.

5.6 Further Analysis
In order to evaluate whether our model can utilize
the facts in the input text to generate questions

Figure 4: Pairwise comparison between the questions
generated by PathQG-V and other methods in three
characteristics. Each color is the percentage of anno-
tators who consider the question generated by the cor-
responding method is better. “Tie” represents hard to
tell.

with less irrelevant information. We analyse the
relevance of the generated question to the text. We
also demonstrate case studies.

Relevance of generated questions We evaluate
the relevance of the generated questions to the input
texts from different models by computing the over-
lapping rate. The results are presented in Figure 5.
On both datasets, PathQG-V achieves the highest
overlapping rate among all models, which shows
our model can better utilize facts in the input text to
generate more relevant questions. And the improve-
ment of PathQG compared to other models reveals
the effectiveness of learning involved entities and
relations among path for question generation.

Figure 5: The overlapping rate between the input texts
and the generated questions from different models.

Case study Two examples are presented in Fig-
ure 6. In sample 1, compared with the question
generated by NQG+, our generated question by
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Figure 6: Two cases of input texts, paths, answers and questions generated by human, NQG+ and PathQG-V.
Phrases underlined are irrelevant to the input text.

model PathQG-V is more informative and specific,
which consists of information “plymouth” and “late
18th”. In sample 2, our generated question is con-
sistent to the input text while the one from NQG+
contains irrelevant phrase “swazi economy”.

6 Related Work

Question Generation, aiming at generating ques-
tions from a range of inputs, such as raw text (Heil-
man and Smith, 2010), structured data (Serban
et al., 2016) and images (Mostafazadeh et al., 2016;
Fan et al., 2018a,b), has attracted increasing atten-
tion in recent years. Most previous studies on tex-
tual question generation are rule-based and trans-
form a declarative sentence into an interrogative
sentence according to hand-crafted patterns (Heil-
man and Smith, 2010; Heilman, 2011).

With the advance of neural network, Du et al.
(2017) propose to apply a seq2seq structure with
attention for automatic question generation. As
follow-up, Zhou et al. (2017); Sun et al. (2018);
Kim et al. (2019) propose to utilize the answers to
decrease the generation uncertainty. Meanwhile,
Song et al. (2018) and Li et al. (2019) explore to
use answer-relevant context to guide question gen-
eration. Besides, some studies (Wang et al., 2017;
Tang et al., 2017; Wang et al., 2019) take question
generation as a subtask, and jointly learn it with
other tasks, such as question answering and phrase
extraction, which also help to alleviate the uncer-
tainty and improve the generation performance.

Another stream of research for question genera-
tion is from KG to question. Reddy et al. (2017);

Elsahar et al. (2018) explore to generate questions
from a single KG triple using text as context in-
formation. It is close to our setting, but we are
different in two aspects. First, we propose to form
a query path consisting of multiple triples for ques-
tion generation instead of a single triple. Second,
the context we process is where the extracted triples
from. This setting is more natural and different
from using retrieved text as context as they did.

7 Conclusion and Future Work

In this paper, we propose to model facts in the input
text as knowledge graph for question generation.
We present a novel task of generating a question
based on a query path from the constructed KG.
We propose to learn query representation for ques-
tion generation in a joint model and a variational
inference model is also proposed. We extend the
SQuAD dataset by automatic constructing KG for
each input sentence and identifying corresponding
query paths for ground truth questions. Experimen-
tal results proves the effectiveness of our proposed
model qualitatively and quantitatively.

In the future, there can be two research direc-
tions. First, we would like to explore more explain-
able reasoning method for question generation,
such as symbolic-based models. Second, novel
evaluation metrics for question generation taking
consistency and informativeness into consideration
would be of interest.
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A Appendices

A.1 Training Details
We train our proposed model and other comparison
models on RTX 2080, using Adam optimizer with
learning rate of 0.001, and decay at rate 0.96 per

Model runtime (minutes)
NQG+ 116
AFPA 160
ASs2s 97

NQG+(pl) 127
PathQG 137

PathQG-V 170
NQG++ 113

Table 4: Average runtime of each method.

epoch, up to 20 epochs. Mini-batch of size 64 is
taken for training. The dropout rate is 0.3 and we
also clip the gradient once it exceeds 5. The aver-
age runtime for each method is listed in Table 4.

A.2 Model Parameters
We also compute the number of parameters in each
model as shown in Table 5.

Model number of parameters
NQG+ 23,769,132
AFPA 23,975,883
ASs2s 27,775,572

NQG+(pl) 42,794,074
PathQG 33,775,934

PathQG-V 36,661,634
NQG++ 23,817,172

Table 5: Number of parameters in each model.


