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Abstract

In this paper, we study automatic rumor de-
tection for in social media at the event level
where an event consists of a sequence of posts
organized according to the posting time. It
is common that the state of an event is dy-
namically evolving. However, most of the ex-
isting methods to this task ignored this prob-
lem, and established a global representation
based on all the posts in the event’s life cy-
cle. Such coarse-grained methods failed to
capture the event’s unique features in differ-
ent states. To address this limitation, we pro-
pose a state-independent and time-evolving
Network (STN) for rumor detection based on
fine-grained event state detection and segmen-
tation. Given an event composed of a sequence
of posts, STN first predicts the correspond-
ing sequence of states and segments the event
into several state-independent sub-events. For
each sub-event, STN independently trains an
encoder to learn the feature representation for
that sub-event and incrementally fuses the rep-
resentation of the current sub-event with pre-
vious ones for rumor prediction. This frame-
work can more accurately learn the representa-
tion of an event in the initial stage and enable
early rumor detection. Experiments on two
benchmark datasets show that STN can signif-
icantly improve the rumor detection accuracy
in comparison with some strong baseline sys-
tems. We also design a new evaluation metric
to measure the performance of early rumor de-
tection, under which STN shows a higher ad-
vantage in comparison.

1 Introduction

Rumor is defined as an unverified statement, which
may be unintentionally created or deliberately fab-
ricated (DiFonzo and Bordia, 2007). False rumors
are damaging as they may cause public panic and
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Figure 1: An illustration of the spread of rumors,
which displays the average number of posts on Twitter
and Weibo datasets (Ma et al., 2016) over the propaga-
tion timeline.

social unrest. Social media platforms have been
ideal places for spreading rumors. It is important to
automatically detect the rumors and debunk them
before they are widely spread.

In recent years, the rumor detection task has at-
tracted continuous attention from many researchers
in the NLP community. We denote a statement
in social media as an event consisting of a source
post and its following posts such as comments or
reposts (collectively called posts). Given an event,
the rumor detection task is typically defined as a
text classification problem (Zubiaga et al., 2018).
The former aims to detect whether an event is a
rumor or not.

In the literature, the typical method was to first
obtain a global representation of the event based on
all posts in the event’s life cycle, and then employ a
machine learning algorithm, such as Random For-
est (RF, Kwon et al. 2013), Support Vector Machine
(SVM, Ma et al. 2015), Convolution Neural Net-
work (CNN, Yu et al. 2017) and Recurrent Neural
Network (RNN, Ma et al. 2016) to learn the con-
nection between the representation and the class
labels.

On the one hand, events in social media evolve
dynamically. According to communication stud-
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ies, the dissemination of an event can be roughly
divided into an evolution period, a high-tide period
and an extinction period (Li et al., 2014; Han et al.,
2014). As shown in Figure 1, similar curves can
be observed in two real-world social media rumor
datasets (i.e., Twitter and Weibo). Each state of the
event has different posting density and data distribu-
tion. However, most of the aforementioned coarse-
grained methods ignored the dynamics in the text
data stream, and failed to capture the unique fea-
tures in different states. Although part of these
methods have considered temporal features or mod-
eled the sequential dynamics with RNN, they still
failed to establish fine-grained representations for
different states.

On the other hand, the early detection of rumors
is of great importance. According to our observa-
tion on the two rumor datasets, most events reach
the high-tide period in less than five minutes. Al-
though some of the previous work segmented the
timeline by equal time span or equal number of
posts for early rumor detection (Ma et al., 2016;
Guo et al., 2018; Chen et al., 2018), they potentially
ignored the vital features of early states and failed
to train targeted models for early detection.

To address the limitations mentioned above,
we propose a new State-independent and Time-
evolving Network (STN) for rumor detection based
on propagation state detection and segmentation,
and apply it to early rumor detection in this pa-
per. Specifically, since an event in social media is
actually a sequence of posts sorted according to
the posting time, it can be viewed as a time-series
text data stream. To learn the propagation states in
the text data stream, we first employ the Kleinberg
algorithm (Kleinberg, 2003) to segment an event
into several sub-events based on the state transi-
tion, each of which represents a continuous and
identical state. Subsequently, we train an encoder
to fit each sub-event separately. We furthermore
propose a time-evolving fusion (He et al., 2018)
mechanism to merge the current sub-event repre-
sentation with previous ones, and combine them
together for incremental prediction. STN no longer
outputs one predictive label for one event, but out-
puts a sequence of labels for each state-independent
sub-event, which enables early detection of rumors.
Moreover, we further present a new evaluation met-
ric, called Time-series Smoothing Accuracy (TS-
Acc), for measuring the performance of early rumor
detection.

Experimental results on two real-world rumor de-
tection datasets released by Ma et al. (2016) demon-
strate the effectiveness of our STN model. It not
only achieves significant improvements for rumor
detection in comparison with several strong base-
line systems, but also greatly improves the early
rumor detection performance.

2 Related Work

In recent years, rumor classification system has
developed rapidly. Based on the definition in (Zu-
biaga et al., 2018), a complete rumor classification
system consists of four components: i. rumor detec-
tion; ii. rumor tracking; iii. stance classification; iv.
rumor verification. Among the four sub-tasks, ru-
mor verification resembles rumor detection closely.
For rumor detection, the goal is to detect whether
a statement is a rumor or not (i.e, the class labels
are rumor and non-rumor); for rumor verification,
the goal is to determine whether a rumor is true,
false or unconfirmed. Some following work have
also combined the class labels together and con-
sider it as a four-class classification problem (non
rumor, true rumor, false rumor, unverified rumor)
(Ma et al., 2017)1.

During the prophase study of rumor detection,
researchers focused on extracting various obvi-
ous features of microblog events on social media
platforms, and combined the features with tradi-
tional machine learning classifiers to detect rumors
or identify information credibility (Castillo et al.,
2011; Yang et al., 2012; Kwon et al., 2013; Liu
et al., 2015; Ma et al., 2015; Wu et al., 2015; Zhao
et al., 2015; Wang and Terano, 2015; Vosoughi,
2015). These manually-designed features can be
roughly categorized into three groups, including
text content, user portraits and propagation states.
However, it is hard for these traditional approaches
to capture the dynamic characteristics during the
spread of an event and the relationship between the
posts.

To address this issue, Kwon et al. (2013) con-
structed a massage propagation model to find the
diversity of the amount of related posts between
rumor and nor-rumor. Ma et al. (2015) first pro-
posed to divide the event timeline into equal-span
periods and utilized the dynamic changes of fea-

1It should be noted our proposed framework is compatible
with both rumor detection and rumor verification, although
they have different space of class labels. Therefore, we make
no distinction between the two and use the terminology of
“rumor detection” instead of both, for simplicity.
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tures in adjacent periods. Based on this, Ma et al.
(2016) further introduced RNN models to encode
the time periods, which verified the effectiveness
of RNN models on encoding sequential posts. Zu-
biaga et al. (2017) utilized a sequential approach
based on Linear-chain Conditional Random Fields
(CRF) to learn the dynamic relations between posts,
which relies on the content of a source microblog
and its related posts. Kwon et al. (2017) employed
different sets of features to keep the properties of
the propagation structure and temporal relations
among posts. Moreover, Guo et al. (2018) incorpo-
rated the attention mechanism into stacked RNNs
to model the temporal propagation of an event.

In addition, there is another line of researches
focusing on modeling the post sequences with tree
structures, which aims to useful relations among
the responsive posts (Nadamoto et al., 2013; Wu
et al., 2015; Ma et al., 2017, 2018; Kumar and
Carley, 2019). Among them, the representative
studies are Ma et al. (2018) and Kumar and Carley
(2019), which respectively proposed a recursive
neural network and a Tree-LSTM architecture to
explicitly model the tree structure. Different from
all the studies mentioned above, a recent study by
Ma et al. (2019) proposed to leverage Generative
Adversarial Networks (GAN) to improve the ro-
bustness of rumor detection, where a generative
model is trained to confuse the rumor detection
discriminator by generating pseudo real examples.

Although much work has been done for rumor
detection, only a few previous studies focused on
the early detection of rumors (EDR). Zhao et al.
(2015) argued that rumors are more likely to arouse
users’ suspicion, and proposed to aggregate related
posts with specific phrases, followed by perform-
ing EDR with cluster-based classifiers. However,
this work inevitably involved much human effort.
To alleviate the reliance of feature engineering,
Nguyen et al. (2017) utilized deep neural networks
to automatically capture features at the post level.
Although it achieves better early detection perfor-
mance, it is difficult to be applied to large events.
Liu and Wu (2018) believed that early posts are
easy to be manipulated by the source microblog,
while user characteristics are relatively stable. They
integrated RNN and CNN models to capture user
characteristics in the propagation process of an
event. However, only using user features makes
their model unable to achieve continuous perfor-
mance improvement as time goes by. More re-

cently, Song et al. (2019) introduced the concept of
credible detection points, and proposed to gather
every ten posts along the timeline as one time-step
of RNN and made prediction at each step. But tens
of thousands of posts make the number of time
steps large, which may reduce the reliability of
long-distance dependence.

3 Approach

3.1 Task Definition

Suppose D = {(E(1), y(1)), . . . , (E(|D|), y(|D|))}
is a rumor detection dataset, where E denotes one
event, and y denotes its class label. Each event E
consists of a large amount of posts:

E = {c0, c1, . . . , c|E|}, (1)

where |E| is the number of posts in it. The first
post c0 in E is regarded as the source post pub-
lished at time t0. Each of the following posts ci
has an arrival time ti and ci denotes the feature
representation of each post. After sorting all the
posts in event E according to the arrival time, E
can be considered as a time-series text data steam
E = [(c0, t0), (c1, t1), . . . , (c|E|, t|E|)].

We train a rumor detection model based on D,
and use it to predict the class labels y on an unseen
event E.

3.2 Event State Detection and Segmentation

The Kleinberg algorithm (Kleinberg, 2003) was
originally used to detect burst incidents on news
or e-mails. In this paper, we employ it to detect
the state for each post in an event. Based on the
hidden Markov model, the Kleinberg algorithm can
identify the hidden state sequence corresponding
to a post sequence.

For an event consisting of multiple posts E =
[(c0, t0), (c1, t1), . . . , (c|E|, t|E|)], we first build a
sequence of arrival time intervals

X = [x1, x2, . . . , x|E|], (2)

where

xi = ti − ti−1, i = 1, 2, . . . , |E|. (3)

Our goal is to obtain the corresponding state se-
quence Q for the interval sequence X:

Q = [q1, q2, . . . , q|E|], (4)
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Figure 2: An example of the state sequence given the
post sequence where the number of state levels N = 3.
Each post is assigned with a hidden state qi ∈ {1, 2, 3}.
For example, q1 = 1, q2 = 1 and q3 = 3.

where qi ∈ {1, 2, . . . , N} denotes the state of xi,
and N number of state levels in Q. Figure 2 illus-
trates a case of the state changes of part of the posts
in an event when N = 3.

The Kleinberg algorithm assumes the arrival
time interval has a memoryless exponential dis-
tribution:

p(xi|qi = j) = αje
−αjxi , (5)

where αj can be regarded as the arrival rate of posts.
It can be derived that the expected value of xi is
α−1j .

For the basic state q = 1, we set its arrival rate as
the reciprocal of the average intervals of all posts
in E:

α1 =
|E|

t|E| − t0
. (6)

The values of αj corresponding to higher states
qi = j are then set as:

αj = s(j−1) · α1, (7)

where s > 1 is a preset scaling parameter.
For adjacent arrival time intervals xi and xi+1

with the corresponding states qi = a and qi+1 = b,
the loss of transition from state a to b is defined as:

τ(a, b) =

{
(b− a)γ lnn, b > a

0, b ≤ a
, (8)

where γ is a preset parameter to control the magni-
tude of transition loss.

The objective of the algorithm is to solve a state
sequence Q, which minimizes the cost function
L(Q|X):

L(Q|X) =

|E|−1∑
i=1

τ(qi, qi+1)−
|E|∑
i=1

ln p(xi|qi).

(9)
where the first item is the loss of state transition,
based on which we expect the frequency of transi-
tion to be as small as possible. The second term

is the log-likelihood, based on which we want to
maximize the density functions p(X|Q) given the
sequence of xi and qi pairs.

After obtaining the optimal state sequence Q,
we then merge the continuous posts with the same
state into a single sub-event, and finally represents
an event E by a sequence of K state-independent
sub-events:

E = [E0,E1, . . . ,EK−1]. (10)

Each sub-event Ek includes a series of continuous
posts:

Ek = [ck,1, ck,2, . . . , ck,|Ek|]. (11)

where ck,l denotes the l-th post in the k-th sub-
event.

3.3 State-independent Sub-event Encoder
For each sub-event Ek, we train a state-
independent sub-event encoder ek to get the sub-
event representation.

Firstly, the mean pooling of the embedding of all
words in a post is used as the post representation:

ci = mean(w
(ci)
1 ,w

(ci)
2 , . . . ,w

(ci)
|ci| ), (12)

where w
(ci)
l is the word embedding vector re-

trieved from a pre-trained word embedding ma-
trix, and ci denotes the representation of the i-
th post. Based on ci, we can then get the input
representation of the sub-event Ek, denoted by
Xk = [c1, c2, . . . , c|Ek|].

Secondly, we employ a basic encoder (e.g., CNN,
LSTM) to get the sub-event representation hk
based on the input post representation Xk. The
encoding of the sub-event Ek can finally be ex-
pressed as follows:

hk = Encoder(Xk). (13)

Note that here the state-independent sub-event
encoder is a general framework compatible with the
widely used encoders of texts, e.g., CNN, LSTM,
GRU, etc. In the experiments, in addition to CNN,
we also report the results based on LSTM and GRU.

3.4 Time-evolving Representation and
Classification

The social media event evolve dynamically, and the
representations of pre-ordered sub-events may be
helpful for current sub-event prediction. Therefore,
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Figure 3: A schematic diagram of our model when learning for sub-event E2. The model outputs the prediction
result ĥ2 and updates all the visible and unfrozen modules accordingly.

we add a time-evolving fusion module after each
sub-event encoder to fuse the representation of the
current sub-event with previous ones:

ĥk = δ(Wk(hk ⊕ ĥk−1))

= δ
(
Wk

(
hk ⊕ δ(Wk−1(hk−1 ⊕ ĥk−2))

))
= . . . ,

(14)
where δ is a Sigmoid activation function and Wk is
a weight matrix. Similarly, ĥk will be used to guide
the encoding ĥk+1 of next sub-event, forming a
recursive encoding mode.

We independently predict the authenticity of sub-
event Ek under each state. The encoding ĥk of Ek
will be fed into a separate softmax classifier to get
the prediction result ŷk:

ŷk = softmax(Vkĥk + bk), (15)

where Vk and bk are parameters representing
weights and bias.

Given the sequence of sub-events E =
[E0,E1, . . . ,EK−1], our model incrementally out-
puts a corresponding sequence of predictive proba-
bilities:

Y = [ŷ0, ŷ1, . . . , ŷK−1]. (16)

The training objective of each sub-event is to
minimize the cross-entropy loss between the pre-
dictive probability ŷk and the true class label y:

LEk = y · log ŷk, (17)

where LEk denotes the loss for sub-event Ek.

It should be noted that our model is learned in
an incremental training mechanism. In training
for the current sub-event Ek, the parameters of all
previous encoders are frozen. That is, we only up-
date the parameters in current encoder. But the
fusion parameters (i.e., Wk−1,Wk−2, . . .) should
be fine-tuned synchronously. The incremental train-
ing process is illustrated in Figure 3.

3.5 Early Detection of Rumors

In this subsection, we further propose a new eval-
uation metric, named Time-series Smoothing Ac-
curacy (TS-Acc), to measure the performance of
early rumor detection.

Since the earlier prediction results are more im-
portant for rumor detection, we first employ a
smoothed exponential function to assign a weight
to the accuracy for the predictions in each sub-
event:

v(t) = e− logλ (t+λ), (18)

where t is the arrival time of sub-events and and
λ is a smoothing parameter defined as 60 in our
experiments.

TS-Acc is then defined as a weighed sum of
accuracies of already-appeared sub-events:

TS-Acc =
∑
k

Acc(k) · Norm(v(t(k))). (19)

where Norm(v(t(k))) denotes the normalized
weight among k already-appeared sub-events.

It is also worth noting that in case of discrete
time-points, the area under accuracy-time curve
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Table 1: Statistics of Twitter and Weibo datasets.

Twitter Weibo
Events 992 4,664

Non-rumor events 498 2,313
Rumor events 494 2,351

Posts 949,224 3,805,656
Avg. post number/event 957 816
Avg. time length/event 360.8Hours 1,808.7Hours

is equivalent to the sum of accuracies at all time-
points. Since TS-Acc is a weighted sum of accura-
cies, it can also be regarded as a weighted version
of area under accuracy-time curve.

4 Experiment

4.1 Datasets and Experimental Settings
Twitter and Weibo datasets were published by Ma
et al. (2016), both of which provided a large num-
ber of relevant posts for each microblog event. Due
to the protection policy of Twitter, we re-crawl all
the posts in the Twitter dataset according to their
ID numbers. However, since some of the tweets are
no longer available, we discard those unresponsive
source microblogs and finally obtain 90% of the
original dataset for our experiments. For Weibo
dataset, the events of misinformation are marked
as rumor. According to the definition in (Zubiaga
et al., 2018), it is more related to true rumor. But
to be be consistent with (Ma et al., 2016), we still
regard the event category as rumor and non-rumor.

The detailed statistics of both datasets are shown
in Table 1. Following the same settings in the pre-
vious papers, we hold out 10% of the events in
both datasets for model tuning, and the rest of the
events are split with a ratio of 3:1 for training and
test. To guarantee obtaining global states for differ-
ent events, we have not performed the Kleinberg
algorithm for each post. Instead, we combine all
events in the dataset together and align the posts in
them according to the posting time. The Kleinberg
algorithm is then performed on the combined en-
tire dataset. We use the Chinese word embeddings
from Tencent AI Lab (Song et al., 2018) and the En-
glish word embeddings from Google News. When
training the model, we use the Adam optimizer
(Kingma and Ba, 2014).

4.2 Rumor Detection Performance
In this subsection, we compare our proposed STN
model with the following rumor detection methods
on the standard rumor detection task, i.e., evaluat-
ing the detection accuracy after the end of the event

propagation:

• DTR: A ranking model based on a decision tree
to identify trending rumors through searching
for disputed claims (Zhao et al., 2015);
• SVM: A linear SVM model to identify ru-

mors with the handcrafted features and feature
change gradient (Ma et al., 2015);
• GRU: A GRU model with the text data ex-

tracted from the variable-length time series as
the input (Ma et al., 2016);
• PPC: A time series classifier based on RNN

and CNN, which captures the user characteris-
tics along the propagation path (Liu and Wu,
2018);
• AIM: An attention-based classification model

which can extract valid content and temporal
features (Liu et al., 2018);
• CED: A continuous detection model which first

obtains credible detection points for each repost
sequence, followed by making reliable predic-
tion based on the information before the credi-
ble detection point (Song et al., 2019).

Based on the results reported in Table 2, we can
make a couple of observations. First, compared
with the traditional model DTR and SVM, GRU
achieves obvious improvements on both datasets,
and AIM shows even better performance by us-
ing attention mechanism. Second, based on the
credible detection point, CED further boosts the
detection accuracy on Weibo to 94.6%. Finally, our
model STN consistently achieves the best perfor-
mance on both Twitter and Weibo datasets, which
outperforms the state-of-the-art models by around
two percentage points on both detection accuracy
and F1 score.

4.3 Early Detection Performance
In this subsection, we compare the performance of
all the models in early detection of rumors (EDR),
i.e., predicting the credibility of microblog events
based on the posts released before a detection time
point.

(1) The curve of detection accuracy

In Figure 4, we show the detection accuracy of
all the models as the time goes by. In particular, we
illustrate more detection results within the first 6
hours.

First, we can see from Figure 4 that the accu-
racy of DTR and that of SVM grow slowly on both
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Table 2: Results of conventional rumor detection on Twitter and Weibo datasets. Results are evaluated by accuracy,
macro-precision, recall, and F1-score. Part of the data are excerpted from published papers. (#CED only uses half
of the Twitter dataset.)

Method Twitter Weibo
Accuracy Precision Recall F1 Accuracy Precision Recall F1

DTR 0.681 0.679 0.680 0.679 0.732 0.732 0.732 0.732
SVM 0.745 0.758 0.741 0.749 0.857 0.859 0.858 0.858
GRU 0.757 0.760 0.757 0.758 0.910 0.914 0.910 0.912
PPC - - - - 0.921 0.923 0.926 0.924
AIM 0.796 0.799 0.800 0.799 0.936 0.936 0.937 0.936
CED 0.744# 0.708# 0.791# 0.747# 0.946 0.946 0.944 0.945
Ours 0.821 0.824 0.823 0.824 0.963 0.963 0.963 0.963

Figure 4: Early detection results on (a) Twitter and (b) Weibo. More time points within 6 hours are shown. (We
reproduced the curve of CED, but it may be slightly different from the original.)

Twitter and Weibo datasets. In contrast, the GRU
model has a faster and more stable rising curve on
both datasets. Second, compared with the previ-
ous methods, we can find that AIM consistently
improves the detection accuracy at each detection
time point. Moreover, PPC can quickly improve
the detection accuracy to over 92% in the first 5
minutes, but it cannot continue to perform better,
whereas CED can continuously improve its detec-
tion accuracy to over 94% within the first 6 hours
on the Weibo dataset. Finally, in comparison with
all the methods mentioned above, STN shows a
significant improvement within the first 6 hours.
Specifically, it is easy to see that STN has achieved
over 75% and 94% accuracy respectively at the
10th minute. In addition, as the time goes by, we
can clearly see that STN can gradually improve its
detection accuracy, and outperform all the state-of-
the-art models at each detection time point.

(2) Time-series Smoothing Accuracy

As introduced in Section 3.5, we propose the
Time-series Smoothing Accuracy (TS-Acc) to eval-
uate the efficiency of EDR. In Table 3, we report
the results of using this evaluation metric to com-

pare all the models. To be consistent with Figure
4, we respectively select 3 and 9 time points within
the first 6 and 96 hours to re-evaluate the TS-Acc
performance of all the models.

First, we can see that for each approach, the over-
all trend of the TS-Acc performance is similar to
that of the accuracy performance in Figure 4. Sec-
ond, it is worth noting that for the Weibo dataset,
the TS-Acc of PPC in 96 hours is slightly lower
than AIM and CED, whereas its TS-Acc in 6 hours
is significantly higher than AIM and CED. This
indicates that our evaluation metric TS-Acc primar-
ily reflects the speed of improvement in the early
stage. Finally, we can clearly observe that the TS-
Acc of STN is significantly higher than that of all
the state-of-the-art models on both datasets, which
is consistent with the performance trend shown in
Figure 4.

4.4 Discussion on State Detection and Event
Segmentation

(1) Discussion on the Dynamics of Data Distri-
bution

To show the state detection and event segmenta-
tion advantages of Kleinberg algorithm, we com-
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Table 3: Evaluation results of early detection efficiency
with our TS-Acc metric.

Model 6-hours’ TS-Acc 96-hours’ TS-Acc
Twitter Weibo Twitter Weibo

DTR 0.6487 0.7183 0.6576 0.7225
SVM 0.6652 0.7719 0.6936 0.7994
GRU 0.7048 0.8189 0.7210 0.8603
PPC - 0.9126 - 0.9169
AIM 0.7240 0.8985 0.7435 0.9175
CED - 0.9082 - 0.9283
STN 0.7603 0.9366 0.7897 0.9477

Table 4: Mean values of intra-class distance on Weibo
datasets when using different event segmentation meth-
ods.

Method Sub-events/event Intra-class distance
VTS 30 1.0570
VTS 50 1.2641
CPT 2000 0.9302

Kleinberg 33 0.8177

pare it with some representative state segmenta-
tion methods, such as Variable-length Time Series
(VTS, Ma et al. 2016) and Constructing Post Series
(CPS, Chen et al. 2018), which divide the event
with equal time span and equal number of posts
respectively.

Specifically, we calculate the intra-class distance
of each divided sub-event, and obtain the mean
value of all the distances of sub-events for each
model. Note that the smaller the intra-distance is,
the closer the post features in the sub-event are.
In Table 4, it is easy to observe that Kleinberg
algorithm can obtain the lowest intra-class distance,
which demonstrates its better state segmentation
ability, and it may reduce the dynamics of data
distribution of sub-events and further enhance the
feature extraction ability of our encoders.

(2) Effects of Parameters of Kleinberg

Kleinberg algorithm has two important preset
parameters s and γ which are used to set the ex-
pected arrival rate of posts and the transfer loss
between different state levels. As shown in Table
5, we explore the impact of several pairs of s and
γ on the sub-event partition.

In order to ensure effective training of STN, we
adjust the state division of the Kleinberg algorithm.
If the number of events that have posts under a
single state is less than 30% of the total number
of events, we merge the current state with the se-
quential state, and if the duration of a single state
exceeds two hours, we truncate it at the 2nd hour.
Finally, we find that the reasonable changes of s

Table 5: Effects of different encoders of STN. (The
number of detection points for TS-Acc are 12 and 33
respectively.)

s 1.5 1.2 1.1 1.1
γ 1 1 1 0.8

Max state level 5 10 19 19
State change times 247 89 84 104

Number of final sub-events 39 33 32 33

Table 6: Effects of different encoders of STN. Re-
sults are evaluated by regular accuracy and Time-series
Smoothing Accuracy. (The number of detection points
for TS-Acc are 3 and 9 respectively.)

Encoder in 6-hours in 96-hours
Accuracy TS-Acc Accuracy TS-Acc

LR 0.9295 0.9149 0.9323 0.9197
LSTM 0.9476 0.9317 0.9486 0.9365
GRU 0.9505 0.9346 0.9514 0.9395

GRU-ATT 0.9524 0.9331 0.9533 0.9390
CNN 0.9629 0.9366 0.9629 0.9477

and γ have little effect on the number and the seg-
mented position of sub-events. Thus, we draw the
conclusion that the performance of STN is not sub-
ject to the parameter adjustment of Kleinberg.

4.5 Discussion on the Compatibility of
State-independent Encoders

As mentioned above, the state encoder of STN is
a general framework compatible with traditional
feature extraction and classification algorithms or
deep neural networks. We do experiments with the
following encoders on Weibo dataset: LR (Logistic
Regression), LSTM, GRU, GRU-ATT (GRU with
self-attention) and CNN.

Table 6 shows the detection accuracy and early
detection efficiency TS-Acc of STN in the first 6
and 96 hours with different encoders. First, we can
see that the traditional machine learning model LR
can already achieve good performance. Second,
among all the deep learning encoder, CNN obtains
the best performance in both settings. Moreover,
by comparing the results in Table 3 and Table 6,
we can see that all the deep learning encoders can
obtain better performance than all the state-of-the-
art models, which indicates the effectiveness and
the generalization ability of our STN model.

4.6 Discussion on the Incremental Training

Finally, to verify the effect of the time-evolving
fusion module, we replace the module of STN with
a standard GRU, and make STN degenerate into
an integrated training model (GRU with Kleinberg,
GK).
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Table 7: Comparison between GK and other models.
Results are evaluated by accuracy, macro-precision, re-
call, and F1-score.

Model Accuracy Precision Recall F1

GRU 0.910 0.914 0.910 0.912
GK 0.949 0.948 0.949 0.948
STN 0.963 0.963 0.963 0.963

As shown in Table 7, we can easily find that our
incremental training method (i.e., STN) can con-
sistently perform better than GRU and GK, which
demonstrates the usefulness of our time-evolving
fusion module. Moreover, in our experiments, we
also find that since the prediction of the current
state is dependent on the previous state in our time-
evolving fusion module, events that are predicted
correctly in the earlier states rarely change in the
follow-up state, but most of the events that are
wrongly predicted in the earlier states can be largely
corrected in the follow-up state. This further proves
the effectiveness of our STN model.

5 Conclusion and Future Work

In this paper, we first introduce the Kleinberg algo-
rithm to identify the propagation states for an event
composed of a sequence of posts and segment the
sequence into several state-independent sub-events.
On this basis, we propose a state-independent and
time-evolving network (STN) for rumor detection
as well as early rumor detection. We also present
a new metric called time-series smoothing accu-
racy (TS-Acc) for measuring the efficiency of early
rumor detection. The experimental results on two
real-world microblog rumor datasets demonstrates
the advantages of our STN approach in terms of
both rumor detection accuracy and our proposed
TS-Acc metric, in comparison with some strong
rumor detection systems.

One disadvantage of this work is that the Klein-
berg algorithm is performed on the combination of
all events in the dataset to maintain global states.
This way may fail to capture the individual state
transition in single events. Secondly, it is a retro-
spective algorithm which depends on the condition
all posts along the timeline should be provided in
advance. Therefore, one direction for future work
is to explore an online state detection algorithm
and perform it for each event, but at the same time
ensure that the state of each event is globally de-
fined. It would be even better if the state detection
and segmentation step can be integrated with sub-

sequent state-independent feature extraction and
rumor detection in an end-to-end framework.
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